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Waiting time distribution for trains of quantized electron pulses
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2Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France
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We consider a sequence of quantized Lorentzian pulses of noninteracting electrons impinging on a quantum
point contact and study the waiting time distribution (WTD), for any transmission and any number of pulses.
As the degree of overlap between the electronic wave functions is tuned, the WTD reveals how the correlations
between particles are modified. In the weak overlap regime, the WTD is made of several equidistant peaks,
separated by the same period as the incoming pulses, contained in an almost exponentially decaying envelope. In
the other limit, the WTD of a single quantum channel subjected to a constant voltage is recovered. In both cases,
the WTD stresses the difference between the fluctuations induced by the scatterer and the ones encoded in the
incoming quantum state. A clear crossover between these two situations is studied with numerical and analytical
calculations based on scattering theory.
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I. INTRODUCTION

The past decade has been marked by the emergence of
electron quantum optics. In the spirit of quantum optics with
photons, it aims to generate and manipulate single-electronic
excitations in quantum coherent circuits for fundamental and
applied science. As a first step to achieve this goal, several
single-electron sources have been implemented in submicron
cavities, such as the so-called quantum capacitor [1–3] and
others [4–10], or by applying a periodic sequence of Lorentzian
voltage pulses to an electronic reservoir in order to generate
a clean and coherent train of electronic excitations [11–14].
Once injected into quantum circuits, such excitations can be
used to study fundamental aspects of quantum mechanics such
as entanglement [15], interference effects [16,17] and quantum
correlations [18–20], or interaction effects [21] and coherence
properties [22,23] which would be of great interest when it
comes to applications in quantum electronics or information
processing.

However, due to quantum effects, it is now well established
that charge transport at the nanoscale is a statistical process
[24]. Going beyond the knowledge of average currents is then
unavoidable and extremely useful at the same time as pointed
out by Landauer in his famous quote “the noise is the signal.”
Therefore, many efforts have been made in this direction
in the past two decades using noise measurements [24] and
full counting statistics (FCS) [24–29], namely, the second
moment of current fluctuations and the statistics of charges
transferred during a long time interval. Recently, other tools
have been introduced to characterize current fluctuations in the
time domain such as the finite-frequency noise [24,30–33] and
FCS [34–38], the Wigner function [39], or the waiting time
distribution (WTD) [40–50]. Indeed, in such quantum devices,
the time between the detection of two consecutive electrons is
random because of their quantum nature and the knowledge of
its probability distribution provides an original point of view
on quantum correlations and current fluctuations.

We study here the WTD of noninteracting electrons emitted
in a sequence of Lorentzian pulses as proposed theoretically
[11–13] and demonstrated experimentally recently [14]. We

focus here on the regime where electrons are emitted one
by one when applying a periodic voltage to an electronic
reservoir in a clean fashion (no spurious electron-hole pairs).
These electrons are then propagating along a one-dimensional
quantum channel and may scatter onto a quantum point contact
(QPC) before being detected (see Fig. 1). This situation
is physically different from the one studied in Ref. [45]
where free electrons were injected directly from the reservoir
subjected to a constant bias eV into a single channel. The
ratio R between the width of the wave packets ξ and the
interparticle distance vF tp is a new control parameter that
drives the many-body quantum state from a solidlike state,
when the wave packets weakly overlap, to a liquidlike behavior
at strong overlap. In the latter limit, the constant bias case
is recovered. We use a wave-packet approach [51,52] to
derive general formulas for the WTD that we evaluate both
numerically and analytically in some limiting cases. These
formulas are equivalent to those derived in Ref. [47] from a
second-quantized formulation. In addition, we show that the
decay rate of the WTD corresponds to the one of a binomial
process and describe analytically the quantum fluctuations
around this classical result. Although we focus on Lorentzian
pulses here, our theory is valid for arbitrary shapes of the wave
packets.

This paper is organized as follows. In Sec. II, we describe
the setup under investigation and show how to compute the
WTD from the many-body state and the scattering matrix of
the quantum point contact. We then turn to the results obtained
with this formalism, starting from the two-particle case for
pedagogical reasons in Sec. III before discussing the periodic
case in Sec. IV. Section V is devoted to a brief discussion
of experimental measurements of the WTD. Conclusion and
outlook are given in Sec. VI and several technical details are
available in Appendices.

II. MODEL

We consider a QPC connected to two one-dimensional
electronic leads. A periodic sequence of Lorentzian pulses
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FIG. 1. (Color online) Schematic picture of the system: a train
of Lorentzian wave packets is emitted by a periodically driven
reservoir and propagates to the right toward a QPC of transparency Te.
The outgoing many-body state is made of transmitted and missing
(reflected) electrons represented by filled curves and dashed lines,
respectively. The quantity of interest is the distribution of delay times
τ between the detection of two electrons far away from the scattering
region.

of the form

V (t) = �

e

+∞∑
n=−∞

2tξ

(t − n tp)2 + t2
ξ

, (1)

with tξ = ξ/vF , is locally applied to the left reservoir
and generates a train of single-electron excitations without
electron-hole pairs as demonstrated theoretically [13] and
experimentally [14] recently. Here, ξ and vF tp will be
respectively the width and the spatial period of the wave
packets. We focus here on the special case where each pulse
contains exactly one electron. These electrons are moving
to the right and scatter on the QPC as depicted in Fig. 1.
In addition, we consider zero temperature, therefore, only
electrons emitted from the left reservoir are involved in the
transport process.

