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The self-consistent rate theory for surface growth in the submonolayer regime is generalized from mono-
to multicomponent systems, which are formed by codeposition of different types of atoms or molecules. The
theory requires the introduction of pair density distributions to enable a symmetric treatment of reactions among
different species. The approach is explicitly developed for binary systems and tested against kinetic Monte Carlo
simulations. Using a reduced set of rate equations, only a few differential equations need to be solved to obtain
good quantitative predictions for island and adatom densities, as well as densities of unstable clusters.
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I. INTRODUCTION

Growth of solid structures on surfaces, induced by atomic
or molecular deposition, has become a widely applied method
for generating materials of nanoscale dimensions [1–7]. The
resulting clusters or thin films are often metastable, and their
structure depends on kinetics rather than thermodynamics.
Understanding and controlling such growth processes are
prerequisites for designing nanomaterials of practical use.
Multicomponent systems are particularly promising in this
respect because of their larger structural variability compared
to single-component systems [8]. In the submonolayer growth
regime, one-monolayer islands can act as seeds for three-
dimensional (3D) structures that emerge in later stages of
growth [9–12].

Island nucleation and submonolayer growth of binary
systems, driven by codeposition of two species A and B,
have recently been investigated by using rate equations and
kinetic Monte Carlo (KMC) simulations [13]. Generalized
relations were established that describe the scaling of stable
island densities with the partial fluxes Fα (α = A or B),
adatom diffusion coefficients Dα , and mutual binding energies
Eαβ . Simulations also showed that island density data, when
combined for different compositions, enable us to extract
microscopic parameters for mixed systems [14]. Of particular
value is the possibility to determine the binding energy EAB

between unlike atoms in the presence of a surface.
In the rate equations for submonolayer growth [15–17],

capture numbers σs appear as parameters which determine
the attachment rate of diffusing adatoms to islands of size s.
Already in the single-component case, it is known that for
a quantitative description of island densities as a function
of coverage �, it is essential to deal with effective capture
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numbers σs(�,�) [18–21]. Their dependence on the coverage
� and the “D/F ratio,” � = D/F , reflects the fact that
the efficiency of an island of size s to capture adatoms is
affected by the shielding by other islands in its neighborhood.
Within a mean-field description of these shielding effects,
a central s-sized island is thought to be embedded in an
effective medium, characterized by an absorption length ξ

for the adatoms. This length describes the capture efficiencies
of all islands in an averaged manner. As the rate of capture
by the central island is determined by the ξ -dependent adatom
density profile in its vicinity, one arrives at a self-consistency
condition for σs . Originally, this self-consistent theory was
formulated for diffusion-limited irreversible growth [22].
Later it was extended to include detachment kinetics [23,24],
and to examine capture numbers in the presence of cluster
diffusion [25] and adsorbate interactions [26,27].

Our goal here is to generalize the self-consistent theory
of diffusion-limited growth to multicomponent systems. To
obtain capture numbers that are symmetric under the exchange
of species, it is necessary to introduce pair distribution
functions. The treatment will be focused on binary systems,
where trimers and larger islands are stable irrespective of
composition, whereas the stability of dimers AA, AB, and
BB is allowed to be composition-dependent. Generalizations
are discussed in Sec. VI.

II. RATE EQUATIONS FOR BINARY SYSTEMS

Following earlier work [13,28], we start out from rate
equations for island densities in a system of two species, A and
B. For simplicity, we will speak about A and B “atoms,” but
these could also be molecules if their geometrical arrangement
with respect to the substrate topology does not play an essential
role for the time evolution of island densities. The A and B

species are assumed to be deposited as adatoms (no cluster
deposition) and to be mobile on the surface. They undergo
nucleation and dissociation reactions among themselves, and
they attach to and detach from already formed islands of larger
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size. These larger islands are considered to be immobile. The
coverage � is supposed to be small enough so that coalescence
of islands can be neglected. Direct impingement of arriving
atoms onto already existing islands and desorption processes
are neglected, or they may be taken into account by introducing
properly rescaled fluxes. Furthermore, we limit our discussion
to cases in which the largest unstable islands are composed of
not more than two atoms. Then the time evolution of adatom
densities nα , α = A,B, is given by

dnα

dt
= Fα − 2Dασαα

1 n2
α − (DA + DB)σAB

1 nAnB

−Dαnα

∑
s�2

σα
s ns + KAB

2 nAB + 2Kαα
2 nαα. (1)

