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Chiral bound states in the continuum
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We present a distinct mechanism for the formation of bound states in the continuum (BICs). In chiral quantum
systems, there appear zero-energy states in which the wave function has finite amplitude only in one of the
subsystems defined by the chiral symmetry. When the system is coupled to leads with a continuum energy band,
part of these states remain bound. We derive some algebraic rules for the number of these states depending on the
dimensionality and rank of the total Hamiltonian. We examine the transport properties of such systems including
the appearance of Fano resonances in some limiting cases. Finally, we discuss experimental setups based on
microwave dielectric resonators and atoms in optical lattices where these predictions can be tested.
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I. INTRODUCTION

Interference effects account for some of the surprises
found in quantum physics. In the first years of the study
of quantum mechanics, von Neumann and Wigner showed
that some particular cases of spatially oscillating attractive
potentials support so-called bound states in the continuum
(BICs): square-integrable solutions of the time-independent
Schrodinger equation with eigenenergies above the potential
threshold [1]. BICs can be formed above the barrier because
there appears a destructive interference between the different
partial wave amplitudes that causes the wave function to vanish
at large distances [2]. Given the peculiar long-range oscillating
behavior of the potentials constructed by Wigner and von
Neumann, for a long time BICs were considered as nothing
more than a mathematical curiosity. More important, as these
states are true eigenstates of the Hamiltonian—in contrast
with Fano-Feshbach resonances [3], they are not related to
near-threshold states of an approximate Hamiltonian [4]—they
are embedded in the continuum but not coupled to it, so it
appeared unclear how one could actually probe them.

However, in 1985 Friedrich and Wintgen proved that two
coupled resonant states connected to a continuum could lead
to a BIC if one could drive them into degeneracy, e.g., using an
external field [4]. A contemporary experiment indeed observed
such a phenomenon as a reduced autoionization rate of a
Rydberg state in barium [5]. More recently, following the
proposals by Herrick [6] and Stillinger [7] based on the
analogy between the time-independent Schrodinger equation
and the wave equation, technological advances have allowed
the observation of bound states above the continuum threshold
in semiconductor quantum wells [8] and photonic systems [9].
These observations have triggered a revival in the study of
BICs due to their potential applications for quantum transport
and classical or quantum information devices.

From a theoretical perspective, the occurrence of BICs has
been investigated in different systems, including mesoscopic
structures [10-12], the hydrogen atom in a uniform magnetic
field [13], and photonics [14—16]. Several mechanisms have
been identified for the formation of BICs beyond the original
work by von Neumann and Wigner. For example, BICs can
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appear when a discrete eigenstate and the continuum spectrum
have different parities [17,18]. BICs can also occur due to an
exact destructive interference process occurring for specific
values of the parameters in models of quantum dots [19-21].

In this work, we identify a very general class of systems—
systems presenting chiral symmetry—that can support BICs
when connected to a continuum. After discussing the princi-
ples underlying the existence of these states, we show general
rules for the number of BICs that can be present in the middle
of the energy band of the system. Chiral systems include a
very general class of hopping Hamiltonians within a bipartite
lattice, and we show some examples of such systems using
models of quantum dots defined in a bipartite lattice and
connected to left and right leads. We calculate the conductance
in a two-terminal setup and the density of states as a function
of the energy showing the effects of the BICs in the transport
properties of the system for both square and honeycomb
lattices (Sec. III). In Sec. IV, we discuss how the theory that
we present allows to revisit in a more general perspective
earlier results on the conduction of quantum-dot structures and
the appearance of Fano resonances in periodic nanoparticle
arrays. Finally, in Sec. V, we discuss how these states could be
observed in different experimental setups, from quantum-dot
arrays, similar to Refs. [8,9], to photonic resonator lattices
[22], or cold atoms in optical lattices [23-25].