The incoming train of electrons, generated by the periodic
voltage, is built up from a set of N single-particle Lorentzian
wave packets separated by time interval tp,

ψ�(x,t) =
√

ξ

π

i

x − vF (t − �tp) + iξ
, (2)

� = 0,N − 1. At low energy, the dispersion relation is linear
and the Fermi velocity vF is supposed to be a constant
(independent of energy). Each wave packet is a superposition
of plane waves of energy Ek , but the amplitude in the
superposition is exponentially decaying with energy (or wave
number since Ek = �vF k). A crucial quantity is the overlap
between wave functions R�,�′ = 〈ψ�|ψ�′ 〉, for � �= �′ that con-
trols the correlations between the different electrons. Taking
into account the fermionic statistics, the many-body wave
function has to be antisymmetrized and as far as interactions
are negligible, it will be given by a Slater determinant of all
the possible orbitals ψ�.

Now, the pulses coming from the left of the scattering
regions (see Fig. 1) are impinging on a quantum point contact
of transparency Te, so that ψ� needs to be changed to

ψ�(x,t) =
∫ +∞

0

√
ξ

π
tk e−ξk eik(x+�vF tp−vF t) dk, (3)

with Te = |tk|2, for x far away to the right of the QPC, and will
be measured by a detector located in this region. For the sake

of simplicity, we only consider energy-independent scattering
with therefore tk = √

Te.
For negligible overlap, the normalization is trivial apart

from an overall
√

N ! factor. However, for finite overlap, this
statistical coefficient has to be completed with the determinant
of the overlap matrix elements between different wave packets
[52]

√
det(R�,�′).

As mentioned in the Introduction, the quantity of interest is
the WTDW(τ,t0), namely, the probability distribution of delay
times between the detection of two consecutive electrons. The
detector is located at x = x0 somewhere far away from the
scattering region between the QPC and the right reservoir. In
that case, the WTD depends on both the delay time τ and
a second time t0 which is chosen here to be the time when
the first electron is measured. This situation is more general
than the one of a stationary flow of particles described in
Ref. [45] where it only depends on the delay time. To calculate
this quantity, we will either refer to the joint probability of
measuring an electron at time t0 and nothing until t0 + τ ,
P (τ,t0) or the probability of not detecting anything between
t0 and t0 + τ , �(τ,t0) even if they are related quantities.
Following these definitions, it is straightforward to show the
following useful relations:

W(τ,t0) = −∂P (τ,t0)

∂τ
, (4)

p(t0) P (τ,t0) = ∂�(τ,t0)

∂t0
− ∂�(τ,t0)

∂τ
, (5)

and

p(t0)W(τ,t0) = ∂2�(τ,t0)

∂τ 2
− ∂2�(τ,t0)

∂τ∂t0
, (6)

where p(t0) denotes the probability density to detect an
electron at time t0 and is simply proportional to the average
current. Although not fundamentally different, we will use
either P or � to compute the WTD depending on mathematical
convenience. In a real experiment, the time of the first detection
is random. However, for periodic systems (N � 1), one can
construct an average WTD that only depends on the time delay
τ . Such a quantity is constructed from the time integration of
the WTD over a period with weight p(t0). Using this definition
and (6) yields

W(τ ) = 〈τ 〉d
2 �(τ )

dτ 2
, (7)

with W(τ ) = ∫ tp
0 p(t0)W(τ,t0)dt0/

∫ tp
0 p(t0)dt0, �(τ ) =∫ tp

0 �(τ,t0)dt0/tp, and 1/〈τ 〉 = ∫ tp
0 p(t0)dt0/tp the mean

waiting time. This is the exact analog of the formula for
a stationary process [45] and the same formula as the one
proposed by Dasenbrook et al. [47] in a recent related work.

For pedagogical reasons, we will start to explain the
calculations in the case N = 2 before describing the physics
of a periodic state made of N � 1 electrons.

A. Two-electron case

The normalized wave function for the two electrons is
simply

ψS = 1√
2

1√
Dr

[ψ1(x1)ψ2(x2) − ψ2(x1)ψ1(x2)], (8)
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with

Dr = {|ψ1(x0)|2 + |ψ2(x0)|2
−2 Re[ψ∗

1 (x0)ψ2(x0)〈ψ2|ψ1〉]}1/2. (9)

The detector is located at x0, in a very small interval.
Suppose we measure an electron at x0, at time t0. The
new wave function is obtained by acting the operator Q1 =∫ x0

x0−vF tu
|x〉〈x| dx, where tu is a very small time, much smaller

than both tp, the interval between the pulses, and ξ/vF .
After the measurement, the packet is reduced, so that the

wave function of one electron which has been detected is now
ϕ(x), where ϕ(x) is very peaked around the detector and almost
zero everywhere else. We can take x = x1, so that

∫∞
−∞ |ϕ(x1 −

x0)|2 dx1 = 1. After a few algebraic manipulations, the many-
body wave function after the measurement |
Sa〉 assumes the
form

|
Sa〉 = 1

Dr

|ϕ(x1 − x0)〉
⊗[ψ1(x0)|ψ2(x2)〉 − ψ2(x0)|ψ1(x2)〉]. (10)

Therefore, the probability of detecting nothing before time
τ , having detected an electron at time t0, is

P (τ,t0) = 〈
Sa|
(

1 −
∫ x0

x0−vF τ

|x ′
2〉〈x ′

2| dx ′
2

)
|
Sa〉, (11)

and the WTD, through (4), reads as

W(τ,t0) = vF

D2
r

|ψ1(x0)ψ2(x0 − vF τ ) − ψ2(x0)ψ1(x0 − vF τ )|2.

