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Magnetoresistance of a double-layer hybrid system in a tilted magnetic field
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The magnetoresistance and Hall coefficient of a doped graphene layer are investigated in the presence of a tilted
magnetic field. We consider a graphene layer assembled by either another graphene layer or by a two-dimensional
electron gas (2DEG) layer and with the interlayer electron-electron interaction modeled within the random phase
approximation. Our calculated magnetoresistances show different interlayer screening effects between decoupled
graphene-graphene and graphene-2DEG systems. We also analyze the dependence of dielectric materials as well
as the distance between the layers on magnetoresistances. The angle dependence of the Hall coefficient is studied
and we show that a quite large Hall resistivity occurs in the graphene layer.
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I. INTRODUCTION

Magnetoresistance [1], the change of a material’s resistivity
in the presence of an external magnetic field, has been of
interest both as a tool to probe the fundamental properties
of an electronic material and for technological applications.
Classically, the magnetoresistance effect depends on both the
strength of the magnetic field and the relative direction of the
magnetic field with respect to the current due to the Lorentz
force. For nonmagnetic metals, magnetoresistivity effects at
low magnetic fields are very small, although the effect can
become quite large for high magnetic fields.

The magnetoresistance of graphene, a one-atom-thick layer
of carbon atoms arranged in a honeycomb lattice [2,3], in
the presence of the in-plane magnetic field was studied by
Hwang and Das Sarma by using the Boltzmann approach [4].
In the presence of an in-plane magnetic field, charge carriers
of graphene are spin polarized and the effect of the magnetic
vector potential is negligible owing to the one-atom thickness
of graphene. The authors showed that the applied magnetic
field gives rise to the increase of the resistivity of graphene up
to a saturation field where all electrons of the conduction band
are spin polarized. The magnetic field beyond the saturation
field excites electrons from the valence band to the conduction
band and leads to a negative differential magnetoresistance. In
practice, it is difficult to reach the saturation magnetic field of a
graphene layer, BS ∼ 140

√
n̄, where n̄ is in units of 1010 cm−2

and BS is scaled by units of Tesla. Although using the low
electron density of graphene is feasible in experiments [5],
one has to use an extremely clean and pristine sample to meet
the necessary condition in which impurity density is much
less than the charge carrier density to avoid any localization
regime.

The magnetoresistance properties of a graphene layer are
in contrast to those obtained in conventional two-dimensional
electron gas (2DEG) systems in which the resistivity increases
up to a certain magnetic field and then saturates [6–9]. The
magnetoresistance behavior of the 2DEG system can be under-
stood by the Zeeman coupling and the reduction of screening
of charge impurities in a polarized Fermi liquid system.
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If the magnetic field has a small deviation from the sample
plane, in addition to the spin polarization of conduction elec-
trons, it gives rise to the Hall effect. Tilting the magnetic field
has been shown to be a straightforward tool to disentangled
spin and orbit effects in 2DEG systems [10]. The longitudinal
resistivity and Hall coefficient of a conventional 2DEG have
been investigated experimentally [11] and theoretically [9] in
a slightly tilted magnetic field.

Assembling graphene, on the other hand, with various
two-dimensional (2D) layers into artificial heterostructures to
explore novel or tailed properties has been proposed [12] and
realized in tunneling-effect transistors [13]. Hybridizing a gap-
less graphene layer with another gapless graphene layer makes
the system a decoupled layer graphene (DLG) [14] where both
layers are chiral and differs from a situation in which a gapless
graphene is assembled by a 2DEG sample (G-2DEG) [15]
which is a chiral-nonchiral hybrid system. This structure makes
it possible to study transport properties of the graphene layer
according to an interlayer electron-electron interaction.

In this paper, we consider a hybrid structure in the presence
of a tilted magnetic field to explore the effect of the interlayer
interaction on the magnetoresistance properties of the studied
layer. The longitudinal resistivity and Hall coefficient of
the studied graphene layer are explored and the results are
compared with those results obtained for only a single-layer
graphene in the presence of a magnetic field. We also analyze
the dependence of the dielectric material which fills the space
between the two layers as well as the distance between layers
on the magnetoresistance and Hall coefficient and show that
the interlayer interaction plays a vital role even at longer
distances by using a strong dielectric material between the
two layers. The angle dependence of the Hall coefficient
is obtained and we show that a quite large Hall resistivity
occurs in graphene for certain values of the carrier density
and screened interaction. This particular result is in contrast
to that obtained in a 2DEG system where the Hall coefficient
increases up to 30%.

