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We study the phenomenon of adiabatic quantum charge pumping in systems supporting fractionally charged
fermionic bound states in two different setups. The first quantum pump setup consists of a charge density
modulated quantum wire, and the second one is based on a semiconducting nanowire with Rashba spin-orbit
interaction, in the presence of a spatially oscillating magnetic field. In both these quantum pumps transport is
investigated in an N-X-N geometry, with the system of interest (X) connected to two normal-metal leads (N), and
the two pumping parameters are the strengths of the effective wire-lead barriers. Pumped charge is calculated
within the scattering matrix formalism. We show that quantum pumping in both setups provides a unique signature
of the presence of the fractional-fermion bound states, in terms of the asymptotically quantized pumped charge.
Furthermore, we investigate shot noise arising due to quantum pumping, verifying that the quantized pumped
charge corresponds to minimal shot noise.
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I. INTRODUCTION

In recent years an exotic research line attracting consid-
erable amount of attention has been focusing on condensed-
matter systems where peculiar fractionally charged excitations
emerge, which are interesting both from a fundamental point
of view and for quantum computation purposes [1]. Some
realizations of fractional fermions (FFs) in condensed-matter
systems have already been proposed [2–4]. These fractional
fermion (FF) bound states are predicted to be stable against
weak disorder and interactions. The emergence of the FFs in
these systems can be understood by mapping the electronic
low energy dynamics onto the Jackiw-Rebbi equations [5,6]
describing massive Dirac fermions and the zero-energy bound
states of charge e/2 therein or onto the fractional charge
formation in the Su-Schrieffer-Heeger model in long-chain
polyenes [7,8]. These FFs can also exhibit non-Abelian
braiding statistics [9]. Finally, it was shown that the presence of
the FFs could be revealed by transport experiments measuring
two-terminal conductance, Aharonov-Bohm oscillations, and
shot noise [10].

Adiabatic quantum pumping is a transport mechanism in
meso- and nanoscale devices by which a finite dc current is
generated in the absence of an applied bias by low-frequency
periodic modulations of at least two system parameters
[11–14]. The zero-bias current is obtained in response to
the time variation of the parameters of the quantum system,
which explicitly breaks time-reversal symmetry. Time-reversal
symmetry breaking is necessary in order to get a pumped
charge, but it is not a sufficient condition. Indeed, in order to
obtain a finite net pumped charge, parity or spatial symmetry
must also be broken. Finally, the required condition for
electrical transport to be adiabatic consists of having a period
T of the oscillatory driving signals that has to be much longer
than the dwell time τdwell � L/υF of the electrons inside the
scattering region of length L, that is, T = 2πω−1 � τdwell.
In this limit, the pumped charge in a unit cycle becomes
independent of the pumping frequency. This is referred to
as “adiabatic charge pumping” [13].

In previous decades quantum charge and spin pumping
through various mesoscopic setups, including quantum dots

and quantum wires, has represented a fertile research line, both
at the theoretical [15–38] and the experimental level [39–46],
with focus on both the adiabatic and nonadiabatic regime. The
possible quantization of the charge pumped during a cycle
through noninteracting open quantum systems [23–27,41], as
well as the circumstances under which the pump becomes
“optimal” [47,48], are topics of fundamental interest.

Motivated by these works and by the recent advent of
new exotic states of matter supporting peculiar bound states,
we study in this article adiabatic quantum charge pumping
through FF bound states in two different configurations. Both
the pumped charge and the noise obtained by adiabatic modu-
lations of at least two system parameters can represent possible
transport signatures for these FFs other than conductance [10].

We model our pump setups within the scattering matrix
formalism [12,13] and show that in both systems charge is
pumped from one reservoir to the other via the FFs present
at the two ends of the nanowire. Thus, by measuring current
response of these pumps one can demonstrate the existence
of the FFs. Furthermore, we find that the shot noise in these
pumps vanishes in correspondence to pumped charge being
quantized, as expected. When the considered quantum pumps
exhibit the above features, they are said to be optimal, with the
nearly quantized unit of charge being pumped in every cycle.

The remainder of this paper is organized as follows. In
Sec. II, we describe the two quantum pumps investigated here
in detail, providing the linearized model Hamiltonians and
the details of the pump mechanism. In Sec. III, we present the
expressions used to compute the pumped charge Q and the
shot noise Sαβ for the two pumps within the scattering matrix
framework. In Sec. IV, we present our numerical results for Q
and Sαβ in these pump setups for various parameter regimes.
Finally, Sec. V contains a summary of our numerical results
followed by the conclusions.