(12)

As a consequence, if the single-particle wave functions
ψ� are differentiable, then W(τ,t0) vanishes as τ 2 for small
waiting times, in accordance with the Pauli principle. A more
expanded discussion of this result is given in Sec. III.

B. N-electron case

In order to mimic an infinite train of Lorentzian pulses,
we generalize the previous calculation to an arbitrary number
of electrons N . We then analyze the asymptotic properties
of the WTD for large N . Two different physical situations
will be treated separately for mathematical convenience. In
Sec. II B 1, we consider the situation where the single-particle
wave functions weakly overlap in real space. Such a situation
is more easily tackled in the basis of wave functions ψ� in real
space. However, for large overlap, the matrices that appear
in the calculation have very small determinants and are thus
very ill conditioned for numerical calculations. Therefore, it is
more convenient mathematically to use another basis. Such a
basis is constructed from the Fourier transforms of the original
localized wave packets [52] as explained in Sec. II B 2.

1. Real space

We derive here a general formula for the WTD of a train
of N electrons in terms of the ratio of different determinants.
This formula is general but not convenient in the limit of
large overlap between the single-particle wave functions,
as we will discuss later. The first step of the derivation

consists in computing the many-body wave function after the
measurement of the first particle.

Before the detection, the system is in state 
b =
1√
N!

detMi,j /
√

detRi,j , with Mi,k the matrix of elements ψi(xj )
and Ri,j is the overlap matrix 〈ψi |ψj 〉. Immediately after the
measurement, the state collapses through the application of
a projector onto the state |ϕ(x0 − x1)〉, i.e., one electron is
now confined in the detector. After normalization and a little
algebra, the new wave function can be cast as


a = det(Mi,j )/
√

detRi,j , (13)

where Mi,j is the same matrix as Mi,j but the first
line ψ1(x1),ψ2(x2), . . . ,ψN (xN ) has been replaced by
ψ1(x0)ϕ(x1 − x0),ψ2(x0)ϕ(x2 − x0), . . . ,ψN (x0)ϕ(xN − x0).
Ri,j is the same matrix as Ri,j except that the first line has been
replaced by 〈ψi |Q(tu)|ψj 〉, j = 1 to N . Q(tu) is the operator∫ x0

x0−vF tu
|x〉〈x| dx, namely, the projector on the detector.

The probability of not detecting anything before τ is thus

P (τ,t0) = 〈
a|
(

1 −
∫ x0

xo−vF τ

|x〉〈x| dx

)
1

⊗ · · ·

⊗
(

1 −
∫ x0

xo−vF τ

|x〉〈x| dx

)
N

|
a〉,
(14)

where the subscript i means operation on coordinate xi .
Detailed calculations can be found in Appendix A. Expanding
the wave function 
a , which is a determinant, as a sum over
permutations, we arrive at

P (τ,t0) =
N∑

�=1

det(N�)

/ N∑
�=1

det(D�), (15)

where N� and D� are two matrices defined as follows.
N0 is the matrix 〈ψi |1 − Q|ψj 〉. N� is obtained from N0

by substitution of the �th line by the line vector V� =
〈ψ�|Q(tu)|ψ1〉, . . . ,〈ψ�|Q(tu)|ψN 〉. D0 is the overlap matrix
〈ψi |ψj 〉 and D� is again obtained from D0 by substituting
the �th line by V�. Equation (15) is the central result of this
section and is equivalent to the determinant formula derived
in Ref. [47] from a second-quantized formulation.

2. Fourier space

For large overlaps, in order to perform efficient and reliable
numerical simulations, we need another line of attack. This
is the reason why we adapt in this case the more traditional
methods used previously for QPC [45,46,52]. It has also the
benefit of providing other methods for analytical calculations,
as explained in the following.

The central quantity is the idle time probability �(τ,t0). It
is the probability of not detecting anything in the time interval
[t0 ,t0 + τ ], irrespective of what happens at time t0. We stress
that �(τ,t0) is a different quantity from P (τ,t0), as explained
before.

When the N electrons are in states ψ1, . . . ,ψN , the formula
giving �(τ,t0) reads as

�(τ,t0) = det(Ri,j − TeQi,j )

det(Ri,j )
, (16)

035431-3



M. ALBERT AND P. DEVILLARD PHYSICAL REVIEW B 90, 035431 (2014)

where Qi,j is 〈ψi |Q|ψj 〉. However, as it stands, in real-space
basis, det (Ri,j ) is very small and leads to numerical problems
for large overlaps R.

We thus switch to Fourier representation and define

φK = 1√
N

N−1∑
�=0

exp

(
−i�

2π

N
K

)
ψ� , (17)

with K ∈ [0,N − 1]. For large N and for x in the bulk of the
train, the φK ’s assume the form

φK = 1

vF tp

√
ξ

π

∞∑
l=−∞

�

(
K

N
+ l

)
e
− 2πξ

vF tp
l

× exp

{
−2iπ

(
K

N
+ l

)(
x

vF tp
− t − t0

tp

)}
e
− 2πξ

vF tp

K
N ,

(18)

where � is the Heaviside function. Since the φK ’s are
delocalized, within the span Ntp of the whole train, supposed
to be the largest distance (much larger than ξ ), the φK ’s
are not normalized. Thus, we defined normalized functions
φ̃K ’s by φ̃K ≡ φK/

√〈φK |φK〉. The φ̃k’s have essentially the
same form as the φ�’s [see Eq. (18)], except that the real
exponential factor exp(−2π

ξ

vF tp

K
N

) is now absent. In full
analogy to Eq. (16), we have the formula

�(τ,t0) = det(RK,K ′ − TeQK,K ′ )

det(RK,K ′ )
, (19)

where the matrices RK,K ′ and QK,K ′ are the exact analogs
of RK,K ′ and QK,K ′ previously defined; the ψk’s just need
to be replaced by the φ̃K ’s. In the limit of large N (only),
the elements of the matrices RK,K ′ and QK,K ′ depend solely
on K − K ′, they are Toeplitz matrices. This leads to great
simplifications, both analytically and numerically.