The paper is organized as follows: In Sec. II, we describe
a model Hamiltonian of double-layer systems and then derive
the conductivity and Hall coefficient of the studied layer in a
tilted magnetic field. Section III is devoted to our numerical
results of the longitudinal conductivity and Hall coefficient of
the studied graphene layer in a hybrid structure. Finally, a brief
summary of results is given in Sec. IV.
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FIG. 1. (Color online) A schematic of a decoupled bilayer 2D
system in the presence of a tilted magnetic field. In our study, the
first layer is always graphene (studied graphene layer) with charge
density n1 and the second layer (layer II) is either a graphene layer
or a 2DEG layer which is separated by a distance d from the studied
graphene layer. The materials in the hybrid structure are indicated by
their dielectric constants.

II. MODEL AND THEORY

We consider a double-layer structure incorporating a doped
graphene layer (layer I) placed on another two-dimensional
layer (layer II) with a separation distance d. A schematic of
the structure is shown in Fig. 1, where layer II can be a chiral
(another graphene) layer or a nonchiral (2DEG) layer. We
assume each layer is of zero thickness in the direction normal
to the plane of the system at zero temperature. The layers
are separated by a dielectric material (shown in Fig. 1) with
a dielectric constant ε2 and we suppose that the tunneling
of electrons between the layers is negligible; however, the
Coulomb interlayer interaction plays a role in the system. The
Hamiltonian of such a system can be written as [14]

Ĥ = �vF

∑
k,γ,β

ψ̂
†
k,γ (σγβ · k)ψ̂k,β + T̂2

+ 1

2S

∑
q �=0,l,l′

Vll′ (q)ρ̂l(q)ρ̂l′ (−q), (1)

where γ, β are pseudospin indices in the x and y directions,
l = 1 (2) is layer index, vF � 106 m/s is the Fermi velocity of
graphene, and ρ̂l (q) denotes the density operator in layer l with
the momenta q. T̂2 denotes the kinetic energy of layer II, which
is the same as the Dirac equation for a DLG system, while it
is ψ

†
k,2�

2k̂2/(2m∗ψk,2) in the case of a G-2DEG hybrid [15]
where m∗ is the electron band mass. The last term Vll′ (q),
refers to the inter- and intralayer electron-electron Coulomb
interactions that can be obtained by using electrostatic relations
for two parallel conducting systems [14]. The intralayer
interaction is given by

V11(q) = 4πe2

qD(q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd ], (2)

where

D(q) = [(ε1 + ε2)(ε2 + ε3)eqd + (ε1 − ε2)(ε2 − ε3)e−qd ],

and the interlayer interaction is defined as

V12(q) = V21(q) = 8πe2

qD(q)
ε2, (3)

where εl denotes the dielectric constant of materials as
illustrated in Fig. 1. Furthermore, the interaction in layer II
can be obtained by replacing ε1 ↔ ε3 in V11(q). Notice that
we are interested in the transport properties of layer I in the
presence of layer II.

A. Conductivity and Hall coefficient in tilted magnetic field

Applying a tilted magnetic field with a small deviation
from the layers’ plane θ 	 1, where θ is the angle between
the plane and the applied magnetic field, has two impacts.
First of all, the parallel component of the magnetic field, B||,
gives rise to the spin polarization of carriers in the system and
changes the chemical potential by ±
/2, where 
 = g∗μBB||
with g∗ being the effective Landé g factor and μB is the
Bohr magneton. An enhanced g factor, g∗ = 2.7 ± 0.2, for
single and bilayer graphene has been measured [16]. This
enhancement is due to the impact of the electron-electron
interaction in electronic liquid systems [17]. Notice that for
B|| = 0, the spin degeneracy is gs = 2 whereas for large B||, the
degeneracy factor is given by gs = 1 and for the intermediate
fields, the system is partially spin polarized. Furthermore, the
electron density for spin up and spin down are given by

n± = gν

4πγ 2
(μ ± 
/2)2, (4)

where μ is the chemical potential, gν is the valley degeneracy,
and γ is �vF. By increasing the magnetic field, the number
of electrons with spin up increases and therefore the number
of electrons with spin down decreases up to the saturation
field BS1 in which n− = 0. At this field μ = 
/2, thus the
saturation field is BS1 = √