II. MODEL

Here we introduce the two physical systems on which our
pumping schemes are based. The first one is referred to as
charge density wave wire (CDW) and the second one as helical
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FIG. 1. (Color online) (a) Schematic of the charge-density-wave-based quantum pump in which the NW (pink, light gray) of length L is
connected to two normal N leads (blue, black). In this geometry, the central NW is subjected to charged gates G (light blue, light gray) which
forms a charge density wave potential inside the NW. An FF bound state emerges out at each end of the wire (red, light gray). (b) Similar
scheme for the helical-Rashba-nanowire-based quantum pump. The central part of the pump consists of a semiconducting NW (pink, light
gray) of length L attached to two normal N leads (blue, black). A uniform magnetic field B is applied along the wire. The NW is also subjected
to a spatially varying magnetic field Bn(x) produced by periodically arranged nanomagnets (green, light gray). The gate G (light blue, light
gray) controls the chemical potential in the NW. FF bound states form at the two ends of the NW (red, light gray). Two δ-function barriers are
symbolically denoted by the two yellow (light gray) rectangular barriers at each N-NW interface in both cases.

Rashba nanowire (HRW). In the CDW case we consider spin-
degenerate electrons. On the other hand, in the HRW case
we deal with spinful electrons. As far as quantum pumping
is concerned, the only difference between these two models
lies in the fact that our results for the pumped charged in the
CDW refer to a single spin species and they have thus to be
multiplied by two.

A. CDW

The schematics of the CDW is shown in Fig. 1(a),
consisting of a nanowire (NW) of length L with a gate-
induced periodic potential, attached to two normal leads.
The periodicity of the electrostatic potential is λCDW =
2π/kCDW [2]. The Hamiltonian describing the NW is given
by HCDW = ∫

dx
†(x)HCDW
(x), where 
(x) corresponds
to the annihilation operator for an electron at position x.

The Hamiltonian density for this spin-degenerate model
reads

HCDW = −�
2∂2

x

/
2m − μ + �0 cos(2kCDWx + θ ), (1)

where m is the effective mass of the electrons in the NW, μ is
the chemical potential, and θ is a constant phase.

Assuming that the Fermi energy mv2
F/2 is the largest energy

scale, following Ref. [2] we linearize Eq. (1) around the two
Fermi points k = ±kF. For μ = 0 we obtain the spectrum of
the NW at k = ±kF as E2 = (�vF k)2 + �2

0, with vF being the
Fermi velocity. As explained in Ref. [2], this wire supports
zero-energy FFs at the two ends of the NW for θ = π/2.

The Hamiltonian density describing the two normal non-
interacting, spin-degenerate leads is Hl = −�

2∂2
x /2m − μl ,

with l = L,R corresponding to the left and right lead, re-
spectively, with chemical potential μl . The Fermi momentum
is then �kl = √

2m(μl + E). In this manuscript, as we are
interested in quantum pumping we only consider the zero bias
situation μL = μR. We model the left and the right interface
(x = 0 and x = L) between the NW and the normal leads
by two δ-function barriers. The strengths of these δ-function
barriers can be controlled externally by applying additional
gate voltages [42,44], which could be different at the left

and the right interfaces. In our quantum pump the two pump
parameters are these left and right δ-function barrier strengths,
evolving in time either as (off-set circular contours)

λ1 = λ0 + Ps cos(ωt − φ),

λ2 = λ0 + Ps cos(ωt + φ), (2)

or as (“lemniscate” contours),

λ1 = Ps(cos � cos ωt − sin � sin ωt cos ωt)/(1 + sin ωt)2,

λ2 = Ps(cos � cos ωt + sin � sin ωt cos ωt)/(1 + sin ωt)2,

(3)

respectively. In the circular contour, λ0 is the mean value of
the amplitude around which the two pumping parameters are
modulated with time. In both cases Ps is called the pumping
strength. Further, 2φ and � are the phase offsets between the
two pumping signals for the circular and lemniscate contours,
respectively. Such parametric curves in the λ1-λ2 plane are
shown in Figs. 2 and 4.

In our analysis we consider only adiabatic quantum pump-
ing, valid in the regime where the time period of the pump
parameters T = 2πω−1 is much larger than the dwell time
τdwell � L/vF of the electrons inside the NW, i.e., T � τdwell.

B. HRW

In Fig. 1(b) we show the schematics of the HRW, consisting
of a Rashba nanowire attached to two normal leads. The
central part of this pump consists of a semiconducting wire of
length L along the x̂ direction with a finite Rashba spin orbit
interaction (SOI) and an external magnetic field, which has
both a uniform (B) and a spatially varying (Bn) component. The
corresponding Hamiltonian describing this NW is given by
HHRW = ∫

dx
†(x)HHRW
(x), where 
 = (
↑,
↓) with

σ (x) being the annihilation operator for a spin σ (∈ {↑,↓})
electron at position x.

The Hamiltonian density for this spinful model is given by

HHRW = −�
2∂x

2/2m − μ− iασz∂x + gμB

2
[B + Bn(x)] · σ .

(4)
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FIG. 2. (Color online) Contour plot of the transmission probabil-
ity (T = |t |2) in the λ1-λ2 plane, for transport through the FF bound
states in the CDW setup, where L = ξ for panel (a) and L = 3ξ for
panel (b). All other parameters are E = 0, θ = π/2, �0 = EF/103,
and kl � kF. Increasing the wire length, and hence the separation
between the FFs, causes the two resonances to move apart from each
other in the λ1-λ2 plane. The two circular pumping contours in panel
(a) correspond to φ = π/4, λ0 = −40vF, Ps = 15vF (smaller circle),
and Ps = 40

√
2vF (bigger circle). For the two lemniscate contours

we chose � = π/4, Ps = 25vF, and Ps = 50vF. In panel (b), for
the circular contours we have λ0 = −40vF, Ps = 25vF, and 80vF,
respectively, while for the lemniscate contours � = π/4, Ps = 25vF,
and 50vF.

