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Nonadiabatic stationary behavior in a driven low-dimensional gapped system
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We discuss the emergence of nonadiabatic behavior in the dynamics of the order parameter in a low-dimensional
quantum many-body system subject to a linear ramp of one of its parameters. While performing a ramp within
a gapped phase seems to be the most favorable situation for adiabaticity, we show that such a change leads
eventually to the disruption of the order, no matter how slowly the ramp is performed. We show this in detail by
studying the dynamics of the one-dimensional quantum Ising model subject to linear variation of the transverse
magnetic field within the ferromagnetic phase, and then propose a general argument applicable to other systems.
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The nonequilibrium dynamics of isolated quantum many-
body systems is one of the most active and interdisciplinary
fields that emerged recently [1–3]. Indeed, while interest in this
area has been spurred by the opportunity to directly access
the nonequilibrium dynamics in cold atom gases loaded in
optical lattices [4], many of the questions addressed in that
context turn out to be of importance in others, such as high
energy physics [5] and cosmology [6,7]. In all intriguing issues
addressed in the recent literature, such as the meaning and
occurrence of thermalization in isolated quantum systems,
or the quest for “universal” behavior out of equilibrium, a
recurring theme has been the characterization of the response
of a many-body system to the variation of the Hamiltonian
parameters. In particular, the main focus has been on the
two extremes of instantaneous changes (quenches) and slow
ones (known under the oxymoron “slow quenches”). The
latter has been mostly studied for systems driven across a
quantum critical point, where a generalization of the classical
Kibble-Zurek theory led to the prediction of a universal
scaling of the excitation density with the speed at which
the critical point is crossed [8,9], successively extended
also to quenches within gapless phases [10,11], where even
full violation of adiabaticity may occur [12]. Specifically,
universality is expected whenever the scaling dimension
of the fidelity susceptibility [13] (or its generalization for
nonlinear protocols) is negative, and extends to other quantities
besides the excitation density, such as the excess energy. We
also mention that spontaneous generation of defects in the
nonequilibrium dynamics has been observed experimentally
in spinor condensates [14].

Intuitive quantum mechanical arguments, rooted ultimately
on the adiabatic theorem, suggest that the case of quenches
within a gapped phase is much less interesting. Indeed, in
this case the scaling dimension of the fidelity susceptibility is
always positive, implying that the density of excitations and
the excess energy always tends to zero with the square of
the switching rate for linear ramps (generalization to generic
power-law ramps is straightforward). This also suggests that
other thermodynamics quantities share the same property [10],
i.e., corrections with respect to their equilibrium value are
quadratic in the rate [1]. However, intuition indicates a
different scenario when considering the order parameter in a
phase with spontaneous symmetry breaking. Since even when
performing a variation of the Hamiltonian within a gapped

phase an extensive amount of energy is injected, one expects
to be in a situation similar to the case of finite temperature. In
certain instances, for example in low-dimensional systems, the
effect of temperature is the complete disruption of long-range
order [15], an effect which is very far from being a small
correction.

This work addresses this apparent contradiction by study-
ing the dynamics of the order parameter mx(t) in a one-
dimensional quantum Ising chain after a linear variation in
time of the transverse field within the ferromagnetic, ordered
phase. In particular, we focus on the asymptotic value of the
order parameter mx(t → ∞) as a function of the duration τ

of the linear ramp. We show that, even though the bigger
τ is the closer mx(τ ) gets to its ground state value mx

0 ,
nevertheless, however small |mx(τ ) − mx

0 | is—actually it is
proportional to 1/τ—it is enough to completely disrupt the
order exponentially fast in the subsequent time evolution,
mx(t → ∞) → 0. In particular, in the stationary state the
inverse correlation length turns out to depend quadratically on
the ramp rate for large τ . These quadratic corrections persist
also in the limit of small τ , where the reference value is that of
the sudden limit τ = 0. For protocols of intermediate durations
in turn the inverse correlation length displays an oscillatory
behavior. These results show that in low-dimensional many-
body systems an apparently small correction to adiabaticity
can lead to major consequences for certain observables, even
in a gapped phase.