2EF /(g∗μB) in which we use
n1 = n+ + n− = E2

F/(πγ 2) where EF is the Fermi energy.
Therefore, charge densities in term of the magnetic field can
be changed and we thus have

nλ =
{

n1
2 (

√
1 − B ′2/2 + λ

√
2/(2B ′))2 if B ′ < 1

n1
(
δ+,λ + 1

4B ′2 (B ′2 − 1)2
)

if B ′ > 1,
(5)

where λ = ±, δij is a Kronecker δ, and B ′ = B||/BS1.
Accordingly, B|| leads to a decomposition of the conductivity
into two different spin-dependent channels; namely, σ+ and
σ−, and the total conductivity is σ = σ+ + σ− since the
contributions of the spin-up and -down channels are parallel.
Notice that in our study here, there is no mechanism to change
spin direction.

It is worth mentioning that the magnetic field also affects
the transport properties of layer II and leads to a change in
the electron-density distribution. For a DLG system, the
aforementioned formula remains the same for layer II with the
electron density n2, since generally, the two layers can have
different electron densities. If we consider a 2DEG system as
layer II, the magnetic field polarizes the spin of the conduction
electron up to a saturation field which is BS2 = 2εF/(g∗μB),
where εF is the Fermi energy of the 2DEG layer. Increasing the
magnetic field cannot excite electrons from the valence band
owing to the existence of a large band gap in the dispersion
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relation of the 2DEG system. Therefore, the electron density
in such a layer is

nλ =
{ n2

2 (1 + λB||/BS2) for B|| < BS2

n2δ+,λ for B|| > BS2.
(6)

The second consequence of the tilted magnetic field refers
to the perpendicular component in which B⊥ = B sin(θ ). We
assume that the field of strength is not strong enough to change
the dispersion relation into the Landau levels producing the
quantum Hall conductivity [18], and therefore it only results
in an ordinary Hall conductivity σxy . Thus the electromagnetic
fields, by using semiclassical relations [19], are given by

E = 1

σ+
(J+ + β+B×J+) = 1

σ−
(J− + β−B×J−), (7)

where βi = eτivF /(�ki
Fc), i = ± indicates spin up or spin

down, and ki
F denotes the Fermi wave vector of the ith spin

component with the electron density n±. By using a current
vector such as Ji = ai

1E + ai
2B×E and Eq. (7), it is easy

to find ai
1 and ai

2. We thus have J = aE − bB×E in which
J = J+ + J− and

a =
∑

i=+,−

σi

1 + β2
i B

2
⊥

, b =
∑

i=+,−

σiβi

1 + β2
i B

2
⊥

. (8)

Now, by considering the electric field, E = RxxJ + RH B×J,
we calculate the magnetoresistance and Hall coefficient ex-
pressions as

Rxx = a

a2 + b2B2
⊥

, RH = b

a2 + b2B2
⊥

. (9)

Rxx is the longitudinal resistivity and RH = Rxy/B⊥ is the
Hall coefficient which depends on the conductivities of spin
up and spin down which will be explored in the next section
within the Boltzmann approximation.

Before describing the Boltzmann equation, it is worth
mentioning that the conductivity of a two-component system
can be written as

σ =
(

σ1 σD

σD σ2

)
,

where σD is the drag conductivity. To calculate the resistivity,
one should take the inverse of the conductivity matrix

ρ =
(

ρ1 ρD

ρD ρ2

)
= 1

σ1σ2 − σ 2
D

(
σ2 −σD

−σD σ1

)
. (10)

Using the fact that σ 2
D 	 σ1σ2, the resistivity of each layer is

obtained as ρi = 1/σi and we therefore define the inverse of
the conductivity as the resistivity in both longitudinal and Hall
conductivities of layer I.