Here m is the effective electron mass in the NW, μ the chemical
potential, α the SOI coefficient, and σi the usual Pauli spin
matrices. Furthermore, g is the Lande g factor and μB the
Bohr magneton. We choose the uniform field B to be pointing
along the x̂ direction, opening up a Zeeman gap of magnitude
�z = gμBB at k = 0. The spatially periodic magnetic field Bn

is oriented along the ŷ direction, Bn,x = ŷBn sin(4ksox + θ ),
couples the two exterior branches of the spectrum [3,10], and
opens up a gap of magnitude �n = gμBBn/2 at k = ±2kso.
Assuming that the SOI energy mα2/2�

2 is the largest energy
scale at the chemical potential, following Refs. [3,10,49], we
can linearize the Hamiltonian HHRW around k = 0 (interior
branches) and k = ±kso (exterior branches). For μ = 0 one
obtains the spectrum of the NW around k = 0 and k = ±2kso

as E2 = (�υF k)2 + �2
z and E2 = (�υF k)2 + �2

n, respectively,

with Fermi velocity vF = α/�. As shown in Refs. [3,10] this
system is fully gapped and supports FF bound states localized
at the two ends of the NW, with degenerate zero energy for
θ = π .

Like in the CDW case, the Hamiltonian density for
the two normal noninteracting, spin-degenerate leads is
Hl = −�

2∂2
x /2m − μl , where l = L,R, and μl denotes the

corresponding chemical potential (μL = μR), with Fermi
momentum �kl = √

2m(μl + E). Again, the left and the right
interfaces (x = 0 and x = L) between the NW and the normal
leads are modeled by two different δ-function barriers, whose
heights represent the two pumping parameters, and evolve
according to the two possible paths given by Eqs. (2) and (3).
As before, the pumping strength is denoted by Ps , while 2φ

(circular) and � (lemniscate) are the phase difference between
the two pumping parameters. Again, we restrict our analysis
to the adiabatic quantum pumping regime T � L/vF .

III. PUMPED CHARGE AND NOISE

To calculate the pumped charge we use Brouwer’s formula
[13], which relies on the knowledge of the S-matrix for the
two systems considered here. The shot noise due to the pump
can also be expressed in terms of the S-matrix elements, as
done, for example, in Ref. [48].

A. CDW

The general 2×2 S-matrix for the CDW geometry can be
written as

SCDW =
[ |r|eiγ |t |eiψ

|t ′|eiψ ′ |r ′|eiγ ′

]
. (5)

We write here the complex S-matrix elements Sij in polar
form, with modulus and phase explicitly shown, since the
phase is going to play a major role in the determination of
the pumped charge. The Sij are all functions of the incident
energy E and depend parametrically on the nanowire length
L, the CDW gap �0, the phase θ associated with the charge
density wave, and the strengths λ1, λ2 of the two δ-function
barriers at x = 0 and x = L, respectively.

1. Pumped charge

Following Ref. [13], for an electron incident from the left
lead (L), the formula for the pumped charge can be obtained
from the parametric derivatives of the S-matrix elements. For
the spinless, single-channel case considered here, one has

QCDW = e

2π

∫ τ

0
dt[|r|2γ̇ + |t |2ψ̇]. (6)

2. Shot noise

The noise properties of the CDW are investigated within the
scattering matrix formalism for ac transport [48]. In general,
the current-current correlation function is expressed as

Sαβ(t,t ′) = 1
2 〈�Îα(t)�Îβ(t ′) + �Îβ(t ′)�Îα(t)〉, (7)

depending on two time instants t and t ′, with �Î = Î − 〈Î 〉
and Îα(t) being the quantum-mechanical current operator in
lead α. Since we are interested only in correlations over long
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time intervals (|t ′ − t | � 2π/ω), we investigate

Sαβ(t) = ω

2π

∫ 2π/ω

0
dt ′Sαβ(t,t ′). (8)

Let us introduce Spump
αβ as the zero-frequency component of

the above long-time averaged correlator, Spump
αβ = ∫

dtSαβ(t).
In the low-temperature limit the noise power produced by the
pump can be separated into two parts [48]:

Spump
αβ = δαβSpump,P

α + Spump,cor
αβ , (9)

where the first part Spump,P
α is due to an uncorrelated motion

of nonequilibrium quasielectrons and quasiholes (Poissonian
component). The second partSpump,cor

αβ denotes the contribution
from correlations between the quasielectrons and quasiholes.
These correlations correspond to processes where first a
quasielectron-quasihole pair is created by absorption of an
energy quantum �ω and then the quasielectron and the
quasihole belonging to the same pair get scattered into different
leads. As we are interested in the noise generated by two
simultaneously oscillating parameters λ1 and λ2, we must
differentiate between the noise produced by the variation of
each single parameter λ1 or λ2 separately, and the additional
noise generated by quantum pumping. The latter is denoted by

�Spump
αβ = δαβ�Spump,P

α + �Spump,cor
αβ , (10)

where δαβ�Spump,P
α and �Spump,cor

αβ denote the contribution to
the additional noise coming from the first and the second term
on the right-hand side of Eq. (9), respectively.