II. CHIRAL HAMILTONIANS AND
CHIRAL EIGENSTATES

We consider a generic chiral system connected to left and
right leads,

H = Hch + Hléad + Hlfad + Hch—lead B (1)

where H,, denotes the Hamiltonian of the chiral system, ngf )

is the Hamiltonian of the left (right) lead, and H.,—jeqq cOntains
the coupling terms between the system and the leads. The
Hamiltonian of a general chiral system can be written

o= (G §) @

Here, CT stands for the matrix transpose of C. The system
becomes open by connecting it to leads carrying incoming
and outgoing scattering states. We assume quasi-1D leads,
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FIG. 1. (Color online) (a) Closed chiral system (circles) with hopping amplitude ¢, linked with coupling strength V' to quasi-1D leads of
size A (squares). On-site energies for sites in the closed system are displaced uniformly by a gate potential V, and the conductance is calculated
as a function of V,. (b) Conductance G(V,) (red or gray line) and density of states p(E) (black) for the system with A = 3 leads in (a). The

inset is a close up to the region around £ = 0.

i.e., their eigenstates are momentum, k, states supported on
a finite number of transverse channels, A, (¢ = L,R), with
annihilation (creation) operators a®

on
Ao

= f =L.,R 3

lead — G ndwm, o« =L, 3)
n=1 k‘(,”)

We assume that the coupling between the lead states and the
system happens directly between a finite number, A, of states
in the two chiral regions (A, B) and the momentum states of
the leads [see Fig. 1(a)],

ha
Heh—tead = Z Z Z Z Vi;kfj”cjakgw +Hc. @

i€eA,Ba=L,R n=1 k‘(y")

Here, i runs over the system Hamiltonian H,, eigenstates, and
V4o is the coupling strength between system state i and the
state with momentum & on transverse channel n of lead «.
A typical example of a system described by this model is
a quantum system characterized by a nearest-neighbor tight-
binding Hamiltonian on a bipartite lattice connected to left and
right leads through a finite number of sites on the boundary,
see Fig. 1(a).

A. Chiral eigenstates in closed systems

To identify the BICs, we first find the eigenstates of the
closed system. We start by solving the time-independent
Schrodinger equation for the closed system introducing a
two-component wave function to represent the distribution on
the two chiral subsystems,

HonWen = (COT g) (ﬁ;}) = E ($2> e

being A and B the two chiral subsystems (the two sublattices
of the bipartite lattice in our previous example). It is easy to
show, from basic algebraic considerations, that the spectrum
of the system is symmetric under the operation £ — —E: the
wave function of the eigenstate with energy E is related to the
wave function at —FE by a change of sign of the components
in one of the subspaces.

Let us focus our attention on the states at the band center,
E = 0, of the closed system. Finding the eigenstates at zero
energy is equivalent to solving a homogeneous system of linear
equations. The degeneracy of the subspace of states with £ =
0 is the nullity, MV,, of Hy,. Now, the chiral structure of the
Hamiltonian allows us to relate the number of zero-energy
eigenstates with the properties of the matrix C [26,27]. This
follows from the rank-nullity theorem from linear algebra,
which states that the nullity plus the rank of a matrix is equal
to the dimension of the matrix [28]. Hence a basis on the
subspace of solutions of the homogeneous system of equations
can be found, such that each basis state is nonvanishing on
only one of the sublattices. More precisely, the dimension of
each sublattice, n4 g, minus the rank of the matrix C (the
same as that of CT) equals the dimension of the zero-energy
subspace on that sublattice, N4 . The total nullity of H.y, is
then./\fch = NA +NB.

The minimum value of A, is, therefore, equal to the
difference between the dimensions of the A and B subspaces
N = |ng — np|. When the inequality is saturated, all zero-
energy eigenstates have components different from zero only
on the sublattice with the largest number of sites. In general,
in a disordered chiral system the inequality is saturated. Then,
if the number of sites in both sublattices is the same, there
are no zero-energy eigenstates [26]. On the other hand, if
the number of sites is bigger in one of the sublattices, for
example A, then Ny, = Ny = ny —np, while Nz = 0. By
contrast, in the case of ordered lattices, the symmetries within
C make it possible that Ay + Np > |ns — np|. In this case,
the total nullity can be large even for n4 = npg, depending on
the boundary conditions of the system [27].

B. Open systems: chiral BICs

We proceed now to present the main result of this paper.
Once we connect the leads to the system, part of the zero-
energy subspace found in Sec. Il A may remain bound even
when E = 0 lies within the continuum of states on the leads.
When this happens, these states form a special kind of BICs
that we call chiral BICs.
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The wave function of an arbitrary state of the open system
can be written as

V) =) w0V, (©)

where W, are the eigenstates of the system together with the
leads, which form a basis of the Hilbert space corresponding
to H. They satisfy HV, = E,V,, with r the quantum number
identifying state W, ; it runs over all states of the open system.
Using Eq. (6), the time-dependent Schrodinger equation of an
arbitrary state can be expressed as

. dw, (1)
m77=;mMm, 7

where H,; = (V,|H|W,) is the Hamiltonian matrix element
between eigenstates r and s of the open system.