III. RESULTS FOR TWO PULSES

Although mathematically trivial, it is instructive to discuss
the behaviors of W(τ,t0) for two pulses in limiting cases. We
focus here on the results at perfect transmission, probing only
the fluctuations encoded in the many-body state. From now,
we assume that the first electron has been detected at x = 0
at time t = 0. The positions of the center of the first and the
second wave packets are x1 and x2 = x1 − vF tp, respectively.
Using (2) and (12) yields the following compact formula:

W(τ,t0) = 2
vF

ξ

∣∣∣∣ 1

(X0 + i)(X0 − R−1 − Y + i)

− 1

(X0 − R−1 + i)(X0 − Y + i)

∣∣∣∣
2

D−1 , (20)

where Xi = xi/ξ (i = 0,1,2), Y = vF τ/ξ , R = ξ/vF tp, and

D = 1

1 + X2
1

+ 1

1 + X2
2

− 2 Re

{
1

(X1 − i)(X2 − R−1 + i)(1 + iR−1)

}
. (21)

These formulas are not particularly illuminating, thus, we
consider two limiting cases.

In the weak overlap case R  1 and for small times we
get

W(τ,t0) � 2vF

ξ

1

1 + ( x0−vF τ

ξ

)2
(

τ

tp

)2

, (22)

which indeed vanishes as τ 2, as expected from the Pauli
principle. In contrast, for large times, we find

W(τ,t0) � 2
ξ

vF

τ−2, (23)

which decays algebraically with τ . This is a direct consequence
of the shape of the wave function of the emitted electrons. Since
there are only two electrons, the last one is not correlated
with any other following electron and keeps its Lorentzian
tail. Physically, it means that the fluctuations of the waiting
time can be arbitrarily large and are not characterized by a
finite second moment. Such a behavior is not possible in the
bulk of a train of N � 1 electrons. Indeed, all the electrons
have to be contained in a time window of order Ntp which
prevents large waiting times fluctuations. In addition, we
find that the maximum of W (τ,t0) occurs for a time of the
order tp.

In the opposite case of strongly overlapping pulses R � 1,
we get

W(τ,t0) � 2

3

vF

ξ

⎡
⎣ 1

1 + ( x0−vF τ

ξ

)2
⎤
⎦

2 (
τ

ξ/vF

)2

. (24)

Again, W(τ,t0) starts as τ 2 for small times and decays as τ−2

at large times. However, now, the only relevant time is ξ/vF ,
which is related to the span of wave packets. Time tp has
completely scaled out of the problem.

IV. RESULTS FOR LARGE N

We now discuss the results obtained for an infinite train of
electrons by looking at the large-N limit. This section starts
with the results for weakly overlapping wave packets where
the WTD presents a very clear internal structure made from
periodic peaks every tp. As the overlap is increased, such strong
solidlike correlations smoothly disappear until becoming small
wiggles as expected for free fermions propagating in a single
quantum channel [45]. We recall that the overlap parameter is
defined as R = ξ/(vF tp).

A. Weakly overlapping wave packets

In this regime, the train of particles resembles a series
of well-separated thin Lorentzian wave packets. These wave
packets are almost independent and periodically distributed in
time. We therefore expect to observe well-defined peaks in the
WTD, reflecting the shape of a single-particle wave function.
At perfect transmission, there must be (approximately) only
one peak centered around tp. However, for finite transmission,
the WTD exhibits a double structure made of an envelope
function containing several similar peaks. Roughly speaking,
these peaks are the hallmark of the fluctuations encoded in
the quantum state, whereas the envelope is coming from the
random scattering through the quantum point contact. Such a
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FIG. 2. (Color online) WTD versus τ/tp for R = 0.1 (solid red
line) and R = 2 (dashed-dotted black line). Te = 0.4 and the number
of pulses is always N = 50. Inset: enlargement of the small time
region compared to quadratic fitted functions (thin solid lines) to
show the τ 2 dependence.

situation is similar to what has been observed for the WTD
distribution of a single-electron source in the phase noise
regime [44].

We perform numerical calculations using Eq. (15) which
is more convenient in this regime. Figure 2 shows W(τ,0) for
two values of R and confirms our expectations. Moreover, the
small time behavior is shown to correspond to the τ 2 prediction
imposed by Pauli principle. Such a behavior is indeed observed
for times shorter than Rtp. Note that we show W(τ,t0) for
t0 = 0, but the results are qualitatively similar for any value of
this parameter.