We obtain the following expression for such additional
noise:

�Spump,P
L = e2ω

π
cos(2φ)[|ṙ|2+|r|2γ̇ 2 + |ṫ |2+|t |2ψ̇2], (11)

which is integrated over the pumping contour following
Eq. (8). Similarly,

�Spump,cor
LL = −e2ω

π
cos(2φ)[(|ṙ|2 + |r|2γ̇ 2 + |ṫ |2

+ |t |2ψ̇2) + (|t |2(|ṙ|2 + |r|2γ̇ 2) + |r|2(|ṫ |2
+ |t |2ψ̇2) − 2|r||t |(|ṙ||ṫ | + |r||t |γ̇ ψ̇))]. (12)

Adding Eqs. (11) and (12) we obtain the autocorrelator �Spump
LL

for the CDW.
In general, the expression for the additional noise depends

on both the time derivatives of the scattering amplitudes and
their phases. The Poissonian part of the additional pump

noise given by Eq. (11), contains only even powers of the
phase derivatives while �Spump,cor

LL contains bilinear terms
involving time derivatives of the phases for both the reflection
and transmission amplitude. The effect of the latter can be
characterized in terms of the Fano factor as defined in the next
section.

B. HRW

The most general 4×4 S-matrix for the HRW geometry can
be expressed as (the matrix elements are given in polar form,
similarly to the CDW case)

SHRW =

⎡
⎢⎢⎣

|r↑↑|eiγ |r↑↓|eiδ |t↑↑|eiψ |t↑↓|eiη

|r↓↑|eiδ̃ |r↓↓|eiγ̃ |t↓↑|eiη̃ |t↓↓|eiψ̃

|t ′↑↑|eiψ ′ |t ′↑↓|eiη′ |r ′
↑↑|eiγ ′ |r ′

↑↓|eiδ′

|t ′↓↑|eiη̃′ |t ′↓↓|eiψ̃ ′ |r ′
↓↑|eiδ̃′ |r ′

↓↓|eiγ̃ ′

⎤
⎥⎥⎦. (13)

Also here, the S-matrix elements are functions of the inci-
dent energy E and depend on the wire length L, the two
Zeeman gaps �z, �n, the phase θ associated with the spiral
magnetic field, and the strengths λ1, λ2 of the two lead-wire
barriers.

1. Pumped charge

Following Ref. [13], the formula for the pumped charge for
this spinful single-channel wire reads

QHRW = e

2π

∫ τ

0
dt[|r↑↑|2γ̇ + |r↑↓|2δ̇

+ |t↑↑|2ψ̇ + |t↑↓|2η̇]. (14)

2. Shot noise

Following arguments similar to the case of CDW we obtain
the spinful noise expressions for the HRW case as

�Spump,P
L = e2ω

π
cos(2φ)[|ṙ↑↑|2 + |r↑↑|2γ̇ 2

+ |ṙ↑↓|2 + |r↑↓|2δ̇2 + |ṫ↑↑|2
+ |t↑↑|2ψ̇2 + |ṫ↑↓|2 + |t↑↓|2η̇2], (15)

which is integrated over the pumping contour following
Eq. (8). For the additional noise, this gives us the contribu-
tion due to the uncorrelated motion of quasielectrons and
quasiholes in the same lead L (autocorrelator), correspond-
ing to the first term on the right-hand side of Eq. (10).
Similarly, for the second part of the autocorrelator we
obtain

�Spump,cor
LL = −e2ω

π
cos(2φ)[|r↑↑|2(|ṙ↑↑|2 + |r↑↑|2γ̇ 2) + 2|r↑↑||r↑↓|(|ṙ↑↑||ṙ↑↓| + |r↑↑||r↑↓|γ̇ δ̇)

+ 2|r↑↑||t↑↑|(|ṙ↑↑||ṫ↑↑| + |r↑↑||t↑↑|γ̇ ψ̇) + 2|r↑↑||t↑↓|(|ṙ↑↑||ṫ↑↓| + |r↑↑||t↑↓|γ̇ η̇) + |r↑↓|2(|ṙ↑↓|2 + |r↑↓|2δ̇2)

+ 2|r↑↓||t↑↑|(|ṙ↑↓||ṫ↑↑| + |r↑↓||t↑↑|δ̇ψ̇) + 2|r↑↓||t↑↓|(|ṙ↑↓||ṫ↑↓| + |r↑↓||t↑↓|δ̇η̇) + |t↑↑|2(|ṫ↑↑|2 + |t↑↑|2ψ̇2)

+ 2|t↑↑||t↑↓|(|ṫ↑↑||ṫ↑↓| + |t↑↑||t↑↓|ψ̇η̇) + |t↑↓|2(|ṫ↑↓|2 + |t↑↓|2η̇2)]. (16)

Adding Eqs. (15) and (16) we obtain the spinful autocorrelator (�Spump
LL ) for the HRW case.
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IV. NUMERICAL RESULTS

In this section we present and discuss the outcome of our
numerical results for the pumped charge and noise through
the FF bound states in the CDW case and the HRW case,
respectively. For the CDW pump, the Fermi energy mv2

F/2 is
the largest energy scale in our analysis. Hence, the other energy
scales (�0,ω) are expressed in terms of vF . On the other hand
the largest energy scale in our analysis for the HRW is the
SOI energy mα2/2�

2, and the other energy scales (�z,�n,ω)
are then expressed in terms of α. In addition, throughout our
analysis we have set m = 1 and � = 1.

