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Axionic superconductivity in three-dimensional doped narrow-gap semiconductors
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We consider the competition between the conventional s-wave and the triplet Balian-Werthamer or the B-phase
pairings in doped three-dimensional narrow-gap semiconductors, such as CuxBi2Se3 and Sn1−xInxTe. When the
coupling constants of the two contending channels are comparable, we find a simultaneously time-reversal and
parity violating p + is state at low temperatures, which provides an example of a dynamic axionic state of
matter. In contradistinction to the time-reversal invariant, topological B phase, the p + is state possesses gapped
Majorana fermions as surface Andreev bound states, which give rise to an anomalous surface thermal Hall effect.
The anomalous gravitational and electrodynamic responses of the p + is state can be described by the θ vacuum
structure, where θ �= 0 or π .
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The notion of θ vacuum is a venerable concept of modern
quantum field theory, which has profound implications for
the vacuum structure of gauge theories [1]. Physically, the θ

term for the gauge theory is a pseudoscalar magnetoelectric
coefficient, and an arbitrary θ violates the time-reversal (T )
and parity (P) symmetries. In order to preserve P and T
symmetries in the strong interaction regime and also to account
for the violation of these fundamental discrete symmetries
in the lower energy scales, the existence of a very light
pseudoscalar boson, dubbed axion, was postulated almost three
decades ago [2–4]. Thus far the axion has eluded experimental
detection.

However, the interest in the θ vacuum and its tangible
experimental consequences has been revived due to the dis-
covery of time-reversal symmetric (TRS), three-dimensional
Z2 topological insulators [5–7]. It has been recognized that the
topological invariant of the Z2 topological insulator couples
to the electromagnetic gauge field as a θ term, and as a
consequence of the T symmetry and the nondegeneracy of the
underlying ground state, the magnetoelectric coefficient θ is
quantized to be π [5]. When the criterion of the nondegenerate
ground state is relaxed while maintaining the T symmetry, the
θ can acquire fractional values, which reflect the degeneracy
of the ground state on a torus [8,9]. Similar θ vacuum
structures have also been found for the spin gauge field [10]
and the gravitational field [11,12], respectively, for the TRS
topological superconductors (TSCs) in the classes CI and
DIII [13].

The Balian-Werthamer or the B phase of superfluid
3He [13] and the pseudoscalar pairing of the four compo-
nent charged Dirac fermions [14] are experimentally perti-
nent examples of TSCs in the class DIII. Upon projecting
onto the low energy quasiparticles in the vicinity of the
Fermi surface, the pseudoscalar pairing also maps onto the
B phase [15]. Following the suggestion of Ref. [14], that
the DIII TSC may be realized in doped three-dimensional,
strongly spin-orbit coupled narrow-gap semiconductors, there
has been considerable experimental interest in the supercon-
ducting CuxBi2Se3 and Sn1−xInxTe [16–25].

A natural question arises whether there is a condensed
matter realization of P and T breaking dynamic axionic
state of matter [26]. Recently, the possibility of such a phase
has been proposed for some magnetic insulators [27–29],
which is yet to be experimentally found. In this Rapid
Communication, we demonstrate that a spontaneously P and
T breaking axionic superconducting state can be realized
in doped three-dimensional narrow-gap semiconductors. This
axionic paired state has p + is pairing symmetry, and emerges
due to the competition between the conventional s-wave
and the triplet B-phase pairings, and lacks any analog in
the superfluid 3He [30]. According to the Altland-Zirnbauer
classification scheme, the p + is state is a member of the
class D [31]. Both the electromagnetic gauge field and the
axion fields are massive inside this phase. As a consequence
of the broken T symmetry, the p + is state possesses gapped
Majorana fermions as surface Andreev bound states (SABS),
and supports an anomalous surface thermal Hall (STH)
conductivity.

The low energy quasiparticle dispersion in many narrow-
gap semiconductors is succinctly captured by a massive Dirac
equation, which describes the Kramer’s degenerate quasipar-
ticles in the conduction and valence bands. In the presence
of strong spin-orbit coupling, electron-phonon scattering can
lead to attractive interactions in both the singlet and triplet
channels [14]. As these materials are weakly correlated,
perhaps it is not a strong assumption that the retarded pairing
interaction will generically emerge in the vicinity of the Fermi
surface. Therefore, the completely filled (or empty) bands can
be safely integrated out for determining the low energy pairing
physics. We consider a situation when the Fermi level lies in
the conduction band, and begin with the following interacting
Hamiltonian,