Let us start our analysis by introducing the Hamiltonian of
model

H(t) = −
L∑

j=1

[
σx

j σ x
j+1 + g(t)

(
σ z

j − 1
)]

, (1)

where σα
j are the Pauli matrices, satisfying periodic boundary

conditions σα
j+L = σα

j , and g(t) represents a linear ramp of the
transverse field, i.e., g(t) = g0 for t � 0, g(t) = g0 + (g1 −
g0)t/τ for 0 < t < τ , and g(t) = g1 for t � τ . We will assume
that the system is initially prepared in its ground state for
g = g0.

At zero temperature this model exhibits a quantum phase
transition at gc = 1 separating a ferromagnetic phase (g < gc)
from a paramagnetic one (g > gc), both characterized by a
finite gap. At any finite temperature the system is instead
paramagnetic [16]. The order parameter is the spontaneous
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magnetization along the x axis, defined as mx = 1
L

∑
j 〈σx

j 〉,
which is finite in the ferromagnetic phase and zero in the
paramagnetic one. As stated above, we are interested in the
dynamics within the ordered phase, so we take both g0 < 1
and g1 < 1.

Performing a Jordan-Wigner transformation [17],

σx
j =

∏
m<j

(1 − 2c†mcm)(cj + c
†
j ), (2a)

σ z
j = 1 − 2c

†
j cj , (2b)

with {cj ,c
†
l } = δjl and {cj ,cl} = 0, the Hamiltonian (1) can be

written as [18]

H(t) = P +H+(t)P + + P −H−(t)P −, (3)

where

P ± = 1

2

⎡
⎣1 ±

L∏
j=1

σ z
j

⎤
⎦ (4)

are the projectors in the subspace with an even (+) or odd (−)
number of fermions and

H±(t) = −
L∑

i=1

(c†i ci+1 + c
†
i c

†
i+1 + H.c.) − 2g(t)c†i ci , (5)

with the ci’s obeying antiperiodic boundary conditions cL+1 =
−c1 in the even sector and periodic boundary conditions
cL+1 = c1 in the odd one.

For finite chains the ground state is always in the even
sector and the order parameter σx

j , which changes the parity
of the fermion number, is strictly zero. However, the energy
gap between the lowest energy states within each sector, |�+〉
and |�−〉, vanishes exponentially in the thermodynamic limit
and in the ferromagnetic phase, manifestation of spontaneous
breaking of the Z2 symmetry. One can nonetheless recognize
spontaneous symmetry breaking even within each separate
sector through the long-distance behavior of the correlation
function Rx

r = 〈�± |σx
j σ x

j+r |�±〉, which is independent of
j . Indeed, in the ferromagnetic phase, limr→∞ Rx

r = m2
x > 0,

signaling the established long-range order. We shall thence
focus on the even sector, where the finite-size ground state
lies, and study the time evolution of

Rx
r (t) = lim

L→∞
〈ψ+(t) |σx

j σ x
j+r |ψ+(t)〉, (6)

where |ψ+(t)〉 = U(t) |�+〉, being U(t) the evolution operator,
and |�+〉 the initial state assumed to be the ground state at
g = g0.

The Hamiltonian (5) can be instantaneously diagonalized
performing a Fourier transform cj = eiπ/4√

L

∑
k eikj ĉk , with k

odd multiple of π/L so to implement the antiperiodic boundary
conditions in the even sector, followed by a Bogoliubov
transformation,(

ĉk

ĉ
†
−k

)
=

(
uk(t) −vk(t)
vk(t) uk(t)

)(
γ t

k

γ t
−k

†

)
, (7)

with coefficients uk(t) = 1√
2

√
1 + g(t)−cos(k)

εk(t) , vk(t) =
− 1√

2

√
1 − g(t)−cos(k)

εk(t) , and eigenvalues εk(t) =√
1 + g2(t) − 2g(t) cos(k). The instantaneous ground state

is |�+〉t = ∏
k>0[uk(t) + vk(t)ĉ†−kĉ

†
k] |0〉, with ck |0〉 = 0 ∀k,

and |0〉 = ⊕
k>0 |0〉k .