Positive contributions to (1) arise from the partial fluxes
Fα = xαF , with xα the fraction of α atoms and F = FA + FB

the total flux, and from the decay of the different kinds of
dimers with densities nαβ . Negative contributions refer to the
formation of dimers and attachment of adatoms to s-sized
islands. Note that the diffusion coefficient for the relative
motion of A and B is DA + DB . In the sum over s, the term
s = 2 involves n2 = nAA + nAB + nBB . The rate equations for
dimer densities are

dnαα

dt
= Dασαα

1 n2
α

−
⎛
⎝∑

β

Dβσ
β

2 nβ

⎞
⎠ nαα − Kαα

2 nαα, (2)

dnAB

dt
= (DA + DB)σAB

1 nAnB

−
⎛
⎝∑

β

Dβσ
β

2 nβ

⎞
⎠ nAB − KAB

2 nAB. (3)

The upper indices in the capture numbers σ
αβ

1 ,σα
s and decay

rates K
αβ

2 serve to distinguish the types of adatoms that
are involved in a reaction. The σ

αβ

1 and K
αβ

2 , respectively,
refer to formation and dissociation of an αβ dimer. The
σα

s , s � 2, refers to the capture of an α adatom by an
island composed of s atoms. The geometry of such an island
is represented by a circular shape (formation of compact
islands) with radius Rs = s1/2R1, where R1 is the adatom
radius. Since we allow composition-dependent (“mixed”)
dimer stabilities, some of the decay rates can be zero. For the
purpose of calculating nα , nαβ , and the total density of stable
islands, N , it appears sufficient to ignore any further com-
position dependencies of parameters beyond those given in
Eqs. (2) and (3).

The densities of islands with s > 2 evolve according to

dns

dt
=

∑
α

Dαnα

(
σα

s−1ns−1 − σα
s ns

)
. (4)

III. IRREVERSIBLE GROWTH

In the self-consistent rate theory, analytical expressions
for the capture numbers and decay rates are derived by

introducing an effective medium that describes adatom capture
in an averaged manner by an absorption length ξ . For binary
systems, the effective medium is characterized by two different
absorption lengths ξα for the two species of adatoms. To define
ξα , the evolution equations (1) for monomer densities with zero
decay terms (i = 1) are rewritten as

dnα

dt
= Fα − 1

τα

nα, (5)

where τ−1
α = Dα/ξ 2

α is the reaction rate of α adatoms in the
effective medium, and

ξ−2
α =

∑
β

(1 − δαβ)σαβ

1

(
1 + Dβ

Dα

)
nβ

+ 2σαα
1 nα +

∑
s�2

σα
s ns. (6)

Deposition, diffusion, and absorption of adatoms within the
effective medium are described by local densities ñα(r)
with nα = ∫

V
d2r ñα(r)/V , where V is the two-dimensional

volume (surface area). These satisfy

∂ñα

∂t
= Fα + Dα�ñα − 1

τα

ñα. (7)

In the monocomponent case, one would have just one equation
of this type, and by supplementing this with appropriate
boundary conditions, the stationary density profiles of adatoms
around islands with radius Rs can be calculated and the total
adatom flux to the islands identified with the corresponding
capture terms in Eqs. (1). This procedure yields self-consistent
analytical expressions for the capture numbers and decay rates
in the monocomponent case.

For binary (multicomponent) systems, the reaction between
unlike adatoms needs a refined treatment. This is due to the
following reason: In a naive extension of the monocomponent
case, the B adatom density around an A adatom would by
characterized by an absorption length ξB , and the A adatom
density around a B adatom by an absorption length ξA.
However, the shape of both profiles is given by the pair density
nAB(r,r′) of A and B adatoms, and hence the profiles must
be characterized by the same capture length (if inversion
symmetry holds). In fact, introducing the pair distribution
function [29,30]

GAB(r) = 1

V

∫
V

d2r ′
∫

V

d2r ′′nAB(r′,r′′)δ(r − (r′ − r′′)) (8)

allows one to treat unlike adatoms in a symmetric way,
resulting in a symmetric expression for σAB