Hqp =
∑
k,s

ξk c∗
k,sck,s +

∑
k

V (k)n̂k n̂−k. (1)

In the above equation the number operator n̂k =∑
q,s c∗

q+k,scq,s , and c∗
k,s , ck,s are, respectively, the creation

and annihilation operators of the quasiparticles with mo-
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mentum k. The index s represents the Kramer’s pair, and
ξk =

√
v2k2 + �2

g − μ describes the quasiparticle energy with
respect to the Fermi level μ. The band gap is denoted by
�g and the band parameter v has the dimension of velocity.
When |μ − �g| � �g , a nonrelativistic approximation ξk ≈
k2/(2m) − μ̃ can be applied, where m = �g and μ̃ = μ − �g .
If we choose a simplified interaction potential V (k), which is a
sum of the attractive interactions in the s- and p-wave channels,
the pertinent reduced BCS Hamiltonian for the mean-field
description becomes H = 1

2

∑
k �

†
kĤk�k. The four compo-

nent Nambu spinor �
†
k = (c∗

k,↑,c∗
k,↓,c−k,↓,−c−k,↑), and the

operator

Ĥk =
(

ξk σ0 �s σ0 + �t dk · σ

�∗
s σ0 + �t d∗

k · σ −ξk σ0

)
, (2)

where σ0 and σ respectively denote the identity and the
conventional Pauli matrices operating on the Kramer’s indices.
We have introduced the complex s-wave pairing amplitude
�s , and a triplet amplitude �t . In a weak coupling approach,
the time-reversal symmetric (TRS), fully gapped B phase
is energetically most favorable in the triplet channel, and
is characterized by dk = k/kF , where kF is the Fermi
momentum.

When we focus on the competition between the s-wave and
the B-phase pairings, the associated reduced BCS Hamiltonian
is described by

Ĥk = ξkγ0 + �t

kF

γ0γjkj + Re(�s)γ5 + i Im(�s)γ0γ5, (3)

where γ0 = σ0 ⊗ τ3, γj = iσj ⊗ τ2, γ5 = σ0 ⊗ τ1, and τj are
the Pauli matrices operating in the Nambu space. A pristine
s-wave phase only breaks U (1) gauge symmetry leaving all
the discrete symmetries intact, and is topologically trivial. In
the absence of any s-wave pairing, the Hamiltonian for the
B phase takes the form of a band inverted, massive Dirac
equation in three dimensions. Due to the presence of T and
the broken spin rotational symmetry, this phase belongs to
the class DIII, and is characterized by an integer topological
invariant

N = 1
2 [1 + sgn(mμ̃)] sgn(�t ), (4)

which for weak or BCS pairing [sgn(mμ̃) = 1] reduces to
N = sgn(�t ). On the other hand, for strong pairing or BEC
limit [sgn(mμ̃) = −1], and N = 0. As a consequence of
the T symmetry, the Hamiltonian of the B phase involves
only four mutually anticommuting Dirac γ matrices, and the
gravitational response of the B phase is characterized by an
axion angle θ0

ax = π [11,12]. It is important to note that the
B-phase pairing breaks the inversion symmetry of the normal
state. However, due to the spin-orbital locking in the B phase,
there is an emergent parity symmetry P defined by k → −k
and �k → γ0�k. When both pairings coexist, the imaginary
part of the s-wave amplitude appears as a pseudoscalar mass,
with the fifth anticommuting γ matrix, and enhances the gap
on the Fermi surface. On the other hand, the real part of the
s-wave pairing commutes with the B-phase operator, and only
anticommutes with the kinetic energy. Therefore, the real part
appears as an axial chemical potential [32]. In the coexisting
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FIG. 1. (Color online) A cut of the zero temperature phase
diagram for gsρ(μ) = 1, showing the normalized pairing amplitudes,
as a function of the ratio gt/gs , where ρ(μ) is the density of states
at the Fermi level. The amplitudes are normalized by �0

s , the s-wave
amplitude, when the triplet channel is turned off. The s-wave and the
B-phase amplitudes are respectively shown as the red and the black
lines.

phase, both Re(�s) and Im(�s) break the P symmetry, and
only the pseudoscalar mass simultaneously breaks P and T .