The dynamics induced by the linear ramp g(t) can be
described through the density matrix ρ(t) = |ψ+(t)〉 〈ψ+(t)|
that, since the k modes are mutually independent, has the form
ρ(t) = ⊗

k>0 ρk(t), where ρk(t) in the basis {|0〉k ,ĉ
†
−kĉ

†
k |0〉k}

is given by ρk(t) = 1
2 [1̂ + f1,k(t)τ̂ z + f2,k(t)τ̂ x + f3,k(t)τ̂ y],

where τ̂ x,y,z are the Pauli matrices. In vector notation the
coefficients f̂k = (f1,k,f2,k,f3,k)T satisfy the simple equation

d

dt
f̂k(t) = R̂kf̂k(t), (8)

where the matrix R̂k = −4[g(t) − cos(k)]X̂1 + 4 sin(k)X̂2,
where X̂i (i = 1,2,3) are the 3 × 3 generators of rotations.
Notice that the initial conditions f1,k(0) = g0−cos k

εk(0) , f2,k(0) =
− sin k

εk(0) , f3,k(0) = 0.
From the evolution of the density matrix we can calculate

Rx
r (t) of Eq. (6). We start by writing Rx

r (t) as [19]

Rx
r (t) = 〈

Bt
jA

t
j+1B

t
j+1 · · · At

j+r−1B
t
j+r−1A

t
j+r

〉
0, (9)

where At
j = cj (t) + c

†
j (t), Bt

j = c
†
j (t) − cj (t), cj (t) =

U†(t) cj U(t), and 〈· · · 〉0 denotes the average over the initial
state.

Using Wick’s theorem, Eq. (9) can be expressed in terms
of the contractions of the Aj ’s and Bj ’s, which in terms of the
functions f1,k , f2,k , and f3,k read

〈
At

jA
t
l

〉
0 = δjl − 1

L

∑
k

eik(j−l)f3,k(t), (10a)

〈
Bt

jB
t
l

〉
0 = −δjl − 1

L

∑
k

eik(j−l)f3,k(t), (10b)

〈
Bt

jA
t
l

〉
0 = − 1

L

∑
k

eik(j−l)[f1,k(t) + if2,k(t)]. (10c)

Using these equations one may easily compute the time evolu-
tion of the order parameter (see Supplemental Material [20]).
Right after the ramp, the order parameter is mx = mx

0 + δmx ,
where mx

0 is the value it would have in the ground state of the
final Hamiltonian, while δmx ∝ 1/τ is a correction. Unlike
classical systems, where these corrections would lead to a
small precession of the magnetisation around its equilibrium
value, in a quantum low-dimensional system this state is
dynamically very fragile, and the subsequent time evolution
produces a collapse of the magnetization. Let us see this
considering the stationary state, that is, for t → ∞ after
taking the thermodynamic limit, i.e., replacing discrete sums
over k with integrals. For t > τ , g(t) = g1 is constant, so
we can readily integrate Eqs. (8) in terms of the boundary
values f1,k(τ ), f2,k(τ ), and f3,k(τ ). The solution consists in a
stationary part plus oscillatory terms with frequency 4εk(τ ),
which vanish for t → ∞ once integrated over k. We thus
find that 〈AjAl〉0 → δjl , 〈BjBl〉0 → −δjl , and 〈BjAl〉0 →
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C(j − l + 1), with

C(r) =
∫ π

−π

dk

2π

cos (kr) − g1 cos [k(r − 1)]

1 + g2
1 − 2g1 cos k

(1 − 2nk) (11)

with nk = 〈γ τ †
kγ

τ
k 〉t the occupation numbers in the evolved

state, which are actually time independent for t > τ and given
by

1 − 2nk = (g1 − cos k)f1,k(τ ) − sin kf2,k(τ )√
1 + g2

1 − 2g1 cos k

. (12)

We note that disregarding the oscillatory terms is equivalent to
stating that the stationary value, being the correlation a local
observable, can be computed in the diagonal ensemble, which
is completely determined by the occupation numbers nk .