1 . GAB(r) is the
number of pairs of A and B adatoms at distance r per area. Let
us note that the approach based on pair distribution functions
is well known in the kinetic theory of bimolecular chemical
reactions [30,31]. In our context, spatial correlations between
adatoms for relative distances larger than the contact distance
R1 = 2R1 play no role so that

nAB(r,r′) = ñA(r)ñB(r′), |r − r′| > R1. (9)

Combination with (7) yields an expression for the
time derivative of nAB(r,r′). Subsequent multiplication by
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δ(r − (r′ − r′′)) and integration over all r′ and r′′ gives

∂GAB(r)

∂t
= FAnA + FBnB + (DA + DB)�GAB(r)

−
(

1

τA

+ 1

τB

)
GAB(r). (10)

Subtracting d(nAnB)/dt with the help of Eqs. (5) and going
over to the quasistationary limit, we obtain

(DA + DB)�GAB(r) =
(

1

τA

+ 1

τB

)
[GAB(r) − nAnB]. (11)

Alternatively,

�GAB(r) − 1

ξ 2
eff

[GAB(r) − nAnB] = 0, (12)

where we introduced the effective absorption length

ξ−2
eff = 1

DA + DB

(
DA

ξ 2
A

+ DB

ξ 2
B

)
, (13)

which is a weighted average of ξ−2
α , with weighting factors

Dα/(DA + DB).
For i = 1, implying complete absorption at contact, and

assuming isotropy, the boundary conditions to Eq. (12) are

GAB(r) →
{
nAnB, r → ∞,

0, r → R1,
(14)

where r = |r|, and we have replaced GAB(r) by GAB(r). The
solution of Eq. (12) with the boundary conditions in Eq. (14)
is GAB(r) = nAnB[1 − K0(r/ξeff)/K0(R1/ξeff)], where Kν is
the modified Bessel function of order ν.

To obtain the reaction rate, we first select reactions
along a particular direction r̂ = r/|r|, r being the relative
coordinate between an A and B atom right before contact.
The corresponding rate is given by

I (r̂) = lim
|r|→R1

1

V

∫
d2r ′

∫
d2r ′′ r̂ · [jB(r′′)ñA(r′)

− jA(r′)ñB(r′′)] δ(r − (r′ − r′′)), (15)

where jα(r) = −Dα∇ñα(r). Substituting this expression
into (15) and using (8), we can reexpress (15) as
I (r̂) = (DA + DB)(∂GAB/∂r)|R1 . After integration along the
boundary at r = R1, we obtain the total number of re-
actions per second and per unit area, which is identified
with the corresponding term in the original rate equations,
(DA + DB)σAB

1 nAnB . Thus, we obtain

σAB
1 = 2πR1

1

nAnB

(
∂GAB

∂r

)
R1

. (16)

Evidently, this result for AB capture in a binary system has
a structure analogous to the self-consistent capture number σ1

for a one-component system of overall adatom density n and
diffusion coefficient D. That situation and the present one can
be mapped onto each other by n ↔ nAnB ; 2D ↔ DA + DB ;
ñ(r) ↔ GAB(r) for the local densities in the SCF treatment,
and ξ ↔ ξeff , where ξeff was defined by (13). Hence we
can immediately translate known results for one-component

systems to the present case, to obtain

σAB
1 = 2π

R1

ξeff

K1(R1/ξeff)

K0(R1/ξeff)
. (17)

The σαα
1 are obtained by introducing the pair correlation

function Gαα(r) for like particles and repeating the above steps.
For σαα

1 , we recover the form (17) with ξeff replaced by ξα .
Moreover, we need σα

s for s � 2. Since islands with s � 2 do
not move, the result is again equivalent to (17), where one type
of adatom has a zero diffusion coefficient. For example, σA

s is
given by (17) with DB = 0, hence ξeff = ξA, and R1 is replaced
by Rs = Rs + R1. Clearly, our treatment also covers one-
component systems through the limit where A and B atoms
become indistinguishable.