The emergence of the p + is state can be justified in the
following manner. The quasiparticle spectra corresponding to
Ĥk in Eq. (3) are given by Ek = ±Eα,k, and

Eα,k =
√

ξ 2
k + |�s |2 + �2

t

k2

k2
F

+ 2α�t

k

kF

Re(�s), (5)

where α = ±1. From the above dispersion relations it becomes
clear that the gap at the Fermi surface is maximized, when
�s is purely imaginary, and leads to an axion angle θ0

ax =
π + tan−1 Im(�s)/μ, for the gravitational response. Due to
the simultaneous violation of T and the spin rotational
symmetries, the p + is state belongs to the class D [13,31].

The stabilization of the p + is phase can be further
substantiated via a minimization of the free energy,

fs = |�s |2
2gs

+ |�t |2
2gt

− 2T
∑
α,k

log

[
2 cosh

Eα,k

2T

]
+

∑
k

ξk,

(6)

where gs ,gt are, respectively, the coupling constants in the
s-wave and p-wave channels, and T is the temperature
(throughout this Rapid Communication we are using the units
e = c = � = kB = 1). We illustrate our findings through a cut
of the phase diagram at T = 0, as a function of the ratio gt/gs ,
in Fig. 1. For simplicity, we have chosen the same energy cutoff
ωD = 0.1μ in both pairing channels, and we are demonstrating
the results for gsρ(μ) = 1, where ρ(μ) stands for the density
of states at the Fermi level. Since both the s wave and the B

phase are fully gapped states, the coexistence occurs only in a
sliver of the entire phase diagram, when gt/gs ∼ 1. This phase
diagram suggests the presence of two stage thermal phase
transitions in the vicinity of gt/gs ∼ 1. As the temperature is
gradually lowered, one first enters the dominant pure phase
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depending on the relative strength of the couplings, and the T
breaking occurs only at a lower temperature.

When the transition temperatures of the two pairings
are comparable, the coexistence can be addressed by using
the phenomenological Landau-Ginzburg free energy. The
condensation energy density �f = fs − fn can be written as

�f =
∑
α=s,t

[
cα

2
|(∇ − 2iA)�α|2 + rα|�α|2 + uα|�α|4

]

+ust1|�s |2|�t |2 + ust2|�s |2|�t |2 cos 2θ− + B2

8π
,

(7)

where fn is the normal state’s free energy density, θ− = (θt −
θs) is the relative phase between the two complex amplitudes
�α = |�α| exp(iθα), and B = ∇ × A is the magnetic field
strength. The constants cα have the dimension of inverse
mass and the individual superfluid stiffness can be defined as
ρα = cα|�α|2. As shown in the Supplemental Material [33], all
the quartic coefficients for this problem turn out to be positive
definite, and consequently the free energy is minimized for
θ− = ±π/2 in the coexisting phase. Deep inside the p + is

phase we can ignore the amplitude fluctuations, and in the
absence of any singularity in the phase fields we can also shift
the vector potential as A → A − ∇θ+

2e
+ ρ−

2ρ+
∇θ−, where ρ± =

ρs ± ρt and θ+ = (θs + θt )/2. After this shift, the explicit form
of the free energy in the London limit becomes

�f = ρ2
+ − ρ2

−
8ρ+

[
(∇δθ−)2 − 2ust2ρ+

cs ct

cos(2δθ−)

]

+ρ+
2

A2 + B2

8π
, (8)

where δθ− is the deviation of θ− from ±π/2. After expanding
the periodic sine-Gordon term cos(2δθ−) as 1 − (δθ−)2/2,
this equation shows that both the gauge field and the
axionic excitaions are massive.

Next we focus on the physical implications of this axionic
superconductor. We begin by demonstrating the existence of
the gapped SABS, which in turn lead to an anomalous STH
effect. For concreteness, we assume that the semi-infinite
regions with z < 0 and z > 0 are respectively occupied by
the p + is superconductor and the vacuum. Therefore, the
spinor wave function must satisfy the boundary conditions
ψ(z = 0) = ψ(z → −∞) = 0. For simplicity, we also choose
ξk = k2/(2m) − μ and set Re(�s) = 0 in Eq. (3). Now
assuming ψ(z) ∼ exp(λz), and subsequently setting kz → iλ

in Eq. (5), we obtain the following secular equation for λ,

λ4 + 2λ2[k2
F − k2

⊥ − 2m2v2
�

] + (k2
F − k2

⊥)2

+ 4m2(v2
�k2

⊥ + Im(�s)
2 − E2) = 0, (9)

where v� = �t/kF , and E is the energy of the SABS. The
solutions of this equation are of the form ±λj , with j = 1,2.
In order to satisfy ψ(z → −∞) = 0, we require Re(λj ) > 0.
After imposing the condition ψ(z = 0) = 0, we obtain the
constraints