As in equilibrium, the correlation Rx
r can be expressed as a

r × r Toeplitz determinant,

Rx
r =

∣∣∣∣∣∣∣∣
C(0) C(−1) . . . C(−r + 1)
C(1) C(0) . . . C(−r + 2)

...
...

. . .
...

C(r − 1) C(r − 2) . . . C(0)

∣∣∣∣∣∣∣∣
, (13)

whose asymptotic behavior in the limit r → ∞ has to
be determined. To this end,we first note that C(r) =

1
2π

∫ π

−π
dk C̃(k)e−ikr , with

C̃(k) =
(

1 − g1e
ik

1 − g1e−ik

)1/2

(1 − 2nk) . (14)

In terms of the complex variable z = eik the function C̃(z) has
zero index around the unit circle and is nonvanishing, as long
as nk < 1/2, ∀k, a condition that has been verified numerically
and perturbatively, and is equivalent to say that the effective
temperature of all the modes is less than infinity. Under this
condition we can apply the strong Szegő lemma [21], which
tells us that Rx

r ∼ e−r/ξ , with the inverse correlation length
given by

ξ−1 = − 1

2π

∫ π

−π

dk ln (1 − 2nk) . (15)

FIG. 1. (Color online) Log-log plot of the correlation length ξ as
a function of the duration τ of the linear ramp for initial transverse
field g0 = 0.3 and different final values of g1. ξsud is the value of the
correlation length for a sudden quench from g0 to g1.

Therefore, whenever nk 
= 0, the correlation length is finite,
implying that Rx

r goes to zero exponentially hence that the
order parameter is zero. Such a condition is verified for any
finite duration of the linear ramp, implying that adiabaticity
is broken for the order parameter. From Eq. (15) we observe
that a tiny deviation of the occupation numbers with respect to
their equilibrium value (nk = 0) translates into a comparably
small inverse correlation length. Nonetheless, such small
quantitative corrections lead to a completely different behavior
of the correlation function Rx

r and of the order parameter.
Figure 1 shows the correlation length as a function of τ

for different ramps computed by numerically solving Eqs. (8)
and evaluating Eq. (15). We can see that for long durations the
correlation length grows quadratically, while for τ of order one
it displays oscillations. The inset of the figure shows that also
for small τ the growth of ξ above the sudden-quench value is
quadratic. The two limiting cases of slow and sudden quenches
can be captured by two different perturbative expansions (more
details can be found in the Supplemental Material [20]).

For small τ the result of the perturbative expansion of
Eqs. (8) at the leading order is

ξ (τ ) = − 1

ln
[

1+g0g1+
√

(1−g2
1 )(1−g2

0 )
2

] + τ 2
2(g1 − g0)2

[
1 + g0g1 −

√(
1 − g2

1

)(
1 − g2

0

)]
3(g0 + g1)2 ln2

[
1+g0g1+

√
(1−g2

1 )(1−g2
0 )

2

] + O(τ 4), (16)

where the first term is the result for a sudden quench
(ξsud). Higher order can be straightforwardly computed. In
particular we notice that only even powers of τ are present
in the expansion, and all computed corrections are even
under g0 ↔ g1, i.e., inversion of the ramp. Figure 2 shows
a comparison between the perturbative and the numerical
results, and we can see that the agreement is excellent up
to τ � 1 provided corrections up to eighth order are taken into
account.