B. Boltzmann approach for conductivity

To calculate the conductivity of layer I in which the
electron density n1 is much larger than the concentration of
impurities, nimp, we therefore can use the Boltzmann approach
which is based on the relaxation-time approximation. Our
theory is formulated for weak disorder and we consider only
charged impurity scattering without spin-flip processes. In this

approach, the conductivity of the system is given by [20]

σ± = e2

2
�

2v2
F

∫
dεD±(ε)τ (ε)

[
−∂nF (ε)

∂ε

]
, (11)

where nF (ε) is the Fermi distribution function. At zero
temperature, the above equation reduces [4,20] to σ± =
e2v2

F D(E±
F )τ (E±

F )/2, where D(E±
F ) is the density of states

at the Fermi energy and in the case of graphene D(E±
F ) =

gsgνE
±
F /(2πγ 2). τ (Ek) is the relaxation time which, for

graphene layer, is given by [21]

1

τ (Ek)
= π

�

∑
k′

nimp|W11(q)|2[1 − cos2(θ )]δ(Ek − Ek′),

(12)

where q = |k − k′|, θ = θk − θk′ , and W11(q) represents
the effective interaction between impurities and electrons.
Short-range disorder plays a role in resistive scattering at
higher carrier density and also high mobility [20]; however,
for mid-range densities, the main scattering source is the
charged-impurity disorder [22,23]. We thus neglect all disorder
mechanisms other than random charged impurities in the
system and assume the charged impurities to be of random
negative sign of units of the electron charge. We assume that
the charged disorder with density nimp is located in the plane
of layer I. Changing the variable sin(θ/2) = y in Eq. (12)
and writing the relation for different doping n± separately, the
relaxation time reads

1

τ (E±
F )

= 4nimp

π�

E±
F

γ 2

∫ 1

0
dy|W11(2k±

F y)|2y2
√

(1 − y2), (13)

where the relaxation time is evaluated at the E±
F of layer I with

the electron density n± and the Fermi wave vector k±
F . We use

a minimal theory to describe effects of the parallel magnetic
field. The effective interaction in the studied layer takes the
form [14]

W11(q) = V11(q) + [
V 2

12(q) − V11(q)V22(q)
]
�0

2(q)

ε(q)
, (14)

where the dielectric function ε(q) within the random phase
approximation (RPA) is

ε(q) = [
1 − V11(q)�0

1(q)
][

1 − V22(q)�0
2(q)

]
−V 2

12(q)�0
1(q)�0

2(q), (15)

where �0
l (q) is the static charge response function of the

lth layer and it is D+
F P (q/k+

F ) + D−
F P (q/k−

F ) for a doped
graphene in the spin-polarized case, where

P (y) = −
{

1 if y � 2

1 + πy

8 − 1
2

√
1 − 4

y2 − y

4 sin−1
(

2
y

)
if y > 2,

(16)

In the case that layer II is a 2DEG layer, we then need
to modify the dielectric function by using �0

2(q) = �+
2 (q) +

�−
2 (q), where

�±
2 (q) = D

[
1 −

√
1 − (2k±

F2/q)2θ (q − 2k±
F2)

]
, (17)
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the density of states is D = gvm
∗/(2π�

2), and the Fermi wave

vector is k±
F2 =

√
4πn±

2 /gs .
By using Eq. (13), we can write the magnetoresistance of

layer I in the presence of another layer as

σ

σ 0
= 1

2

(
I 0

I+ + I 0

I−

)
, (18)

where

I± =
√

π (n1 + n2)

2πe2

∫ 1

0
dyy2

√
1 − y2 W 2

11(2k±
F y).

Notice that σ 0 and I 0 are the conductivity and I+ of layer I
when B = 0.

III. NUMERICAL RESULT AND DISCUSSION

In this section, we present our main numerical results
based on the theory presented in the previous section. Our
aim is to explore the impact of the correlation effects on the
magnetoresistance and Hall coefficient of layer I. Layer II can
be either a gapless graphene or a 2DEG layer. We therefore
study the structures by considering both parallel and tilted
magnetic fields. In all numerical results we use e2/γ = 2.2
and g∗ = 2.