4mv2
��e−iφ(m�e−iφ − k2

⊥ − λ1λ2) + 2E2λ1λ2

+v2
�

(
k4
⊥ + λ2

1λ
2
2

) + (
E2 − v2

�k2
⊥
)(

λ2
1 + λ2

2

) = 0, (10)

where � =
√
μ2 + Im(�s)2, and tan φ = tan θ0

ax. By using
Eqs. (9) and (10), we obtain the following spectra of the SABS,

E = ±
√

v2
�k2

⊥ + Im(�s)2. (11)

The explicit form of ψ(z), as shown in the Supplemental
Material [33], together with the dispersion E, demonstrate
that the SABS are massive Majorana fermions, and the gap is
given by Im(�s). On the other hand, we recover the gapless
SABS of the pure B phase [34,35] by setting Im(�s) = 0 in
Eq. (11). The gapped SABS have an interesting consequence
on the tunneling current measurements. In contrast to the B

phase, there is no zero bias conductance peak (ZBCP) for the
p + is state. Rather, a two gap structure will be found, where
the smaller gap stems from the SABS. In the absence of T ,
the gapless Majorana fermion bound states can only be found
along a domain wall between the p + is and the p − is states.

For the characteristic physical response functions of the
p + is phase, we first consider the correlation functions of
the conserved quantities described by the energy-momentum
tensor. In classes D and DIII, the anomalous response of the
energy-momentum tensor may be attributed to the gravitational
anomaly formula

Sg = 1

1536π2

∫
d4x εαβρλ θax(x)Rη

σαβ Rσ
ηρλ, (12)

where Rησαβ is the Riemann curvature tensor [11,12]. Recall-
ing that θ0

ax = π + tan−1 Im(�s)/μ, we note that the π part is
tied to the SABS’s contribution, whereas the tan−1 Im(�s)/μ
part comes from the scattered states. Recently, it has been
argued that the gravitational anomaly may be responsible
for a STH effect [11,12,36,37], and some additional cross-
correlated responses of the DIII TSC [38], when the T sym-
metry is broken on the surface by a weak external Zeeman cou-
pling. The STH conductivity of the massive two-dimensional
Majorana fermions in the low temperature limit is given by
κxy = sgn[Im(�s)]πT/24. For the p + is state, the T symme-
try is spontaneously broken and consequently no external Zee-
man coupling is required to induce this effect. The dimension-
less quantities �κxy/(k2

BT ) and �κxy/(kBμ) for the SABS of the
p + is state, obtained within a linear response calculation [39],
are shown in Fig. 2, as a function T/TF , where TF is the Fermi
temperature. We note that the contribution from the SABS will
be generically much larger than that from the scattered states.

Now we briefly discuss the electrodynamic response of
this exotic phase. It is natural to anticipate that the signature
of the broken T symmetry can be found through the polar
Kerr effect measurements [40]. In addition, there will be
dynamic magnetoelectric effects, which can be demonstrated
by following the calculations in Refs. [41,42]. In these papers,
by employing the s-wave and the pseudoscalar pairings of
the Dirac fermions, it has been established that the topological
electrodynamic response of a TSC is captured by the following
magnetoelectric term,

Sem = − e2

64π2

∫
d4x εμνρλ θax(x)FμνFρλ, (13)

for the massive gauge fields. In the context of T preserving
TSC in class DIII, the observable effect can only come through
the surface state contributions (where θax jumps). On the other
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FIG. 2. The dimensionless quantity �κxy/(k2
BT ) for the gapped

SABS, as a function of T/TF , where κxy and TF = μ/kB are,
respectively, the thermal Hall conductivity and the Fermi temperature.
We have used the mean-field gap amplitudes for gsρ(μ) = 1 and
gt/gs = 0.998 95. This quantity saturates to the universal number
π/24 in the zero temperature limit. Inset: The dimensionless thermal
Hall conductivity �κxy/(kBμ) for the gapped SABS, as a functions of
T/TF .

hand, there are contributions from both the bound and the
scattered states for the p + is phase, and θax(x) is dynamical.
We also note that in contrast to the topological magnetic
insulators [43], the massive nature of the gauge field and the
axion provides additional stability of this phase. In addition,
the gapless one-dimensional modes along the line vortex of
the B phase and the pseudoscalar pairings [15,44] acquire a
gap in the p + is state.