IV. DECAY PROCESSES

In this section, we extend the above scheme to include
detachment processes. First, we focus on unstable AB dimers,
characterized by some finite binding energy EAB [14]. This
situation can be incorporated into the treatment of Sec. III
by a modification of the boundary condition (14). Consider
detachment and reattachment reactions between an A and B

adatom. Within a lattice model and EAB a nearest-neighbor
binding energy, the bound state corresponds to an AB pair
located on nearest-neighbor sites, whereas in the detached
state the A and B adatoms are separated by one vacant site.
We denote by nAB and n∗

AB the densities of bound and detached
states of this type. Assuming local equilibrium, both densities
are related by

n∗
AB = nAB μAB exp(−EAB/kBT ). (18)

The factor μAB is determined by the degeneracies of the bound
and dissociated states in a circularly averaged description, and
it depends on the geometry of A and B adsorption sites on the
surface. We do not go into the underlying counting problem
for specific lattice geometries [24], but merely treat μAB as
a parameter [13]. Writing μAB exp(−EAB/kBT ) = κAB , we
arrive at the local equilibrium boundary condition,

GAB(r) → κAB nAB, r → R2. (19)

As before, see Eq. (14), GAB(r) → nAnB as r → ∞.
Solving Eq. (12) for these boundary conditions yields
GAB(r) = nAnB[1 − ζK0(r/ξeff)/K0(R1/ξeff)] with ζ = (1 −
κABnAB/nAnB).

The total reaction rate can be then written as [23]

Itot = Icapture − Idecay, (20)

where Icapture = (DA + DB)σAB
1 nAnB is defined with σAB

1
from Eq. (16), and

Idecay = nAB

nAnB

κABIcapture. (21)

Identifying with the corresponding decay term KAB
2 nAB in

Eq. (3), we find

KAB
2 = (DA + DB)κABσAB

1 . (22)

In the same way, we obtain

Kαα
2 = 2Dακαασαα

1 (23)
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with καα = μαα exp(−Eαα/kBT ). Again, the degeneracy fac-
tors μαα are treated as parameters.

Note that when we use these results for the self-consistent
capture and decay numbers in the two-component Walton re-
lations [13], (DA + DB)σAB

1 nAnB � KAB
2 nAB , it follows that

Icapture � Idecay. This is consistent with the quasistationarity as-
sumption underlying the Walton relations [32], which implies
that the capture and decay rates nearly balance. Let us further
note that reaction barriers for formation and dissociation of
dimers can also be incorporated in the treatment. They lead to a
modification of the boundary condition (19), corresponding to
a partially reflecting boundary, sometimes called the “radiative
boundary condition” [23,31,33].

V. NUMERICAL RESULTS AND DISCUSSION

The coupled set of rate equations (1)–(4) along with the self-
consistent expressions for the capture numbers must be solved
numerically by using an iterative integration scheme. An
adequate but time-consuming numerical integration requires
solving a large number of equations for an s-range in Eqs. (4)
significantly exceeding the mean island size s̄ = �/N . A
much simpler approach of almost the same quality has been
proposed for one-component systems by Venables [15], and
it can be applied to the binary mixtures considered here.
In the case i = 1, where K

αβ

2 = 0, this approach amounts

to setting ∑
s�2

σα
s ns = σ̄ αN (24)

in Eq. (6), to be combined with Eq. (5). Here, σ̄ α is the average
capture number of stable clusters. Inserting the results from
Sec. III for σα

s [see the discussion following Eq. (17)] and
assuming that ns is sufficiently peaked around the mean island
size s̄, one obtains

σ̄ α = 2π
R̄

ξα

K1(R̄/ξα)

K0(R̄/ξα)
, (25)

where R̄ = Rs̄ = (s̄1/2 + 1)R1. The self-consistency problem
then reduces to solving three coupled equations, Eq. (5) for
α = A and B, and the equation for nucleation of stable clusters,

dN

dt
=

∑
α

Dασαα
1 n2

α + (DA + DB)σAB
1 nAnB. (26)

Capture numbers σ
αβ

1 and σ̄ α entering these equations become
functions of nα and N .