A. CDW

The pumped charge for the CDW is obtained by using
Eq. (6) with λ1 and λ2 as the two pumping parameters. They
can be varied by periodically varying additional gate voltages
[42,44] (not shown in Fig. 1). The localization length of the
FFs in the CDW is determined by the single energy gap,
ξ (E) � �vF /

√
�2

0 − E2. For this geometry, we choose the
FF bound state energy at E = 0 for θ = π/2 such that the
two FF bound states at the two ends of the NW are formally
degenerate [2]. Still, they have a finite overlap and present an
energy splitting due to the finite length of the NW.

Using Eq. (6) we obtain the pumped charge through the
FF bound states in the CDW case for various parameters of
the system. In Fig. 3(a) we show the pumped charge through
the FF bound states in units of electron charge e as a function
of the strengths of the pump parameters Ps for the CDW ge-
ometry. In some optimal regimes (defined below) we find that
for circular (φ = π/4) contours, described by the pumping
parameters λ1 = λ0 + Ps cos(ωt − φ) and λ2 = λ0 +
Ps cos(ωt + φ), the pumped charge can reach Q ∼ e while the
pumping strength Ps is varied. On the other hand we find that
the pumped charge through the FF bound states asymptotically
approaches the quantized value 2e in the limit of large pumping
strengths for lemniscate contours (� = π/4), defined as λ1 =
Ps(cos � cos ωt − sin � sin ωt cos ωt)/(1 + sin ωt)2 and
λ2 = Ps(cos � cos ωt + sin � sin ωt cos ωt)/(1 + sin ωt)2 as
before.

To analyze the shot noise for the CDW, we calculate the
Fano factor F CDW

LL = �Spump
LL /�Spump,P

L for the autocorrelator.
The Fano factor as defined here, is a measure specific to the
additional noise generated by quantum pumping. Figure 3(b)
shows F CDW

LL as a function of the strength of the pump
parameters Ps for � = π/4. We find that in the limit of large
pumping strengths when the pumped charge asymptotically
approaches the quantized value, the autocorrelator vanishes,
signifying optimal pumping. For φ = π/4, the autocorrelator
trivially vanishes, which can be seen from Eqs. (11) and (12).

To understand the behavior of the pumped charge as
a function of the pumping strength Ps we investigate the
transmission probability (T = |t |2) through the FF bound
states in the λ1 − λ2 plane. In Fig. 2, we plotted T (λ1,λ2)
together with different possible pumping contours. T (λ1,λ2)
exhibits transmission resonance lines, containing a resonance
point T = 1 and presenting a mirror symmetric behavior about
the λ1 = λ2 and about the λ1=-λ2 axes, as is apparent from
the plots.
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FIG. 3. (Color online) (a) The pumped charge QCDW in units of
the electron charge e is shown as a function of the pumping strength Ps

for the CDW. (b) The Fano factor corresponding to the autocorrelation
noise for the lemniscate curves (calculated using Eqs. (11) and (12)
are shown as a function of the pumping strength Ps for the CDW at
� = π/4 and ω = �0/50 (the circular paths give zero autocorrelator
noise). All other parameters are identical to those used in Fig. 2.

We find that the typical pumping contours can be generi-
cally classified into three categories. Those which (a) do not
enclose any T = 1 resonance point through the FF bound
states (e.g., smaller circles in Fig. 2), (b) enclose only one
resonance (e.g., bigger circles in Fig. 2), and finally (c) enclose
both the resonances related to the FF bound states [e.g., both
lemniscate contours in Fig. 2(a)]. Furthermore, when a contour
encloses spectral weight from both resonances, the relative
integration direction around the two singular points plays an
important role. Namely, when the two resonances are enclosed
in a path with the same orientation, then the two contributions
have opposite sign and tend to cancel each other. This is why
for the circular paths, which do enclose the two resonances
within the same contour orientation, in the limit of very large
integration contours when all the spectral weight is collected
the total pumped charge tends to zero [see Figs. 3(a) and 5(a)].
On the opposite, when the two resonances are enclosed within
opposite integration orientations, the two contributions for
the pumped charge sum up. This is exactly the reason that
motivates the choice of lemniscate contours. Looking indeed
again at Figs. 3(a) and 5(a), we see that Q for the lemniscate
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contours does not go to zero for large Ps and, instead, increases
monotonically.