We conclude this Rapid Communication by discussing the
experimental prospect of realizing the p + is state. The current
experimental status regarding the nature of the paired state in

CuxBi2Se3 is confounding. In Refs. [20–22], a ZBCP in point
contact spectroscopy measurements has been reported, which
is consistent with the existence of the gapless SABS of a TSC.
However, the subsequent tunnel spectroscopy measurements
on CuxBi2Se3, with lower copper concentrations, have not
found any ZBCP, and the results have been interpreted in terms
of the conventional s-wave pairing [23]. This discrepancy in
the spectroscopic measurements on compounds with different
copper concentrations may be an indicator of an underlying
competition between the singlet and the triplet pairings.
But, the lower quality of the sample currently prohibits a
systematic study of the paired state, as a function of the
copper concentration. In this direction, the superconducting
Sn1−xInxTe seems to be a promising material, with a higher
superfluid fraction [19]. In Ref. [19] a ZBCP has been reported
for x = 0.045. More recent measurements by Novak et al. [24]
have indicated the existence of a competition between the odd
and even parity pairings in Sn1−xInxTe, which is the crucial
ingredient for realizing the p + is phase. In particular, they
have argued for a change of the pairing symmetry around
x = 0.038. We note that the superconductivity in Sn1−xInxTe
is also realized in the ferroelectric phase, which naturally lacks
inversion symmetry. The absence of inversion symmetry is
conducive for the coexistence of odd and even parity pairings.
However, it remains to be seen if a T symmetry broken state
is indeed realized in this system, which, for example, can
be confirmed through surface thermal Hall effect, polar Kerr
rotation and Faraday rotation measurements.

P.G. and B.R. were supported at the National High
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No. DMR-0654118, the State of Florida, and the US
Department of Energy.
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arXiv:1210.6054.

[23] N. Levy, T. Zhang, J. Ha, F. Sharifi, A. A. Talin, Y. Kuk, and
J. A. Stroscio, Phys. Rev. Lett. 110, 117001 (2013).

[24] M. Novak, S. Sasaki, M. Kriener, K. Segawa, and Y. Ando, Phys.
Rev. B 88, 140502(R) (2013).

041301-4

http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevLett.105.246809
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevB.83.195139
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1103/PhysRevLett.102.196804
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevB.84.014527
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/10.1103/PhysRevB.85.045104
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1103/PhysRevLett.105.097001
http://dx.doi.org/10.1007/s10909-010-0226-z
http://dx.doi.org/10.1007/s10909-010-0226-z
http://dx.doi.org/10.1007/s10909-010-0226-z
http://dx.doi.org/10.1007/s10909-010-0226-z
http://dx.doi.org/10.1038/nphys1762
http://dx.doi.org/10.1038/nphys1762
http://dx.doi.org/10.1038/nphys1762
http://dx.doi.org/10.1038/nphys1762
http://dx.doi.org/10.1103/PhysRevLett.106.127004
http://dx.doi.org/10.1103/PhysRevLett.106.127004
http://dx.doi.org/10.1103/PhysRevLett.106.127004
http://dx.doi.org/10.1103/PhysRevLett.106.127004
http://dx.doi.org/10.1103/PhysRevB.83.224516
http://dx.doi.org/10.1103/PhysRevB.83.224516
http://dx.doi.org/10.1103/PhysRevB.83.224516
http://dx.doi.org/10.1103/PhysRevB.83.224516
http://dx.doi.org/10.1103/PhysRevLett.109.217004
http://dx.doi.org/10.1103/PhysRevLett.109.217004
http://dx.doi.org/10.1103/PhysRevLett.109.217004
http://dx.doi.org/10.1103/PhysRevLett.109.217004
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevLett.107.217001
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://dx.doi.org/10.1103/PhysRevB.86.064517
http://arxiv.org/abs/arXiv:1210.6054
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevLett.110.117001
http://dx.doi.org/10.1103/PhysRevB.88.140502
http://dx.doi.org/10.1103/PhysRevB.88.140502
http://dx.doi.org/10.1103/PhysRevB.88.140502
http://dx.doi.org/10.1103/PhysRevB.88.140502


RAPID COMMUNICATIONS

AXIONIC SUPERCONDUCTIVITY IN THREE- . . . PHYSICAL REVIEW B 90, 041301(R) (2014)

[25] R. D. Zhong, J. A. Schneeloch, X. Y. Shi, Z. J. Xu, C. Zhang,
J. M. Tranquada, Q. Li, and G. D. Gu, Phys. Rev. B 88,
020505(R) (2013).

[26] F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
[27] A. M. Essin, J. E. Moore, and D. Vanderbilt, Phys. Rev. Lett.