Let us ignore inelastic processes and, recalling that we are
looking for states of zero energy, restrict ourselves to lead
states with energy E = 0, i.e., k = 0. Then,

Ao
dU;rt(l‘) _ Z |:(Hch)rs + Z Z Vs;(k:O)g"):| ws.  (8)

a=L,R n=1

ih

Taking into account only the k& = 0 subspace in the leads, the
index r is now restrictedtor = 1, ...,L + A + Ag, where L
is the size of the (closed) system, and we recall that X, stands
for the number of transverse channels of the lead « = L,R
attached to the system. The set of equations (8) constitutes a
homogeneous system of L 4+ A, + Ag linear equations for the
coefficients w,.

We are interested in finding stationary solutions of the open-
system Schrodinger equation that do not populate states in
the right or left leads, i.e., we seek eigenstates of H whose
wave function can be expanded as in Eq. (6) with r running
over states that are localized only on the (closed) system.
As the closed system cannot support more than L linearly
independent states, we take these to be the basis states W,
with » = 1,...,L and impose w, = 0 for » > L in Eq. (6).
Recalling that we are interested in zero-energy eigenstates,
we have i id\V /dt = HW = 0 which, through Eq. (6), implies
dw, /dt = 0. Substituting this into Eq. (8) results in

L

Aa
Z |:(Hch)rs + Z Z Vs;(k:())g’):| ws =0,

s=1 a=L,R n=1
(r=1,....,L+AL+Xg). 9)

This is a set of L + Ay + A equations for L unknowns (the
coefficients w, withr =1, ...,L),i.e., Eq. (9) is an overdeter-
mined homogeneous system of equations. The number of its
fundamental solutions depends on the rank of the open-system
Hamiltonian matrix, Eq. (1).

From elementary algebraic considerations, it is easy to
see that, for a lattice system with only nearest-neighbor
hopping attached to quasi-1D leads, the rank of H will
generally be increased from that of H., by the number of
sites of each sublattice connected to the leads, reducing the
number of fundamental solutions of Eq. (9) by the same
amount. Exceptions to this rule may occur in cases with
specific degeneracies between the couplings to the leads and
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parameters inside H.y; in such situations, a full understanding
of the properties of the system demands a case-by-case
analysis.

Leaving aside such degenerate cases, we can proceed by
recalling from the discussion in Sec. IT A that the number of
zero-energy eigenstates Ay, of the closed system is divided
between states in subsystem A (Nj) and states in subsystem
B (N3). It follows that, on connecting the system to the leads,
each of N, p will be reduced by the number of sites in the
corresponding sublattice connected to the leads. A case of
particular interest occurs if the leads are connected to sites on
only one of the sublattices. Then, all the zero-energy states
living on the other sublattice will remain bound solutions
of the open-system Schrodinger equation. These remaining
eigenstates of H are true BICs: they do not contribute to the
transport of current and do not decay [27].

III. CHIRAL BICS AND TRANSPORT PROPERTIES
OF BIPARTITE SYSTEMS

From the previous considerations, we conclude that chiral
systems will generally present BICs at zero energy. As we
open the system, for example, for two-terminal conductance
measurements, the zero-energy subspace will divide itself
between a part connected to the leads and a part disconnected
from the outside. The former will be displaced in energy
due to the coupling to the leads, and so it will not affect
the measurements on the band center, where signatures of
the latter can be looked for. Thus, a generic characteristic of
transport through chiral systems (with openings connected to
a small number of sites compared to the total number of sites
in the system) is that they present a dip in the conductance as a
function of the energy (or, equivalently, as a function of some
gate potential) in the middle of the band.