Another interesting observation concerns the role played
by the wire length. The behavior of transmission probability
(T = |t |2) for two different wire lengths, L = ξ and L = 3ξ ,
is shown in Figs. 2(a) and 2(b), respectively. The main
observation is that for longer wires the energy splitting between
the two FF states is reduced and the separation of the two
resonances in the λ1-λ2 plane correspondingly increases [23].
In turn, this implies that the spectral weights from the two
resonances overlap less and it is possible to collect full
contribution from both resonances (summing up in different
ways for circular and lemniscate contours). This is why, in
the pumped charge plots of Fig. 3(a), the light blue curve
(L = 3ξ ) reaches a higher value than the blue curve (L = ξ ),
close to Q = e, before decreasing again when the second
resonance starts contributing. For the same reason, the yellow
curve (L = 3ξ ) referring to the lemniscate contour in the same
plot asymptotically tends to a higher value than the red curve
(L = ξ ), and in the limit of large resonance separation that
value becomes Q = 2e. We also note that for the same pair of
realizations, the corresponding Fano factor of Fig. 3(b) tends
to finite constant for L = ξ but tends to zero (or a much smaller
constant) for L = 3ξ , implying noiseless pumping when the
pumped charge is quantized (Q = 2e).

B. HRW

We obtain the pumped charge for the HRW using Eq. (14)
with λ1 and λ2 as the two pumping parameters like in the CDW
geometry. The localization length of the FFs is physically set
by the two energy gaps, ξz(E) � �α/

√
�2

z − E2 and ξn(E) �
�α/

√
�2

n − E2. In our numerical analysis we choose the FF
bound state energy at E = 0 for θ = π such that the two FF
bound states at the two ends of the NW are degenerate [10].
Again, the finite wire length induces a finite overlap between
the two FFs and an energy splitting between the two levels.

In Fig. 5(a), we show the behavior of the pumped charge in
units of electron charge e as a function of the pumping strength
Ps for the HRW geometry considering circular (φ = π/4) and
lemniscate (� = π/4) contours. Similarly to the CDW case,
for the HRW we find that in some regimes circular contours
yield large finite pumped charge (Q ∼ e) at appropriate values
of the pumping strength Ps . Analogously, the pumped charge
for lemniscate contours can asymptotically approach the
quantized value of 2e in the limit of large pumping strengths.

Following the analysis of the CDW, we calculate the Fano
factor for the HRW, F HRW

LL = �Spump
LL /�Spump,P

L [see Eqs. (15)
and (16) for further details]. In Fig. 5(b) we show F HRW

LL
as a function of the strengths of the pump parameters Ps

for � = π/4. Like in the CDW case, in the HRW the
autocorrelator vanishes when the pumped charge approaches
the quantized value, signifying optimal pumping. Additionally,
the autocorrelator also vanishes for φ = π/4 [see Eqs. (15)
and (16)].

The quantity under investigation in this HRW geometry is
the total transmission probability (T = |t↑↑|2 + |t↑↓|2) through
the FF bound states, considered to vary as a function of λ1

and λ2. In Fig. 4 we show the behavior of the transmission
probability in the λ1-λ2 plane along with different pumping
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FIG. 4. (Color online) Contour plot of the transmission prob-
ability (T = |t↑↑|2 + |t↑↓|2) through the FF bound states in the
λ1-λ2 plane for the HRW. The plotted results refer to E = 0,
θ = π , �z = α2/5, �n = α2/10, L = 5ξ , kl � 10kso for panel
(a) and kl � 100kso for panel (b). Different pumping contours are
also shown. The two circular contours in both (a) and (b) correspond
to φ = π/4, λ0 = −8 · 102α, Ps = 5×102α for the smaller circle
and Ps = 1.1×103α for the bigger circle, respectively. Similarly,
for the lemniscate contours we chose � = π/4, Ps = 4×102α, and
Ps = 1.2×103α.

contours as classified earlier for the CDW case. In this section
we are focusing on the long-wire limit (L = 5ξ ), exhibiting
well-separated resonances, since we know from the previous
CDW analysis that such a regime provides the largest pumped
charge.

In Figs. 4(a) and 4(b) we show the behavior of T for
two different values of kl (i.e., two different values of μl).
Different kl values induce different wire-lead couplings [10].
For kl � 10kso, we obtain two sharp well-separated resonances
due to small momentum mismatch between the wire and the
leads. On the other hand, two resonances become broadened
for kl � 100kso due to large momentum mismatch [23]. The
striking similarity between Figs. 2 and 4 originates from the
δ-function barriers at the two ends of the NW in both quantum
pumps. That is, in both cases we have a double-barrier problem
with a resonant level in between. The different parameters and
the different energy scales involved in the two problems just
imply that different pumping strengths would be needed to
observe the quantized pumped charge through the FF bound
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FIG. 5. (Color online) (a) The pumped charge QHRW in units of
the electron charge e for the HRW is shown as a function of the
pumping strength Ps . As in Fig. 4, we are plotting the results for two
different values of the chemical potential in the leads—kl = 10kso

and kl = 100kso. Here L = 5ξ and the pumping rate ω = �n/10. All
other parameters are the same as those used in Fig. 4. (b) The Fano
factor FLL of the autocorrelator, associated with the same lemniscate
contours considered in panel (a), shown as a function of the pumping
strength Ps at � = π/4 (the circular paths give zero autocorrelator
noise).

states in them (compare the axes ranges in Figs. 2 and 4). We
show the corresponding behavior of the pumped charge for
the HRW in Fig. 5(a), for the two considered kl values. For
circular contours, we obtain an almost quantized (Q ∼ e) value
of pumped charge over a finite range of pumping strengths
(500α < Ps < 1500α). Over this range of Ps , circular contours
enclose only one of the resonances, resulting in Q ∼ e.