A. Double-layer graphene in parallel magnetic field, B⊥ = 0

We consider a hybrid double-layer graphene system (DLG)
in which the layers are coupled within the interlayer Coulomb
interaction and they are separated by a dielectric material, as
schematically illustrated in Fig. 1. We show the resistivity
of layer I as a function of the B = B|| in Fig. 2 where
electron densities are n1 = 1011 cm−2 and n2 = 1010 cm−2,
respectively. The resistivity is scaled by its value at zero
magnetic field denoted by R0 and it raises by increasing the
magnetic field owing to the suppression of the screening and
increases of the effective interaction screened within the RPA
dielectric function. As B increases beyond its saturation-field
value, BS1 = �vF

√
2πn1/(g∗μB) in which layer I is fully

spin polarized, the hole density is created in the valence
band and makes Rxx decrease sharply, which demonstrates
the negative differential magnetoresistance. We analyze the
resistivity for the different layer distances d and the media
dielectric constants ε2, and our numerical results are shown
in Figs. 2(a) and 2(b), respectively. Interestingly enough,
Fig. 2(a) shows that the resistivity of layer I is significantly
modified when n2 < n1. For B > BS2, the effective interaction
decreases, which gives rise to a decrease of the resistivity.
Our numerical results show that the resistivity has a negative
differential magnetoresistance for a small d value and for a
region in which B 	 BS1. This region depends on the electron
density in layer II, n2 and the slope of the Rxx changes by
decreasing n2 at small B. Thus, a larger conductivity of layer
I can be reached by using n2 < n1. It is obvious that we also
get the resistivity of a single graphene layer by considering a
very large d value.

Moreover, it has been shown that [24] the dielectric constant
between the two layers in double-layer graphene systems has
a significant role in transport properties. Although increasing
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FIG. 2. (Color online) Longitudinal resistivity of layer I in a
hybrid double-layer system composed by the doped graphene sheet
that is Coulomb coupled to another doped graphene in which they
are separated by a dielectric material as a function of B = B|| for
(a) different distance between layers in units of nm for ε2 = 12.53
and (b) different value of ε2 with constant distance d = 1.0 nm.
We also consider a plot with d = 100 nm to suppress the interlayer
effect. We choose ε1 = 1.0, ε3 = 12.53, and the electron densities are
n1 = 1011 cm−2 and n2 = 1010 cm−2, respectively.

the dielectric constant screens the interlayer interaction, it has
a significant role on the intralayer screening of the considered
layer, too. Accordingly, a competition between the effect of
the inter- and intralayer interactions on the magnetoresistance
of layer I is vital when dielectric materials with higher ε2

are used. We also obtain the reduction of the resistivity when
the dielectric constant increases. We choose three different
materials, namely h-BN, Al2O3, and HfO2 for d = 1 nm
to explore the effect of the interlayer interaction on the
magnetoresistance of layer I in the DLG system. In the same
manner, we obtain the negative differential magnetoresistance
in area which B < BS1 due to the correlation effects induced
in layer I from layer II.

We analyze the resistivity at the saturation magnetic field
for layer I as a function of d in Fig. 3. We obtain a resistivity
enhanced by about 20% by increasing the layer distance for
the case in which there is a larger dielectric constant between
layers owing to the long-range interlayer interaction and the
fact that V12(q) is proportional to ε2. Rxx(BS1) significantly
changes for a small d and ε2.
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FIG. 3. (Color online) Longitudinal resistivity of layer I at the
saturation field versus the distance between layers in units of nm
in a hybrid double-layer graphene system for different values of
ε2. We choose ε1 = 1.0, ε3 = 12.53, and the electron densities are
n1 = 1011 cm−2 and n2 = 1010 cm−2, respectively.

B. Graphene-2DEG hybrid in parallel magnetic field, B⊥ = 0

In this section, we consider a G-2DEG system in which
a dielectric material is filled in the space between the two
layers. For such a system, the saturation magnetic field of
the 2DEG layer, BS2 = 2π�

2n2/(gvm
∗g∗μB) is smaller than

the corresponding one in a graphene-layer system, BS1, even
though n1 = n2.