A. Clean square lattice

To illustrate the implications of the discussed properties of
chiral systems, we study a system consisting of a number of
discrete points arranged on a square lattice with a square shape
of 10 x 10 sites as shown in Fig. 1(a). The system is described
by a hopping Hamiltonian

Hgy=—t) (cle; +He), (10)
(i)

where the sum is over nearest neighbors (which lie on different
sublattices), and ¢ is the hopping amplitude. This system can
stand as a simple model for an array of quantum dots [8,9] or
an array of dielectric resonators in a microwave cavity [22]. If
we calculate the rank of the matrix or solve the closed-system
Schrodinger equation by exact diagonalization, we obtain 10
zero-energy states. We can then connect the system to leads
in many different ways. As an example, we first choose to
join identical leads (A, = Ag = X) to the three bottom sites on
the left and right sides of the square as shown in Fig. 1(a).
We calculate the conductance using the Landauer-Biittiker
formulation with the usual prescription for calculating the
transmission from the Green’s function in tight-binding lattices
including a gate potential, V,, that modifies uniformly the
potential energy in the system [29]. In our calculations below,
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DOS 4, G/G,

FIG. 2. (Color online) Density of states, DOS(E), (black solid
lines) and conductance, G(V,), (red or gray dashed) for a 10 x
10 system connected to leads of different sizes, A =1,...,8, as
indicated. Note the broad nonconducting band centered around £ = 0
for A < 4, and the Fano antiresonance dip on G(V,) for A = 5.

we set the value ¢+ = 1, and model the coupling to the leads
by hopping terms from sites in the system to sites in the leads
with amplitudes V = 1.

In Fig. 1(b), we show a plot of the conductance, G(Vy), and
the density of states (DOS) of such a quantum dot connected
to leads. (In this and the following figures, energies are given
in units of the hopping energy ¢, while the density of states is
plotted in units of 1/¢ and the conductance is displayed in units
of the quantum of conductance Gy = e/ h.) As expected, the
figure is symmetric under a reflection through E = 0. Each
of the peaks in the density of states can be correlated with
a corresponding peak in the conductance except precisely at
E = 0, the position of the chiral BICs. The inset of Fig. 1(b)
shows a zoom at the region around E = 0 revealing the narrow
peak in the DOS at E = 0 while the conductance remains
negligible.

The evolution of the conductance and DOS curves as we
increase the number of channels in the leads is shown in Fig. 2,
starting with only one-channel leads and up to A = 8 leads,
for the same 10 x 10 system. As the number of degenerate
zero-energy eigenstates for the closed square is My, = 10 (5
on each sublattice), we expect to have BICs for up to A =4
channels, while for A > 5 all BICs should disappear. This
is exactly what we observe in the figures: the conductance
remains close to zero over a wide gate-voltage range around
V, = 0, indicating nonconducting behavior, for A =1...4,
while the DOS features a narrow peak just at £ = O—this
points to a number of zero-energy eigenstates that do not
couple to the leads, i.e., BICs. In addition, for increasing
A we see how the DOS acquires a broader peak around the
band center, which, however, does not lead to an increase in
conductance in the equivalent range of gate voltages.

For A =5 channels, the DOS no longer has a narrow
peak and the conductance shows a shape reminding of a
Fano antiresonance [30]. This characteristic can be understood
as due to the last remaining BIC becoming coupled to
the continuum of states on the leads. For a larger num-
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FIG. 3. (Color online) Conductance (red or gray dashed line) and
DOS (black solid) for a 9 x 9 square lattice with two quasi-1D leads
connected to the smaller sublattice and with off-diagonal disorder,
t €[0.5,1.5].

ber of outcoupling channels, the conductance at V, =0
ceases to vanish, i.e., the system becomes a conductor,
and the DOS peak becomes progressively broader and
lower.

B. Disordered systems

As mentioned earlier, in the case where one of the
sublattices supports a larger number of states than the other
sublattice, the difference between sublattice dimensions equals
the minimum number of zero-energy eigenstates. In that case,
even for disordered systems we can have BICs if the leads are
connected only to the sublattice with a smaller number of sites.
To check this prediction, we have calculated the conductance
of a 9 x 9 lattice with leads connected to the second lowest
sites on the left and right sides of the square, which lie in
the smaller sublattice. We use a particular realization of a
disordered lattice Hamiltonian with hopping matrix elements
distributed uniformly in the range [0.5,1.5]. The conductance
as a function of the gate potential and the density of states
as a function of the energy are shown in Fig. 3 on top of
each other as in the previous figures. The DOS diverges at
E = 0 while the conductance vanishes at V, = 0 marking the
presence of a BIC in the middle of the band. As the disorder
is only off-diagonal, it conserves the chiral symmetry, and the
curves are symmetric under £ — —E.