102, 146805 (2009).
[28] R. Li, J. Wang, X-L. Qi, and S-C. Zhang, Nat. Phys. 6, 284

(2010).
[29] J. Wang, R. Li, S. C. Zhang, and X. L. Qi, Phys. Rev. Lett. 106,

126403 (2011).
[30] G. E. Volovik, The Universe in a Helium Droplet (Clarendon,

Oxford, U.K., 2003).
[31] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
[32] P. Goswami and S. Tewari, Phys. Rev. B 88, 245107 (2013).
[33] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.90.041301 for derivation of Landau free
energy, surface Andreev bound states and surface thermal Hall
conductivity.

[34] A. Yamakage, K. Yada, M. Sato, and Y. Tanaka, Phys. Rev. B
85, 180509(R) (2012).

[35] Y. Tanaka, M. Sato, and N. Nagaosa, J. Phys. Soc. Jpn. 81,
011013 (2012).

[36] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[37] M. Stone, Phys. Rev. B 85, 184503 (2012).
[38] K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Phys. Rev.

Lett. 108, 026802 (2012).
[39] T. Yokoyama and S. Murakami, Phys. Rev. B 83, 161407(R)

(2011).
[40] A. Kapitulnik, J. Xia, E. Schemm, and A. Palevski, New J. Phys.

11, 055060 (2009).
[41] X. L. Qi, E. Witten, and S. C. Zhang, Phys. Rev. B 87, 134519

(2013).
[42] P. Goswami and B. Roy, arXiv:1211.4023.
[43] H. Ooguri and M. Oshikawa, Phys. Rev. Lett. 108, 161803

(2012).
[44] B. Roy and P. Goswami, Phys. Rev. B 89, 144507 (2014).

041301-5

http://dx.doi.org/10.1103/PhysRevB.88.020505
http://dx.doi.org/10.1103/PhysRevB.88.020505
http://dx.doi.org/10.1103/PhysRevB.88.020505
http://dx.doi.org/10.1103/PhysRevB.88.020505
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1103/PhysRevLett.58.1799
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1103/PhysRevLett.102.146805
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1038/nphys1534
http://dx.doi.org/10.1103/PhysRevLett.106.126403
http://dx.doi.org/10.1103/PhysRevLett.106.126403
http://dx.doi.org/10.1103/PhysRevLett.106.126403
http://dx.doi.org/10.1103/PhysRevLett.106.126403
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.88.245107
http://dx.doi.org/10.1103/PhysRevB.88.245107
http://dx.doi.org/10.1103/PhysRevB.88.245107
http://dx.doi.org/10.1103/PhysRevB.88.245107
http://link.aps.org/supplemental/10.1103/PhysRevB.90.041301
http://dx.doi.org/10.1103/PhysRevB.85.180509
http://dx.doi.org/10.1103/PhysRevB.85.180509
http://dx.doi.org/10.1103/PhysRevB.85.180509
http://dx.doi.org/10.1103/PhysRevB.85.180509
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1143/JPSJ.81.011013
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.85.184503
http://dx.doi.org/10.1103/PhysRevB.85.184503
http://dx.doi.org/10.1103/PhysRevB.85.184503
http://dx.doi.org/10.1103/PhysRevB.85.184503
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevLett.108.026802
http://dx.doi.org/10.1103/PhysRevB.83.161407
http://dx.doi.org/10.1103/PhysRevB.83.161407
http://dx.doi.org/10.1103/PhysRevB.83.161407
http://dx.doi.org/10.1103/PhysRevB.83.161407
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1088/1367-2630/11/5/055060
http://dx.doi.org/10.1103/PhysRevB.87.134519
http://dx.doi.org/10.1103/PhysRevB.87.134519
http://dx.doi.org/10.1103/PhysRevB.87.134519
http://dx.doi.org/10.1103/PhysRevB.87.134519
http://arxiv.org/abs/arXiv:1211.4023
http://dx.doi.org/10.1103/PhysRevLett.108.161803
http://dx.doi.org/10.1103/PhysRevLett.108.161803
http://dx.doi.org/10.1103/PhysRevLett.108.161803
http://dx.doi.org/10.1103/PhysRevLett.108.161803
http://dx.doi.org/10.1103/PhysRevB.89.144507
http://dx.doi.org/10.1103/PhysRevB.89.144507
http://dx.doi.org/10.1103/PhysRevB.89.144507
http://dx.doi.org/10.1103/PhysRevB.89.144507