In the more general case of Sec. IV, allowing dimer decay
processes, we must distinguish between stable and unstable
dimers. The example considered below refers to unstable
BB dimers but stable AA and AB dimers, which entails the
decomposition ∑

s�2

σα
s ns = σα

2 nBB + σαN. (27)
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FIG. 1. (Color online) Number densities of A and B adatoms, and stable islands as a function of the coverage � = F t for i = 1 and various
combinations of xA and DA/DB . Results from the self-consistent rate theory are given by solid lines.
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The relevant rate equations now include Eq. (2) for α = B and

dN

dt
= DAσAA

1 n2
A + (DA + DB)σAB

1 nAnB

+ (
DAσA

2 nA + DBσB
2 nB

)
nBB (28)

instead of (26).
To test the self-consistent theory based on that reduced set of

coupled rate equations, we have performed KMC simulations
for codeposition of A and B atoms onto a triangular lattice with
500 × 500 sites at various compositions and DA/DB ratios,
and for different situations of cluster stabilities with respect
to their size and composition. Monomers of size R1 = a

(R1 = 2R1 = 2a) are deposited at random to vacant substrate
sites, where a = 1 is the lattice constant, and they diffuse
via nearest-neighbor hops, excluding multiple site occupation.
Attachment of monomers to islands is accompanied by
instantaneous relaxation to highly coordinated edge sites,
yielding compact cluster structures. For each parameter set, the
number densities were averaged over 50 realizations. Compact
cluster morphologies have the advantage over fractal ones that
the self-consistent theory can be tested over a wider range of
coverages, because the coalescence regime starts later.

First, we study the situation of irreversible growth, i = 1.
Results for N and nα are plotted in Fig. 1 as a function of the
coverage � = F t for two concentrations xA = 0.75 and 0.25.
In the simulations for both concentrations, DB/F = 107 was

fixed, and two values DA = 10DB and 0.1DB were considered.
The reduced self-consistent theory without fitting parameters
(solid lines) evidently is in good quantitative agreement with
the KMC simulations (open symbols). At low coverages
(short times), nα = xα�, whereas in the scaling regime (see
the discussion in Refs. [4,8]), nα � xαF/DαN [13,28]. By
going from Figs. 1(a) to 1(b), the diffusion coefficient of
the majority component A is lowered by a factor 102, which
explains the fact that nA gets much larger than nB and the
corresponding curves do not intersect anymore. Inspection of
Eq. (26) in turn shows that nucleation of stable islands in
Fig. 1(a) is mostly due to the second term, i.e., nucleation of
AB dimers prevails, whereas in Fig. 1(b) both AA and AB

dimers will appear with similar densities. In Fig. 1(b), N close
to saturation becomes significantly larger than in Fig. 1(a),
which is consistent with the scaling form N ∝ (�eff)−1/3 with
�eff = (

∑
α xαF/Dα)−1 [13,28]. For xA = 0.25 [Figs. 1(c)

and 1(d)], the influence of the mobility ratio DA/DB on N

is less pronounced. Nucleation in Fig. 1(c) proceeds mainly
by the formation of BB dimers.

Next we include detachment kinetics. Specifically, we as-
sume that the stability of dimers depends on their composition:
AA and AB dimers are stable (KAA

2 = KAB
2 = 0), while BB

dimers are unstable with zero binding energy. The parameter
μBB was set to μBB = 0.1 [34]. The number density of stable
islands is given by N = nAA + nAB + ∑

s>2 ns and its time
evolution obeys Eq. (28). Again, numerical results based on
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(b) xA= 0.25, DA/DB= 0.1
xA= 0.25, DA/DB= 10
xA= 0.75, DA/DB= 0.1
xA= 0.75, DA/DB= 10

10−5

10−4

10−3

10−4 10−3 10−2 10−1

n B

Θ
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FIG. 2. (Color online) Number densities of (a) stable islands N , (b) A adatoms, and (c) B adatoms as a function of the coverage � for a
case of mixed dimer stabilities, where AA and AB dimers are stable while BB dimers are unstable with zero binding energies. Results from
the self-consistent approach (solid lines) with μBB = 0.1 are compared with KMC simulations (symbols).
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our self-consistent rate equations for mixtures are in good
quantitative agreement with the KMC simulations. This is
shown in Figs. 2(a)–2(c) and Figs. 3(a) and 3(b) for the same
values of xA and Dα as considered in Fig. 1.