C. Chiral BICs in the honeycomb lattice

The results presented are applicable to any bipartite lattice.
In particular, zero-energy eigenstates on the honeycomb lattice
correspond to the edge states that appear in the case of zigzag
edges [31]. In that case, the edge states can become BICs if
we join a zigzag graphene nanoribbon with properly placed
leads. We present an example in Fig. 4 where we show results
for a 38 x 38 square graphene flake connected to leads by
only one carbon atom in opposite edges (see inset). Although,
this situation is probably unrealistic for actual graphene
it is certainly feasible for artificial honeycomb lattices
[22].
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FIG. 4. (Color online) Conductance (red or gray dashed line) and
DOS (black solid) for a 38 x 38 square honeycomb-lattice flake with
two leads connected to sites on opposite zigzag edges, as marked in
the inset (top left). Note the semilogarithmic scale.

For such a flake, there are no zero-energy eigenstates on
the (top and bottom) armchair edges, that are formed by
sites belonging to both sublattices; this is in agreement with
our findings above that zero-energy eigenstates are localized
on one of the sublattices. On the other hand, there will be
eigenstates at E = 0 localized on the (left and right) zigzag
edges; these are indeed edge states living only on one of the
sublattices of the honeycomb lattice. There can be current
along each of these edge states; however, there will be no
current between leads connected to opposite edges.

These expectations based on our arguments in the previous
paragraphs are confirmed by numerical calculations. We have
calculated the density of states and the conductance when two
leads are connected to single sites on opposite zigzag edges
of a 38 x 38 flake; our results are shown in Fig. 4 using a
semilogarithmic scale as the conductance close to the band
center is quite small. At the band center, the DOS diverges,
marking the presence of the edge states, while there is a zero of
the conductance, thus confirming that the edge states behave
as BICs with this configuration of the leads.

The two small conductance peaks at 0 < |V,| <t are
related to resonances with very small probability density in the
sites connected to the leads. Other transmission zeros marked
by dips in the conductance are unrelated to BICs but due to
consecutive resonances with the same parity in the one-channel
case [32-35].

The interplay between the geometry of the honeycomb
flake, the number of zigzag edges, and the position of the sites
connected to the leads can give rise to very different transport
properties close to the band center. A detailed analysis should
be quite complex and merits a work on its own beyond
the scope of this paper. We just want to point out that this
detailed analysis can be achieved within the general framework
presented here.

Finally, we stress that these particular edge-state BICs are
unrelated to another kind of “bulk” BICs found in graphene
quantum-dot structures [36] when a particular symmetry is
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FIG. 5. (Color online) DOS (solid black line) and conductance
(dashed) for a 10 x 10 square lattice connected to four-channel leads,
including hopping to next-to-nearest neighbors #, = 0.01. The insets
show the raw data (lines) together with fits (symbols) to a Lorentzian
and a Fano profile, respectively.

present that induces a destructive interference between two
resonant states [4].

D. Fano resonance due to chiral symmetry breaking

We consider next the effect that a non-negligible next-
to-nearest neighbor hopping amplitude, t,, can have on the
existence and observability of BICs in lattice systems. To
assess this, we consider a system where H, contains a small
coupling , = 0.01 between sites on the same sublattice. As
a consequence, the system is no longer bipartite and zero-
energy eigenstates will in general populate both sublattices.
In addition, the small intralattice coupling #, [which leads to
a (weak) breaking of the E — —FE symmetry] will induce a
small displacement of all energy levels; in particular, states that
were at E = 0 for #, = 0 will now have energies E ~ f,. The
DOS and conductance properties of such a system are shown in
Fig. 5. We observe that the DOS peak is now centered around
E nax =~ 0.033, while the conductance shows the characteristic
asymmetry of a Fano resonance, peaked at Vij,x = Emax and
vanishing at Vi, & 0.039. This resonance feature is due to the
coupling of the BIC (a “dark state” in quantum-optics parlance
when t, = 0) with the continuum of conduction modes, a cou-
pling originated in the chiral-symmetry breaking perturbation
t. In Sec. IV, we further discuss this resonance in relation
with recent experiments in plasmonic nanostructures [37,38].