The lemniscate contours give a similar phenomenology:
Both values of kl produce large pumped charge, but the
case kl � 10kso translates into a charge value closer to
Q = 2e. Finally, in Fig. 5(b) we plot the Fano factor FLL

of the autocorrelator, which exhibits a singular behavior in
correspondence of the Ps value for which the pumped charge
becomes macroscopic, that is, in correspondence of the point in
the λ1-λ2 plane where the contour crosses the resonance point.
The smoothness of the FLL curves changes with kl . Finally,
in the limit of large Ps where the lemniscate contours enclose
both resonances and their entire weight, with a pumped charge
Q � 2e, the noise decreases and FLL slowly tends to zero.

V. SUMMARY AND CONCLUSIONS

We have studied adiabatic quantum pumping in two
different setups which support zero-energy FF bound states
in the fully gapped system. One is spin degenerate and based
on a charge density wave modulated wire, while the other one
is a spinful system based on a Rashba nanowire in the presence
of an oscillating magnetic field. The presence of FFs at the
two ends of these wires dramatically changes the calculated
pumped charge in the adiabatic regime. In both these fully
gapped systems the charge is pumped from one lead to the
other via the zero-energy FF bound states. We find that for
certain types of pumping contours (lemniscate contours) it is
possible to observe quantized pumping in the limit of large
pumping strengths, where two units of charge are pumped in
every pumping cycle. We also calculate the shot noise for both
these pumps and find that it vanishes in the regime of quantized
pump charge, indicating optimal pumping. In both cases we
find that our numerical results are in excellent agreement with
the bilinear response limit [13] for small pumping strengths.

Another possible pair of pumping parameters for a semi-
infinite NW could be the strength of a single δ-function
barrier and the geometrical angle θ . In this situation, too,
one can obtain a transmission resonance through the zero-
energy FF bound states in the pumping parameter space.
Consequently, choosing appropriate pumping contours that
enclose the transmission resonances one can obtain quantized
pumped charge.

The behavior of quantized pumped charge has also been
reported for many other systems where one studies quantum
pumping through nanostructures. Integer pumped charge
has been shown for pumping through open quantum dots
[24,26,27] as well as through Luttinger liquids [28,31,32,50].
In more recent times, similar behavior of pumped charge
has been predicted in superconducting wires with Majorana
fermions [36].

As far as the practical realization of the quantum pumping
setups is concerned, it should be possible to fabricate such
setups with the currently available experimental techniques.
For instance, HRW can be fabricated using InSb, with g � 50
and SOI energies of the order of 50 μeV [51] satisfying the
requirement of strong- SOI regime considered in the above
theoretical calculations. Hence considering typical numbers
for the magnetic field intensity generated by the nearby
nanomagnets, Bn � 50 mT [52], one can obtain a Zeeman
coupling of the order �n � 40 μeV, corresponding to a
frequency � 60 GHz. It is convenient to choose similar values
also for the uniform field B, so that the two gap values are
compatible [10]. The pumping parameters, which here are the
strengths of the two tunnel barriers (δ functions in our case),
could correspond to the electrostatic potential of thin finger
gates [51]. The time period of the oscillating gate voltages
T � 3 ns is larger than the dwell time of the electrons inside
the NW τdwell � 30 ps, hence satisfying the adiabatic condition
for the quantum pump. The pumped current through the FF
bound states should be in the range of � 10–15 pA and possibly
be measurable in experiment with an NW of length L � 1 μm.
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[22] M. Moskalets and M. Büttiker, Phys. Rev. B 69, 205316 (2004).
[23] Y. Levinson, O. Entin-Wohlman, and P. Wölfle, Physica A 302,
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[48] M. Moskalets and M. Büttiker, Phys. Rev. B 66, 035306 (2002).
[49] B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss,

Phys. Rev. B 82, 045127 (2010).
[50] A. Saha and S. Das, Phys. Rev. B 78, 075412 (2008).
[51] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A.

M. Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[52] B. Karmakar, Phys. Rev. Lett. 107, 236804 (2011).