We now show how to obtain an approximant of the WTD
in the limit of extremely small overlap and long waiting times.
In that case, Eq. (15) reduces for large times to

P (τ,t0) = det(R�,�′ − TeN�,�′)

det(R�,�′)
, (25)

with

R�,�′ = 1

1 − i (�′−�)
2πR

, (26)

N�,�′ = R�,�′

2π

[
tan−1(�′R−1) − tan−1{[�′ − (τ/tp)]R−1}

+ (� ↔ �′) − i

2
ln(f�/f�′ )

]
, (27)

and f� = (�2 + R2)/[(� − τ/tp)2 + R2]. For vanishing over-
lap, we throw out the nondiagonal elements because only
R�,� is non-negligible. Such a naive computation gives (see
Appendix B for details)

W(τ,t0) �
∑

n

δ(τ + t0 − ntp) exp

[
ln(1 − Te) int

(
τ + t0

tp

)]
,

(28)

where “int” denotes the integer part. This result is physically
illuminating and allows us to extract the decay rate of the
WTD. At this level of approximation, the WTD reduces to a
periodic series of peaks contained in an exponentially decaying
envelope. The presence of several peaks is due to the imperfect

 0
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FIG. 3. (Color online) WTD versus τ/tp with t0 = 0 for R =
0.02 (red solid line) and R = 1 (blue solid line). Te = 1 and the
number of pulses is always N = 100. Black dashed lines represent
(30). Inset: enlargement to illustrate the agreement with the Wigner-
Dyson distribution (37) (dashed line) for R = 1 and the presence of
a second peak in the WTD for R = 0.02.

transmission through the QPC that allows electrons to be
reflected. Actually, this is the WTD of a classical binomial
process. The only random process is the rate of success Te

every tp and the WTD provides only information about the
scatterer. Quantum corrections would give a finite width to the
peaks as a hallmark of quantum jittering. Such information
is encoded in the many-body state, and in that case would
lead to a Lorentzian shape even though we have not proved
it explicitly. However, when R → 0 we can assume that the
electrons are uncorrelated and the shape of the peaks of the
WTD just reflects the one of the wave packets. This yields

W(τ,t0) �
∑

n

wn(τ + t0) exp

[
ln(1 − Te) int

(
τ + t0

tp

)]
,

(29)

with

wn(τ ) = R

π

tp

(τ − n tp)2 + tpR2
, (30)

which is in very good agreement with numerical calculations
for R  1 (see Fig. 3 for Te = 1 and R = 0.02). The decay
rate extracted numerically for Te = 0.4 and R = 0.1 is 0.5106,
in very good agreement with the prediction − ln(1 − Te) =
0.5108. Figure 4 presents a more detailed comparison for
different transmissions. However, as R becomes larger, the
peaks continue to spread and eventually overlap. As explained
in the next subsection, this modifies the correlations between
particles and breaks the uncorrelated electrons picture.

At perfect transmission, the crude approximation leading
to Eq. (28) is not valid anymore. Since there is no scattering, a
particle is almost surely found every tp. Therefore, the WTD
consists in a single peak centered around tp plus a very small
satellite around 2tp as depicted on Fig. 3. Other satellites
exist at ntp, with n integer, but have negligible amplitudes.
Moreover, Fig. 3 illustrates the agreement with (30) for Te = 1
and R = 0.02. However, this agreement is only valid for
times around tp and the asymptotic decay of the WTD is not
Lorentzian but rather Gaussian.
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FIG. 4. (Color online) Decay rate of the WTD for R = 0.1 (�),
R = 2 (�), and R = +∞ (◦) as a function of − ln(1 − Te) in
agreement with (29) and (34). Dashed-dotted black line is the
Poissonian result which states that for small transparency the decay
rate is simply Te/tp .

B. Intermediate and large overlaps

We now turn to the discussion of intermediate and large
values of the overlap parameter R = ξ/vF tp. We start with
numerical results before giving analytical arguments in the
infinite-R and in the finite- but large-R limits. We then try to
explain how the finiteness of ξ alters the results.

1. Numerical results

In this case, it is convenient to switch to the formulation in
Fourier space described in the previous section. We then use
(19) and (6) to compute the WTD numerically. Figure 2 shows
the result for R = 2 and Te = 0.4. We clearly see that the
correlations are strongly reduced since the peaks melt down to
small wiggles. These small oscillations are still the hallmark of
periodic correlations encoded in the periodic train of electrons.
The situation is comparable to a liquid where correlations on
the scale of the interparticle distance are much weaker and
decay rapidly. Then, as R is tuned to large values, we recover
the case [45] of a single quantum channel subjected to an
effective constant bias eV = h/tp as pointed out in Ref. [52].
Indeed, we already see for R = 1 and Te = 1 on Fig. 3 that
the finite overlap case approaches the infinite case. However,
a closer look at the asymptotic properties shows that for times
of the order or larger than Rtp, the decay rate, although still
Gaussian, is different.

To get a better understanding of this, we study analytically
the decay rate and the wiggles for infinite and finite R using
the theory of Toeplitz matrices.

2. Infinite overlap

As mentioned above, the limit of infinite ξ is equivalent to a
biased single quantum channel filled with free fermions [52].
Numerical calculations, as well as a few limiting cases such
as QPC close to pinch-off, have been presented in Ref. [45].
However, using Szegö’s theorem, we can evaluate the envelope
and the wiggles in the long time limit with good accuracy for
Te �= 1. The case of perfect transmission has to be tackled
aside.

We recall that, in this limit, QK,K ′ that appears in the
determinant formula (19) simplifies to

QK,K ′ � e
i 2π

N
(K−K ′) x0

vF tp

exp
(
2iπ K−K ′

N
τ
tp

) − 1

2iπ (K − K ′)
. (31)

Moreover, in real space 〈ψ�|ψ�′ 〉 is a Lorentzian function
decaying on scale ξ ; therefore, in Fourier space, the magnitude
of the elements of RK,K ′ decays exponentially on scale N/R.
For infinite overlap, i.e., ξ � vF tp but still ξ  Ntp, RK,K ′

goes to the identity matrix. It is convenient to introduce the
symbols r(θ ) of the matrices RK,K ′ defined as

r(θ ) =
N∑

l=−N

ei lθRK,K ′ , (32)

with l = K − K ′ and θ taken in [−π,π ] and analogously, q(θ )
the symbol of QK,K ′ . For infinite overlap and setting x0 = 0
[53], we find q(θ ) = 1 if |θ | < π X