A fit of the DOS to a Lorentzian provides a width for the
resonance I' &~ 1.7 x 1073, Taking this value together with
Vinax and Vi, allows to estimate the Fano profile (dimension-
less) parameter g [30] as negative and of order unity (i.e.,
lg| ~ [t| > |t2]), confirming that continuum and bound state
are strongly coupled, resulting in a very asymmetric profile.

IV. DISCUSSION

A. Insulating behavior around the band center

We have commented the presence of a broad range of ener-
gies around E = 0 for which the system reflects all incoming
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waves, in case the total number of channels supported by
the leads satisfies A; + Agr < Ng,. Moreover, this behavior is
not destroyed by a (weak) next-to-nearest neighbor coupling.
The presence of a similar broad insulating band has been
predicted to occur in a chain of double quantum dots (QDs) in
Ref. [39]. In that work, the insulating bandwidth was related
to the energy bandwidth of an infinite chain of double QDs.
Similarly, Ref. [40] studied the transmission and reflection of
adiscrete waveguide with an N -state side defect, and observed
that the transmission dropped to zero exactly at the energies
corresponding to the N eigenstates of the (isolated) defect.
In another study, Voo and Chu [18] showed the appearance of
exponentially localized states within the continuum of discrete
systems attached to low-dimensional leads, and related them
to the sharp Fano resonances in the corresponding transport
properties.

Our earlier discussion in Sec. IT allows us to see these results
from a more general perspective. For instance, a chain of N
double QDs, Fig. 6(a), is equivalent to the system in Fig. 1(a)
with N x 2 sites for the case that the hopping between different
columns ¢’ = 0. In this case, the system Hamiltonian H,, can
support at most A, = 2 zero-energy eigenstates. According
to our discussion, upon connecting the system to two leads,
this brings about the zero conductance for all N > 1 as seen
in Fig. 2 of Ref. [39].

00 6006060606668 0

FIG. 6. (Color online) Systems on which the appearance of simi-
lar phenomena related to Fano resonances have been discussed in the
literature. (a) N x M array of quantum dots with horizontal hopping
amplitude ¢’ between QDs on rows above row 1, coupled to leads L
and R; for M =2 and ¢’ = 0, this is a chain of N double QDs as
in Ref. [39]. (b) Photonic crystal (PC) formed by an array of silica
rods (gray circles) in a matrix. The row with missing rods at the top
forms a waveguide that transmits or reflects light coming to the PC
(thick green arrows). There is an N x M array (dashed square) of
defects (ellipses, indicating rods of a different refractive index, and
additional missing rods) coupled to the waveguide. The N-defect
chain in Ref. [40] corresponds to M = 1.
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By contrast, the N-defect chain in a photonic crystal of
Ref. [40] amounts to a N x 1 system in our nomenclature, but
connected by only one site to incoming and outgoing modes,
see Fig. 6(b). The N-defect chain supports one zero-energy
eigenstate for odd N. This induces the Fano antiresonance at
E = Oforodd N inFig. 1 in Ref. [40], in analogy with the case
of A = 5in Fig. 2 above. For even N, on the other hand, there
are no zero-energy eigenstates and, hence, no Fano resonances
appear at zero energy.

B. Fano resonance in periodic structures

The existence of chiral BICs requires the underlying chiral
symmetry that allows to write the system Hamiltonian in
the form (2), and that the coupling to the leads is done
through A7 + Az < Ao, modes. As we saw in Fig. 2, systems
with chiral symmetry with exactly N, outcoupling modes
present a narrow Fano antiresonance at the band center,
pointing to perfect destructive interference (vanishing Fano
parameter ¢ = 0) between transmission through the BIC
and the continuum of lead modes [30]. On the other hand,
when the chiral symmetry is broken by the f#, hopping,
there is destructive interference between BIC and continuum
modes, but this time with g # 0, so that the conductance
has a narrow peak around the new “bare” BIC position, cf.
Fig. 5.