Figure 4 shows the longitudinal magnetoresistance of layer
I in the presence of the 2DEG layer for different materials [25].
The electron density of both layers is the same and equal to
1011 cm−2, ε1 = 1, and ε2 = ε3 for d = 10 nm. This figure
shows that, because 2DEG carriers are fully polarized, the
magnetoresistance of layer I exhibits a sharp jump at BS2,

0.0 0.5 1.0 1.5
0.9

1.0

1.1

1.2

R x
x/
R 0

B/BS1

GaAs

InAs

InSb

FIG. 4. (Color online) Magnetoresistance of layer I as a function
of the B = B|| in the presence of a 2DEG layer for different 2DEG
materials. Here, the dielectric constants of 2DEG systems are chosen
as [25] 10.9, 12.2, and 15.7; in addition, the effective mass of
these materials are the electron-band effective mass which is 0.07m,
0.026m, and 0.015m where m is the electron bare mass for GaAs,
InAs, and InSb, respectively. The electron density of the both layers
is the same and equal to 1011 cm−2, ε1 = 1, ε2 = ε3, which are equal
to the dielectric constant of the 2DEG layer and the distance between
layers is d = 10 nm.
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FIG. 5. (Color online) Value of the saturation field resistivity of
layer I scaled by its zero-field resistivity as a function of d in
the presence of different 2DEG materials. Inset is the same for
the saturation field of layer II. All other parameters are the same
as Fig. 4.

which occurs at a much smaller value than the BS1 value.
The longitudinal resistivity increases by increasing ε2 due to
the increased screening. Importantly, this feature differs from
that in a DLG structure. Meanwhile, since BS2 ∼ m∗−1, the
position of the first peak of the Rxx decreases by increasing
the electron effective mass.

In order to bring out the difference between G-2DEG and
DLG systems, we plot the magnetoresistance of layer I at
the saturation magnetic field BS1 in Fig. 5 when the 2DEG
layer is placed near the graphene layer. The results show that
the Rxx decreases at small d, behaves nonmonotonically as
a function of d, and the results are in a different trend as
compared with Fig. 3 in which the results for DLG systems are
shown. The difference can be understood in terms of the effect
of the chirality effect in the charge-charge response function
of the doped graphene [26].

C. Longitudinal resistivity in tilted magnetic field,
B = (B2

|| + B2
⊥)1/2

In the presence of a tilted magnetic field B = (B2
|| + B2

⊥)1/2

where B|| � B⊥, we should use the full expression of the
conductivity given in Eq. (9) and it can be written as

B⊥β± = BI0nt

2BS1I±n±
1

x = α±x, (19)

where I± is the function given under Eq. (18), and nt is the
total density of the two layers (n1 + n2). Here, we define a new
parameter [9], x = 0.895 sin(θ )

√
n̄1/(n̄impI0) (n̄1 and n̄imp are

in units of 1012 cm−2). Note that x depends on both the angle
as well as nimp, therefore larger values of x can be obtained by
using clean samples.

In order to understand the impact of the tilted magnetic field
on the resistivity, we first examine Rxx of an isolated graphene
sheet in the presence of B. Figure 6(a) shows the effect of
the tilted magnetic field on the longitudinal resistivity of an
isolated n-doped graphene sheet. The longitudinal resistivity
increases by increasing the value of x. The magnitude
of differential magnetoresistance changes significantly in
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FIG. 6. (Color online) Longitudinal magnetoresistivity of a sys-
tem consisting of (a) a single graphene layer (ε2 = 12.52, ε1 = 1.0)
with n1 = 1012 cm−2 and (b) in a hybrid system in which a
G-2DEG system for InSb with n1 = n2 = 0.1×1012 cm−2, ε3 = 15.7,
and d = 10 nm as a function of the magnetic-field amplitude
B = (B2

|| + B2
⊥)1/2. The magnetoresistance is calculated for different

values of the tilting parameter x.

comparison with that result obtained when B⊥ = 0. Moreover,
the maximum of the Rxx at the BS1 is not sensitive to
the finite value of x and shows good agreement with those
trends obtained in experiment [16,27]. It should be noted
that the maximum of the Rxx is a good quantity to explore
quantum states in a graphene system and for this purpose,
the magnetoresistance of the insulating state that forms at the
charge neutrality point in the presence of tilted magnetic field
has been measured [28] and data indicated that the zero-filling
factor quantum Hall state in single layer graphene is not
spin polarized. We choose x = 100 for an extremely clean
sample and this figure shows that the Rxx increases slightly by
increasing large value of x. Having known the behavior of Rxx

as a function of B for a single graphene sheet, we could explore
Rxx for layer I in a hybrid system. We consider only a G-2DEG
system for an InSb layer with n1 = n2 = 0.1×1012 cm−2,
ε3 = 15.7, and d = 10 nm, and Rxx is shown as a function
of B in Fig. 6(b). As it is seen, Rxx increases with increasing x

value and the fact that BS2 < BS1, a sharp change in the results
at BS2 still remains. These numerical results exhibit that the
interlayer interaction has a more significant effect, especially
for a small value of x.