A feature worth noting in Fig. 2(b) is the occurrence of
a local minimum of nA as a function of � for xA = 0.25
and DA/DB = 0.1. It can be understood as follows. For
these parameters and throughout the nucleation regime, AB

nucleation is the dominating process for capture of A atoms;
see Figs. 3(a) and 3(c). The reason is that BB dissociation
entails a large number of B adatoms, as can be seen in Fig. 2(c):
The peak in nB near � � 10−3 is about 2.5 times higher
than the corresponding peak in Fig. 1(d) in the absence of
dissociation. When, with increasing �, the B adatom density
nB approaches its maximum, AB nucleation becomes strong
enough to overcome the gain of nA by the external flux FA,
hence nA gets depleted. Beyond � � 10−3, on the other hand,
nB quickly decreases due to reactions with stable islands so
that nA, after going through a minimum, can increase again
through deposition with FA. Upon further increasing �, it
passes a second maximum and finally drops through absorption
by stable islands.

Shortly speaking, the consumption of nA after its first
maximum in Fig. 2(b) is governed by AB nucleation, and
after its second maximum by attachments to stable islands.

The rise of the A adatom density after the minimum is due
to missing B adatoms for AB nucleation and the small DA

value. From this discussion it should become clear why the
minimum is not seen for the curves with the larger value
DA/DB = 10 (shorter mean time to traverse the mean free
path) or the larger xA = 0.75 (smaller mean free path for AA

nucleation).
To discuss nucleation rates based on Eq. (28) and the

self-consistent theory, note first that in all our examples
nucleation of trimers via BB dimers is rare, because nBB

is small due to decay processes. Therefore, the last term
in Eq. (28) is negligible. The remaining two terms, giving
the partial rates for nucleation via AA and AB dimers,
are represented in Fig. 3(c) by open and filled symbols,
respectively. For example, for xA = 0.75 and DA/DB = 0.1,
the term 2DAσAA

1 (nA)2 (open diamonds) becomes larger
than the term (DA + DB)σAB

1 nAnB (filled diamonds). The
formation of stable islands [open diamonds in Fig. 2(a)] is
therefore caused mostly by the nucleation path via AA dimers.
By contrast, for xA = 0.25 and DA/DB = 10 we observe the
opposite scenario [see the open and filled triangles in Fig. 3(c)],
which means that AB nucleation prevails. In the remaining
two cases in Figs. 2 and 3, both the AA and the AB dimer
route contribute with similar strength to the formation of stable
islands.
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FIG. 3. (Color online) Densities of (a) stable AA dimers, (b) stable AB dimers, and (c) partial nucleation rates 2DAσAA
1 (nA)2 (open

symbols) and (DA + DB )σAB
1 nAnB (filled symbols) as a function of the coverage � for mixed dimer stabilities as in Fig. 2. In (a) and (b) the

symbols refer to KMC results, and in (c) they are used for the assignment of the lines to the parameters. In all figure parts, the lines represent
results of the self-consistent rate theory.
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VI. CONCLUSIONS

We have shown that a self-consistent treatment of capture
numbers in the rate equations for surface growth of binary
systems yields a very good quantitative description of island
and adatom densities. Essential for this theory is the effective
absorption length ξeff in Eq. (13), which is symmetric in
the two components A and B. Its derivation requires the
introduction of pair densities. Note that the weighting factors
Dα/(DA + DB) appearing in that equation can strongly vary
with temperature as the underlying activation energies for
the two species generally differ. In this way, ξeff acquires an
additional temperature dependence that we expect to become
important in measurements of island and adatom densities.

Different scenarios for dimer stabilities and prevailing
nucleation routes were studied. In all cases, only a reduced
set of few coupled rate equations needs to be solved, which
can easily be done on a PC.

Extensions of our theoretical treatment to larger unstable
clusters is straightforward by first generalizing the rate equa-
tions as described in Ref. [13]. Reduced sets of coupled rate
equations comprise the densities of stable islands, monomers,
and all unstable clusters. Extensions to systems with more
than two components and (as before) pairwise reactions follow
directly from the above scheme by introducing pair densities
Gαβ(r) among all mobile adatom species α and associated
effective absorption lengths ξαβ . More generally, in the case of
nonvanishing cluster mobilities [35], pair densities need to be
introduced for all pairs of mobile species.

In our treatment, we have neglected strain effects so far,
which, however, can have a significant influence on the kinetic
growth behavior. It would be interesting, therefore, to further
extend the present pair density formulation, for example by
taking into account a strain-induced shift in the barrier [36,37]
for monomer migration.
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