N
and 0 otherwise, with

X = τ/tp and r(θ ) is 1 for any θ .
To obtain the long time behavior of �(τ,t0) using Eq. (19),

we use Szegö’s theorem which gives the long time asymptotic
behavior of Toeplitz determinants. This reads as

�(τ,t0) ∝ exp

{
N

∫ π

−π

ln[1 − Te q(θ )]
dθ

2π

}
, (33)

which yields the main behavior of the WTD for large times

W(τ,t0) ∝ exp(ln(1 − Te) τ/tp). (34)

Again, we find that for Te �= 1, the WTD decays exponentially
with a rate ln(1 − Te) and a comparison to numerical results on
Fig. 4 shows a very good agreement with this prediction. This
is related to the fact that the physics of this system, on a long
time scale, is a binomial process. Note that, in this regime, t0
scales out of the problem since the system becomes stationary.

Whenever applicable, Szegö’s theorem not only gives the
main exponential behavior but also the next correction. Let Fk

be the Fourier transform of ln f (θ ), at wave vector k = 2π
N

n,
for n integer between −N

2 and N
2 . The correction is of the

form exp(
∑

k k |Fk|2), whenever the sum converges. However,
in our case, Szegö’s theorem is not directly applicable because
the sum on k diverges logarithmically. A way around it would
be to apply a theorem for matrices having Fisher-Hartwig
singularities [54,55], but it yields only results at very large
times, in terms of a power-law correction to the exponential
decay of the envelope, missing the wiggles at intermediate
times. We thus apply an ultraviolet cutoff on k, called kc,
which is of order N . If we choose kc = Nγ with γ a numerical
constant of order one, we obtain

�(τ,0) ∝ Te

ln |1 − Te| exp(X ln(1 − Te))

× exp

(
ln2(1 − Te)

π
F (X)

)
(35)

with

F (X) =
∑

0<k<γN

1 − cos(2πXk/N)

2πk
, (36)
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and X = τ/tp. In the limit of very large N , F (X) can be
expressed in terms of the cosine integral and F (X) reduces
to
∫ X

0
1−cos(2πγ z)

2πz
dz. �(τ,0) is always a strictly decreasing

function of τ but its second derivative, W (τ,0) exhibits, for
moderate τ/tp, weak wiggles with period tp, due to the
cosine integral. Although not shown, this prediction is in good
agreement with numerical results in the long time limit.

For Te = 1 (but ξ still infinite), the behavior is known
exactly [45,56,57] from an analogy with random matrix theory.
The decay at large times is mainly Gaussian with power-law
and higher-order corrections but is well approximated by the
Wigner distribution

W(τ ) � 32

π2
X2 exp

(
− 4

π
X2

)
. (37)

3. Finite but large overlap

For the sake of simplicity, we only consider the main term
in Szegö’s theorem and look at the decay of the WTD at large
times. Following the same method as above, Eq. (19) translates
into a formula similar to Eq. (33), but we find more convenient
to write it as a Riemann sum

�(τ,t0) ∝ exp

⎛
⎝ N/2∑

n=−N/2

ln[1 − Te q(θn)/r(θn)]

⎞
⎠ , (38)

with θn = nπ/N , taking discrete values. It is thus necessary
to see how the finiteness of ξ alters q(θ ) and r(θ ).

Let us begin with r(θ ). The overlap between φ̃K and φ̃′
K is

still 1 (by definition) for K = K ′ but will no longer be zero for
K �= K ′. However, its magnitude falls to order 1/N as soon as
K − K ′ is 1 or larger. It is mainly of order 1/N up to K − K ′
of the order N/R. For large values of K − K ′, it is still smaller
and we shall neglect it. Thus, r(θn) will no longer be 1 for all
θ ’s but will be slightly modified for |θn| smaller than R/N .
The change is of order 1/N .

We now turn to q(θ ). For K − K ′ smaller than N/R, Q̃K,K ′

will assume the same form as for R infinite. The reason is that
small K − K ′ mean large distance and the finiteness of ξ

just changes the short-distance cutoff in real space. In Fourier
space, small K’s do not see modifications on small scales. For
θ ’s larger than R/N , q(θn) keeps its infinite ξ form, which is
1 for |θ | < πX/N and zero otherwise. Only θ ’s of absolute
value smaller than R/N deserve much more care.

It is natural to single out the θn’s for which q(θn) and r(θn)
retain their infinite-R values. We call theses values q∞(θ ) and
r∞(θ ). As r∞(θ ) is always one, we omit it. Times much larger
than Rtp correspond to X � R. In this case, we split the sum
in Eq. (38) into two parts:

ln �(τ,t0) ∝
R/2∑

n=−R/2

ln[1 − Te q(θn)/r(θn)]

+
int(X/N)∑
|n|=R/2

ln[1 − Te q∞(θn)]. (39)

For X � R, the second sum will make the main contribution
and the first one is much smaller. Thus, we expect that the rate
of decay for large times will be approximately the same as

the one observed for infinite overlap R. This is indeed what is
observed numerically. Already for R = 1, the rate of decay is
very similar to the one observed for infinite R.

This argument does not work for Te = 1 because Szegö’s
theorem is not applicable. Numerically, however, we always
observe Gaussian behavior for perfect transmission at times
larger than Rtp, whether R is finite or not.

For times smaller than Rtp, only θ ′s smaller than R are
involved and both q and r do get perturbed by the finiteness
of ξ . We did not attempt to make analytical predictions in this
time range 1  X  R.