D. Hall resistivity in tilted magnetic field

Finally, by applying the tilted magnetic field, B =
(B2

|| + B2
⊥)1/2 in which there is a weak perpendicular com-

ponent B⊥ and using two-species conductivities σ+ and σ−,
we can straightforwardly calculate the Hall coefficient RH =
Rxy/B⊥ from Eq. (9). Normalizing the Hall coefficient to its
zero-magnetic-field value, RH0 = RH (B → 0) one gets

RH/RH0 = b

a2 + b2B2
⊥

σ0

β0
. (20)

Note that β+ = β− for the limit of B|| → 0 and β0 =
β+(B = 0). The Hall coefficient of a 2DEG system shows
a peak before the saturation-magnetic-field point and reaches
a constant value at the saturation magnetic field [9]. Moreover,
the Hall coefficient of the 2DEG system increases mono-
tonically by decreasing the x value; however, our numerical
results show that the Hall coefficient of layer I is significantly
enhanced by decreasing the x values.

In Fig. 7, the behavior of the Hall coefficient of layer
I as a function of the B = (B2

|| + B2
⊥)1/2 is shown in the

presence of the InAs 2DEG for different values of x. Same
qualitative results can be obtained for a single graphene layer
and therefore we conclude that the Hall coefficient of graphene
differs from that result of the 2DEG system. As is obvious in
this figure, the two peaks occur at finite x. Importantly, if we
interpret the Hall resistivity as an effective density of charge
carriers, our numerical results show that the effective density
of carriers changes more sharply around the BS1. Nevertheless,
the Hall coefficient in layer I has two peaks at finite x values
in which one peak occurs just below the BS1 value and another
takes place above that. These peaks become sharper at smaller
x; accordingly, a giant-like Hall coefficient behavior of layer
I can be reached at a small value of x. Notice that at B � BS1

the Hall coefficient decreases and eventually reaches to RH0

at B = BS1. To understand these features, we analytically

0.5 1.0 1.5
1

2

3

4

5

6

7

8

R H
/R
H
0

B/BS1

x=0.05
x=0.02
x=0.01

FIG. 7. (Color online) Hall coefficient of layer I as a function
of the magnetic field amplitude, B = (B2

|| + B2
⊥)1/2 in the presence

of the 2DEG InAs for different values of x at given constant θ =
4◦. We consider ε3 = ε2 = 12.2, m∗ = 0.026me, and n1 = 0.1×1012

cm−2, n2 = 0.01×1012 cm−2. The layers are separated with a distance
d = 10 nm.
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calculate the RH in different regions. Let us start off by using the definition of the Hall coefficient of layer I:

RH

RH0
= σ0

β0

b

a2 + b2B2
⊥

= Dσ0

β0

σ+β+(1 + x2α2
−) + σ−β−(1 + x2α2

+)

[σ+(1 + x2α2−) + σ−(1 + x2α2+)]2 + x2[σ+α+(1 + x2α2−) + σ−α−(1 + x2α2+)]2
, (21)

where D = (1 + x2α2
+)(1 + x2α2

−). Notice that, in the above
equation, there is a competition between x and α− since α− is
proportional to 1/n− and diverges at B = BS1 where n− = 0,
thus the zero limit of x cannot prevent this singular behavior.
We take the limit xα− → 0 around BS1. Notice that σ− has a
finite nonzero value even at B = BS1 [20].