For large τ , instead, one can use the adiabatic perturbation
theory described in Ref. [22], which predicts that the occupa-
tion numbers nk for large τ vanish as 1/τ 2 in an oscillating

fashion. This is actually the source of oscillations observed in
ξ . Indeed, by applying the adiabatic perturbation theory one
obtains

ξ (τ ) = 64
(
1 − g2

0

)3(
1 − g2

1

)3(
g1 − g0

)2[(
1 − g2

0

)3 + (
1 − g2

1

)3]τ 2

+ f (τ )
√

τ + 
 + O(τ−1/2), (17)

where f (τ ) is an oscillating function and 
 is a constant (see
the Supplemental Material [20]). Thus, the relative oscillations
of the correlation length goes to zero as τ−3/2. Also in this
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FIG. 2. (Color online) Correlation length ξ as a function of the
duration τ for g0 = 0.3 and g1 = 0.6. The numerical results (red
circles) are compared with the perturbative expansion up to second
and eighth order. The inset shows the same plot in log-log scale.

case all the corrections are invariant under the transformation
g0 ↔ g1. Figure 3 shows a comparison between this adiabatic
perturbative expansion and the numerical data. We see that by
including correction up to O(1) there is quite good agreement
for τ � 10.

In conclusion, we have shown that the stationary value of
the order parameter of a one-dimensional quantum Ising model
does not behave in an adiabatic way within the ferromagnetic
phase, however small the switching rate of the transverse field
is. This occurs in spite of the fact that the Hamiltonian is
gapped, which in principle is the most favorable situation
for an adiabatic evolution. Such a behavior of the order
parameter has to be expected whenever the system has a
phase transition only at zero temperature and it is driven
within the ordered phase. Indeed a finite density of excitations
nex ∼ 1/τ 2 will always be generated and in this situation
will be always sufficient to destroy order. From this, one can

FIG. 3. (Color online) Log-log plot of the correlation length ξ as
a function of the duration τ of the linear ramp for initial transverse
field g0 = 0.3 and different final values of g1. Numerical results are
compared with the predictions of adiabatic perturbation theory at two
different orders.

estimate also the behavior of the correlation length, which,
following the same reasoning as the Kibble-Zurek argument,
will be ξ ∼ 1/n

1/d
ex ∼ τ 2/d , with d being the dimension of the

system. A natural question that comes up is what happens
instead in an analogous system where the transition survives
at finite temperature. One possibility is that there is a transition
in the value of the order parameter as a function of τ , namely,
for sufficiently slow ramp its asymptotic value is expected to
be finite, while it should go to zero for fast ramps. If this is
really the case, and in the affirmative case if the value of the
order parameter is vanishing or not are interesting questions
to consider in following studies.
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[6] J. Berges, S. Borsányi, and C. Wetterich, Phys. Rev. Lett. 93,
142002 (2004).

[7] S. R. Das, J. Phys.: Conf. Ser. 343, 012027 (2012).
[8] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005).
[9] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95,

105701 (2005).
[10] C. De Grandi and A. Polkovnikov, Adiabatic Perturbation

Theory: From Landau-Zener Problem to Quenching Through
a Quantum Critical Point (Springer, Heidelberg, 2010).

[11] M. Eckstein and M. Kollar, New J. Phys. 12, 055012 (2010).
[12] A. Polkovnikov and V. Gritsev, Nat. Phys. 4, 477 (2008).
[13] S.-J. Gu and H.-Q. Lin, Europhys. Lett. 87, 10003 (2009).
[14] M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-

Kurn, Phys. Rev. Lett. 100, 170403 (2008).
[15] S. Sachdev and A. P. Young, Phys. Rev. Lett. 78, 2220

(1997).
[16] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, 1999).
[17] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).
[18] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[19] T. S. E. Lieb and D. Mattis, Ann. Phys. (NY) 16, 407 (1961).
[20] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.90.041111 for details on how the stationary
state of the order parameter is reached and for the derivations of
Eqs. (16)–(17).
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