V. EXPERIMENTAL CONSIDERATIONS

We now address the question of measurability of WTD.
Detecting single-electron events in a quantum coherent con-
ductor is one of the most challenging goals of electron quantum
optics nowadays. Most of the single-electron sources operate
at the GHz range (namely, they inject coherent electrons
at a GHz frequency) while standard electronic technology
limits the measurement precision to a few MHz bandwidth.
An obvious solution to circumvent this problem is to lower
the emission rate to the kHz regime where single-electron
tunneling events have been shown to be accessible and
measured with high accuracy [38,58]. In that case, the WTD
is fully accessible but coherent effects are washed out and
the physics is dominated by interactions (Coulomb blockade
regime). An alternative idea to get information in the time
domain is to follow the approach developed by Hong, Ou,
and Mandel in quantum optics [59]. Such an interference
experiment between indistinguishable particles created by two
identical sources gives access to the second-order coherence
g2(τ ) which has been measured in two recent groundbreaking
experiments [14,19]. In fact, the WTD and the second-order
correlation function have the same short time behavior, and
for a large class of systems (systems with renewal properties
which is the case here only for weak overlap) they contain
the same amount of information and are related to each other
[29,60]. For more general systems, the WTD is a mixture
of all the correlation functions but could be reconstructed
from their measurement. Unfortunately, only a few of the first
ones are measurable with current technology. However, high-
frequency measurements are progressing very fast [14,30,32]
and bring some hope to observe electrons one by one in a
near future. For instance, the setup described in Ref. [61]
enables us to measure electrons on time scales of fractions of
nanoseconds. Although the magnetic field in these experiments
is still too low to reach the single quantum channel limit,
they have access to the GHz frequencies needed for WTD
measurements.

The last possibility would be to consider alternative systems
to electrons where the typical coherence time is much larger.
Therefore, coherent effects could be measurable on time scale
accessible with present technology. This is the case with cold
atoms where the bosonic WTD and FCS have already been
measured in atomic lasers [62]. Fermionic atoms have been
a bit more challenging, but many progresses have been done
in this direction recently [63–65]. In that case, there is, to
our knowledge, no available protocol to generate Lorentzian
pulses yet. However, continuous sources are already available
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[65] and combined with extremely efficient observation tools
are very promising setups to investigate WTD. Moreover, such
systems present many advantages compared to electronic sys-
tems and one of them is the amazing control over interactions
and decoherence.

VI. CONCLUSION

We have presented a theory of WTD for periodic trains
of quantized pulses impinging on a QPC, with transmission
Te. This generalizes WTD for a QPC subjected to a constant
voltage [45]. When the pulses weakly overlap, the WTD
exhibits strong oscillations on the scale of the period and
the decay, at large times, is exponential with a decay rate
proportional to − ln(1 − Te). The internal structure reveals
correlations encoded in the many-body state whereas the
overall envelope is mainly controlled by the scattering matrix
of the QPC. As the overlap between wave packets is increased,
the oscillations are reduced to small wiggles. For very large
overlaps, the WTD is analogous to that for a QPC subjected
to a finite voltage V but with the period tp playing the role
of h/(eV ). For Te not close to 1, regardless of overlap,
the envelope of the WTD is like the one that would be
obtained for a binomial process. Electrons cross the QPC
randomly with probability Te, every tp. This looks surprising
since the quantum system seems to behave like a classical
one. For perfect transmission, however, quantum correlations
are stronger and cause the WTD to show Gaussian decay
at large times, reminiscent to what happens for random
matrix models. Finally, we have briefly explained how the
short time behavior of the WTD could be extracted from
Hong-Ou-Mandel experiments.

Extension of this type of approach to other physical situa-
tions such as Klein tunneling, dynamical Coulomb blockade,
or to the case of several channels could be envisaged.
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APPENDIX A: DERIVATION OF EQ. (15)
OF THE MAIN TEXT

In this section, we derive Eq. (15) of the main text, giving
the idle time probability for arbitrary N . Before detecting an
electron at t = 0, the system is in state

ψs = 1√
N !

∑
P

(−1)sgn(P)|ψP(1) (x1)〉 ⊗ |ψP(2) (x2)〉

⊗ · · · ⊗ |ψP(N) (xN )〉. (A1)

Summation is over all permutations P of (1,2, . . . ,N ) and
sgn(P) is the signature of P .

Applying Q1 = |x0〉1〈x0|1,

Q1ψS = 1√
N !

∑
P

(−1)sgn(P)ψ̃P(1) (x0) |ϕx0 (x1)〉

⊗|ψP(2) (x2)〉 ⊗ · · · ⊗ |ψP(N) (xN )〉. (A2)

The wave function after measurement can be recast as a
determinant

QψS = 1√
N !

∣∣∣∣∣∣∣
ψ̃1(x0)ϕx0 (x1) ψ̃2(x0)ϕx0 (x1) . . . ψ̃N (x0)ϕx0 (x1)

ψ1(x2) ψ2(x2) . . . ψN (x2)
. . . . . . . . . . . .

ψ1(xN ) ψ2(xN ) . . . ψN (xN )

∣∣∣∣∣∣∣ . (A3)

The probability of measuring nothing before τ is

P (τ,t0) = 〈QψS |
(

1 −
∫ x0

x0−vF τ

|x〉〈x| dx

)
2

⊗
(

1 −
∫ x0

x0−vF τ

|x〉〈x| dx

)
3

⊗ · · · ⊗
(

1 −
∫ x0

x0−vF τ

|x〉〈x| dx

)
N

|QψS〉

= 1

N !