In recent years, the development of new fabrication meth-
ods of nanostructures, from nanoparticle arrays [41-45] to
photonic crystals [22,46,47], has lead to a growing interest in
the design and production of materials that allow to realize
tunable Fano resonances [42,45,48,49] with a broad range of
potential applications, from photon switches to spin filters,
see, e.g., Refs. [30,50]. For example, Ref. [42] reports that a
system composed of a nanoring with an inserted nanodisk can
feature a sharp Fano resonance depending on the position of the
disk with respect to the ring center. When the disk is centered
inside the ring, the coupling between dipolar plasmonic modes
of each element leads to a “superradiant” and a “subradiant”
collective modes. However, when the disk is off-center, these
dipolar modes couple also to the quadrupolar plasmons, which
were previously “dark,” i.e., they behaved as a BIC. As a
consequence of this coupling, the previously “super-radiant”
mode presents now a sharp Fano resonance, pointing to the
underlying quadrupolar “dark” mode.

In their experiments, Hao et al. proved [42] that it was
possible to control the position and shape of the Fano resonance
by modifying the overall size or other properties of the system.
In analogy with this ability to control the particular band center
and bandwidth transmitted or reflected by such systems [41—
45], from our results in Sec. III D we see that one can control
the position and shape of the Fano resonance in Fig. 5 by
changing the value of #,. In experimental setups, this could
be realized, e.g., by modifying the properties of the elemental
units of the lattice or the distance between them, e.g., the
distance between QDs in QD nanocrystals [51] or between
dielectric resonators in a microwave cavity [22], etc. In order
to provide a more specific assessment of the requirements of
such implementations, we present in the following section a
brief discussion of a number of potential experiments to test
our results.
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V. PROPOSALS FOR THE OBSERVATION
OF CHIRAL BICS

The existence of chiral bound states in the continuum as
presented in the previous sections is rooted in very general
assumptions that the system accepts a lattice description,
and that the lattice is (to a good approximation) bipartite.
Many physical systems of interest can be described in these
terms and, therefore, can feature chiral BICs. Without trying
to be particularly exhaustive, we can cite a wide variety
of wave systems (both classical and quantum) in bipartite
structures: electrons traveling through quantum dot arrays
[30,39], photonic crystals [40,52], nanophotonic structures
[37,42], exciton-polaritons in square lattices [53], etc. Below,
we discuss for concreteness two experimental setups that,
due to their flexibility of construction and measurement
precision, appear as particularly good candidates to observe
these phenomena.

A. Microwave dielectric resonators

A setof identical cylindrical resonators is placed in between
two metallic plates constituting an electromagnetic cavity,
see Fig 7. The evanescent field induces a weak coupling
between the resonators that can be modelled by a tight-binding
Hamiltonian [54]. The resonators can be placed following an
arbitrary geometrical arrangement. In experiments by Bellec
et al. they were placed following a square lattice and a hon-
eycomb lattice (artificial graphene) [22]. An antenna moving
through the system was used to measure the local DOS and the
eigenstates of the structure. A combination of antennas could,
in principle, be used to measure the transmission properties of
such a system. In these experiments, next-to-nearest neighbor
coupling was not completely suppressed and the density of
states was slightly asymmetric with respect to the band center.
We expect that one could then observe the Fano resonances
related to the zero-mode states and chiral BICs discussed in
Sec. I D. Changing the value of the next-to-nearest neighbor
(NNN) hopping with respect to the nearest-neighbor (NN)

mw antenna mw antenna
(emission) (measurement)

A ® ¢ ¢ ¢ ¢ ¢ -

A ® ¢ ¢ ¢ ¢ ¢ -

v ¢ ¢ ¢ ¢ ¢ ¢ ¢ )

o 99 9 9 9 9 ¥ 9 ¥

v 9 9 9 9 99 v ¢

< 7‘ DI P P Y IO
rgisilrelgigfs \metalllc plates

FIG. 7. (Color online) Microwave resonator setup to observe
chiral BICs. An array of cylindrical dielectric resonators (blue
cylinders) is placed between two parallel metallic plates (top and
bottom layers). The conductance and DOS of the system can be
probed with movable microwave antennas (black curves).
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hopping terms, which can be done by controlling the spatial
distance between the resonators [22], it would be possible to
change the position and width of the Fano resonance.