By considering a case that x → 0 and α− → ∞, however,
xα− → 0 in which the Hall resistivity is noticeably large, we
have

RH

RH0
= Dσ0

β0

σ+β+ + σ−β−
(σ+ + σ−)2 + x2(σ+α+ + σ−α−)2

= n1I
2
0

4n±I 2±
, (22)

0.0 0.5 1.0 1.5

0.9

1.0

1.1

1.2

1.3

1.4

R H
/R
H
0

B/BS1

SLG

DLG

G-2DEG

(a)

0.0 0.5 1.0 1.5

0.9

1.0

1.1

1.2

R H
/R
H
0

B/BS1

SLG

DLG

G-2DEG

(b)

FIG. 8. (Color online) Hall coefficient of a single layer graphene
(SLG) and Hall coefficient of layer I in a DLG and G-2DEG systems
as a function of the magnetic-field amplitude, B = (B2

|| + B2
⊥)1/2 at

given constant θ = 4◦ for (a) x = 0.2 and (b) x = 0.5. The electron
densities are n1 = 0.1 × 1012 cm−2 and n2 = 0.01 × 1012 cm−2,
respectively, and the layers are separated by a distance d = 10 nm.

which has a large value at B close to the BS1 in which n−
becomes very small. It should be noted that such a huge
resistivity does not appear in a 2DEG since the Hall coefficient
of a 2DEG at x = 0 is given by [9]

RH/RH0 = 2
∑

± n±(I0/I±)2( ∑
± n±I0/I±

)2 , (23)

which is a constant at x → 0. On the other hand, if we consider
the case α− → ∞ and xα− → ∞ as well, the RH will be
independent of the x value, too. In this limit, Eq. (21) takes
the following form:

RH

RH0
= Dσ0

β0

σ+β+(x2α2
−) + σ−β−(1 + x2α2

+)

[σ+(x2α2−)]2 + x2[σ+α+(x2α2−)]2
. (24)

By using the approximation β− ∼ α− in this limit, the term
with α2

− dominates and also D → (1 + x2α2
+)x2α2

−, and thus
we get

RH

RH0
= σ0β+

σ+β0
= n1

n+ . (25)

Interestingly, this ratio becomes unity when B = BS1.
Figure 8 shows the behavior of the normalized RH/RH0 as
a function of the magnetic field for different values of x

for different systems. As shown, the Hall coefficients have
a peak in region B < BS1 which is the same as one gets in a
2DEG system; however, it changes for B > BS1 and the results
depend on the value of x. The peak at B > BS1 becomes larger
by reducing n2 and increases the interlayer correlation. By
increasing x value, the shape of the Hall coefficient changes
significantly and decreases rapidly as x increases. Contrary to
the Rxx where the interaction with graphene (2DEG) makes
lower (higher) values of the magnetoresistance of layer I,
the interlayer interaction always makes RH/RH0 increase
compared to its single-layer values.

IV. CONCLUSION

In summary, we calculated the longitudinal resistivity and
Hall coefficient of the gapless graphene (layer I) in a hybrid
structure and compared the results with those of a single layer
of graphene in the presence of a tilted magnetic field. We
assumed that the magnetic field is slightly off the electronic
planes so that there is a weak perpendicular component.

For a parallel magnetic field, B⊥ = 0, we analyzed the
dependence of the dielectric material which fills the space
between the two layers as well as the distance between the
layers on the magnetoresistances of layer I and showed that
the interlayer interaction plays an important role even at longer
distances by using large values of the dielectric constant.
Our numerical results show that the resistivity of layer I is
significantly modified when n2 < n1. Moreover, the resistivity
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shows a negative differential magnetoresistance for a small d

and for a region in which B|| is much smaller than the saturation
magnetic field. We also obtained the reduction of the resistivity
when the dielectric constant between two layers increases and
obtained the negative differential magnetoresistance in the area
where B|| < BS1 due to the correlation effects induced on
layer I from another layer. We showed that Rxx in a G-2DEG
structure decreases at small d, behaves nonmonotonically as
a function of d, and the results show in different trend as
compared to those in DLG systems.

In the presence of a tilted magnetic field B, the Hall
coefficient of layer I shows two peaks at finite x values in which
one peak occurs just below the BS1 value and another takes

place above that. These peaks become sharper at very small x

values. Accordingly, a giant-like Hall coefficient behavior for
layer I can be reached in a hybrid graphene structure. We have
shown that the magnetoresistance and the Hall coefficient of a
doped graphene layer can be tuned by the electron density and
dielectric constants of the materials in a hybrid structure. Our
results should be verified by experiments.
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