∑
P

∑
P ′

(−1)sgn(P)(−1)sgn(P ′)
N∏

m=1

〈
ψP(m) (xm)

∣∣Q′
m

∣∣ψP ′
(m)

(xm)
〉
,

with Q′
m = (1 − Q) for m �= 1 and Q′

m = Q(tu) = ∫ x0

x0−vF tu
|x〉〈x| dx, for m = 1. For m = 1, we measure an electron and for

m �= 1, we measure no electron.
As usual, the composition of P and P ′ has to be considered but, contrary to what usually happens, the operator Q′

m is not the
same for all m. The case m = 1 is different from the other m’s. We set

P ′′ = PoP ′, (A4)

P1 = P−1, (A5)

where “o” means composition of applications and P−1 the inverse of P:

P (τ,t0) = 1

N !

∑
P1

∑
P ′′

(−1)sgn(P ′′)
N∏

m=1

〈ψm(xm)|Q′
P1(m)|ψP ′′(m)〉. (A6)
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Among all permutations P1 of (1,2, . . . ,N ), only (N − 1)! will give P1(m) = 1. Finally,

P (τ,t0) = 1

N

(
N∑

k=1

det〈ψi(xi)|Q̃k|ψj (xj )〉
)

, (A7)

where Q̃k means (1 − Q) everywhere except for xi = k, where (1 − Q) has to be replaced by Q(tu).
As an example, here is the term for k = 1,

det〈ψi(xi)|Q̃1|ψj (xj )〉 =

∣∣∣∣∣∣∣
〈ψ1|Q(tu)|ψ1〉 〈ψ1|Q(tu)|ψ2〉 . . . 〈ψ1|Q(tu)|ψN 〉
〈ψ2|1 − Q|ψ1〉 〈ψ2|1 − Q|ψ2〉 . . . 〈ψ2|1 − Q|ψN 〉

. . . . . . . . . . . .

〈ψN |1 − Q|ψ1〉 〈ψN |1 − Q|ψ2〉 . . . 〈ψN |1 − Q|ψN 〉

∣∣∣∣∣∣∣ . (A8)

The term for k = 2 is

det〈ψi(xi)|Q̃2|ψj (xj )〉 =

∣∣∣∣∣∣∣
〈ψ1|1 − Q|ψ1〉 〈ψ1|1 − Q|ψ2〉 . . . 〈ψ1|1 − Q|ψN 〉
〈ψ2|Q(tu)|ψ1〉 〈ψ2|Q(tu)|ψ2〉 . . . 〈ψ2|Q(tu)|ψN 〉

. . . . . . . . . . . .

〈ψN |1 − Q|ψ1〉 〈ψN |1 − Q|ψ2〉 . . . 〈ψN |1 − Q|ψN 〉

∣∣∣∣∣∣∣ . (A9)

Normalization of �(τ,t0) requires that one has to divide by the same sum of determinants, but now the 1 − Q have to be replaced
by 1. This gives Eq. (15) of the main text.

APPENDIX B: WEAK OVERLAP AND QUASIDIAGONAL MATRICES

In this section, we justify why, in the case of small overlap, the approximation by diagonal matrices works so well. If we
forget the logarithmic terms, for 3tp < τ < 4tp, R�,�′ − TeN�,�′ becomes⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1 ρ1
2πR

2πR−i
ρ1

2πR
2πR−2i

ρ2
2πR

2πR−3i
ρ2

2πR
2πR−4i

. . . ρ2
2πR

2πR−�i
. . .

ρ1
2πR

2πR+i
ρ1 ρ1

2πR
2πR−i

ρ2
2πR

2πR−2i
ρ2

2πR
2πR−3i

. . . ρ2
2πR

2πR−�i
. . .

ρ1
2πR

2πR+2i
ρ1

2πR
2πR+i

ρ1 ρ2
2πR

2πR−i
ρ2

2πR
2πR−2i

. . . ρ2
2πR

2πR−�i
. . .

ρ2
2πR

2πR+3i
ρ2

2πR
2πR+2i

ρ2
2πR

2πR+i
1 2πR

2πR−i
2πR

2πR−2i
2πR

2πR−3i
. . .

ρ2
2πR

2πR+4i
ρ2

2πR
2πR+3i

ρ2
2πR

2πR+2i
2πR

2πR+i
1 2πR

2πR−i
2πR

2πR−2i
. . .

. . . . . . . . . 2πR
2πR+2i

2πR
2πR+i

1 2πR
2πR−i

. . .

ρ2
2πR

2πR+�′i ρ2
2πR

2πR+(�′−1)i ρ2
2πR

2πR+(�′−2)i
2πR

2πR+(�′−3)i . . . 2πR
2πR+i

δ�,�′ . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B1)

with ρ1 = 1 − Te and ρ2 = 1 − Te/2. Thus, in the limit R → 0, det(R�,�′ − TeN�,�′ ) factorizes as (1 − Te)int(τ/tp)det(R̃�,�′), where
R̃�,�′ is the same as R�,�′ except that all elements with row or column index smaller than int(τ/tp) have to be replaced by the
elements of the identity matrix.

So far, we have neglected the logarithmic terms. They vanish on the diagonal. They also vanish for � or �′ much smaller than
τ/tp and also when � and �′ much larger than τ/tp. Neglecting them should amount to neglecting some correlations and the
decay rate including them may be smaller than the one given in the diagonal approximation, but we do not have clear evidence
for that. Calculations of the first nonzero order in R would require retaining all the terms in Eq. (15) of the main text.
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B. Plaçais, A. Cavanna, Y. Jin, and G. Fève, Nat. Commun.
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