B. Atoms in optical lattices

The group of T. Esslinger at ETH has used cold fermionic
atoms to engineer a cold-atom analog of electron transport
in mesoscopic systems [23,24]. In this setup, a large sample
of quantum-degenerate ®Li atoms is split into two unequal
“reservoirs” by means of a blue-detuned laser beam that creates
arepulsive potential except for a narrow two-dimensional (2D)
channel linking the reservoirs [23,24]. More recently, they
have observed quantized conductance through the channel
by further constraining it using a mask to realize a one-
dimensional (1D) channel with a finite number of transverse
modes, whose population can be controlled [25]—a cold-atom
analog of a quantum wire (QW).

An extension of this scheme, sketched in Fig. 8(a), would
enable testing our predictions. Here, each atomic reservoir
is connected to a finite number, A, of such atomic quantum
wires (AQWs), while these are connected to a central bipartite
lattice where the atoms can hop from site to site. The AQWs
can be realized by imprinting a mask in a manner analogous
to Ref. [25], while the central lattice could be realized in
two ways. A first option would consist of imprinting a large
“allowed region” between the AQWs, on top of which one
would project a 2D optical lattice, in a way similar to [55,56],
see Fig. 8(b). Alternatively, one could create a mask containing
the structure for both the AQWs and the lattice.

This experimental approach enables to control the NN and
NNN hopping amplitudes #,#, by means of the lattice spacing,
while the coupling and number of leads is given by the design
of the mask as well as a gate voltage that controls the number of

(a) (c) laser
left Quantum Wires right Quantum Wires. for mask
-7 - imprinting
MxN atomic Quantum Dot
* 90009009000 ) mask
Left —v'v‘ & 0o = Right
Reservolr_. 0 00600 66— Reservoir high NA
D S SO S - § lens
o ¢ oo
[ ol o o o ool T o o o
N
X X X X X X X X

dichroic
mirror
(b) X X X
X X X X X X X X X X laser
for gate

potential L
- objective
z ¥
Ly

2D channel

N

X X X X X X X X X X

FIG. 8. (Color online) Cold atom setup to observe chiral BICs.
(a) Left and right reservoirs of degenerate fermions are connected
through a 2D lattice (blue dots). The reservoirs are linked to the
lattice by 1D “atomic quantum wires” supporting a small number
of transverse channels [25]. (b) Mask to imprint the AQWs and a
large central “allowed island” (orange square). Note that lattice sites
outside the allowed island would be unreachable (crossed circles)
due to the blue-detuned laser beam (not pictured) that creates the 2D
channel. (c) Experimental setup scheme, following [25].
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open transverse channels on each AQW [25]. The conductance
of the lattice is then measured by creating a difference in the
chemical potential of the two reservoirs, and measuring the
relative particle number after a finite time [23-25].

VI. CONCLUSIONS

To summarize, we have explored the appearance of bound
states in the middle of the band of chiral quantum systems
connected to leads defining a continuum of scattering states.
The number of these bound states in the continuum (BICs)
depends on the rank of the matrix that couples the two
subsystems defining the chiral symmetry and on the number
of states in each subsystem directly connected to the scattering
states in the leads. A very general example of the chiral
systems we have considered is a system defined by a discrete
bipartite lattice with hopping matrix elements only between
sites in different sublattices and connected to leads only
through a small number of sites. These lattice Hamiltonians
can model very different physical systems where we expect
observable consequences of the presence of BICs: quantum dot
arrays, atoms in optical lattices, microwave resonators, etc. We
have explored the consequences in the transport properties of
such systems and showed that they feature zero two-terminal
conductance at a value of the energy where the density of

PHYSICAL REVIEW B 90, 035434 (2014)

states diverges. In limiting cases, when the number of coupling
channels is equal to the number of zero-energy states or when
a small perturbation weakly breaks the chiral symmetry, the
conductance null transforms into a Fano resonance.

The theory presented in this work provides a general
framework for understanding the presence of BICs and Fano
resonances in finite lattices with chiral symmetry. We have
discussed how the present framework allows to understand in
a general way many results found in the literature concerning
Fano resonances and BICs in specific configurations of
quantum dot arrays, photonic lattices, or even dark states
in transport configurations [39]. Finally, we have proposed
two experimental realizations where it should be possible
to test our predictions experimentally: microwave dielectric
resonators and atoms in optical lattices. We expect that these
results will allow further progress in quantum transport studies
in lattice structures and in the design of tunable quantum
devices [30,42,50].
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