035422-8

http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.108.136803
http://dx.doi.org/10.1103/PhysRevLett.108.136803
http://dx.doi.org/10.1103/PhysRevLett.108.136803
http://dx.doi.org/10.1103/PhysRevLett.108.136803
http://dx.doi.org/10.1103/PhysRevLett.109.236801
http://dx.doi.org/10.1103/PhysRevLett.109.236801
http://dx.doi.org/10.1103/PhysRevLett.109.236801
http://dx.doi.org/10.1103/PhysRevLett.109.236801
http://dx.doi.org/10.1038/nphys913
http://dx.doi.org/10.1038/nphys913
http://dx.doi.org/10.1038/nphys913
http://dx.doi.org/10.1038/nphys913
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1016/0370-2693(82)90996-0
http://dx.doi.org/10.1016/0370-2693(82)90996-0
http://dx.doi.org/10.1016/0370-2693(82)90996-0
http://dx.doi.org/10.1016/0370-2693(82)90996-0
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevB.22.2099
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.110.126402
http://dx.doi.org/10.1103/PhysRevLett.112.196803
http://dx.doi.org/10.1103/PhysRevLett.112.196803
http://dx.doi.org/10.1103/PhysRevLett.112.196803
http://dx.doi.org/10.1103/PhysRevLett.112.196803
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1103/PhysRevB.27.6083
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1007/BF01307664
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.58.R10135
http://dx.doi.org/10.1103/PhysRevB.63.121303
http://dx.doi.org/10.1103/PhysRevB.63.121303
http://dx.doi.org/10.1103/PhysRevB.63.121303
http://dx.doi.org/10.1103/PhysRevB.63.121303
http://dx.doi.org/10.1103/PhysRevB.34.5093
http://dx.doi.org/10.1103/PhysRevB.34.5093
http://dx.doi.org/10.1103/PhysRevB.34.5093
http://dx.doi.org/10.1103/PhysRevB.34.5093
http://dx.doi.org/10.1103/PhysRevLett.64.1812
http://dx.doi.org/10.1103/PhysRevLett.64.1812
http://dx.doi.org/10.1103/PhysRevLett.64.1812
http://dx.doi.org/10.1103/PhysRevLett.64.1812
http://dx.doi.org/10.1103/PhysRevB.51.13226
http://dx.doi.org/10.1103/PhysRevB.51.13226
http://dx.doi.org/10.1103/PhysRevB.51.13226
http://dx.doi.org/10.1103/PhysRevB.51.13226
http://dx.doi.org/10.1103/PhysRevB.61.10366
http://dx.doi.org/10.1103/PhysRevB.61.10366
http://dx.doi.org/10.1103/PhysRevB.61.10366
http://dx.doi.org/10.1103/PhysRevB.61.10366
http://dx.doi.org/10.1103/PhysRevB.64.075304
http://dx.doi.org/10.1103/PhysRevB.64.075304
http://dx.doi.org/10.1103/PhysRevB.64.075304
http://dx.doi.org/10.1103/PhysRevB.64.075304
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.66.205320
http://dx.doi.org/10.1103/PhysRevB.68.161311
http://dx.doi.org/10.1103/PhysRevB.68.161311
http://dx.doi.org/10.1103/PhysRevB.68.161311
http://dx.doi.org/10.1103/PhysRevB.68.161311
http://dx.doi.org/10.1103/PhysRevB.69.205316
http://dx.doi.org/10.1103/PhysRevB.69.205316
http://dx.doi.org/10.1103/PhysRevB.69.205316
http://dx.doi.org/10.1103/PhysRevB.69.205316
http://dx.doi.org/10.1016/S0378-4371(01)00451-4
http://dx.doi.org/10.1016/S0378-4371(01)00451-4
http://dx.doi.org/10.1016/S0378-4371(01)00451-4
http://dx.doi.org/10.1016/S0378-4371(01)00451-4
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevB.66.035329
http://dx.doi.org/10.1103/PhysRevB.65.195411
http://dx.doi.org/10.1103/PhysRevB.65.195411
http://dx.doi.org/10.1103/PhysRevB.65.195411
http://dx.doi.org/10.1103/PhysRevB.65.195411
http://dx.doi.org/10.1103/PhysRevB.75.153407
http://dx.doi.org/10.1103/PhysRevB.75.153407
http://dx.doi.org/10.1103/PhysRevB.75.153407
http://dx.doi.org/10.1103/PhysRevB.75.153407
http://dx.doi.org/10.1103/PhysRevLett.81.1286
http://dx.doi.org/10.1103/PhysRevLett.81.1286
http://dx.doi.org/10.1103/PhysRevLett.81.1286
http://dx.doi.org/10.1103/PhysRevLett.81.1286
http://dx.doi.org/10.1103/PhysRevB.68.035321
http://dx.doi.org/10.1103/PhysRevB.68.035321
http://dx.doi.org/10.1103/PhysRevB.68.035321
http://dx.doi.org/10.1103/PhysRevB.68.035321
http://dx.doi.org/10.1103/PhysRevB.68.165312
http://dx.doi.org/10.1103/PhysRevB.68.165312
http://dx.doi.org/10.1103/PhysRevB.68.165312
http://dx.doi.org/10.1103/PhysRevB.68.165312
http://dx.doi.org/10.1103/PhysRevB.71.075322
http://dx.doi.org/10.1103/PhysRevB.71.075322
http://dx.doi.org/10.1103/PhysRevB.71.075322
http://dx.doi.org/10.1103/PhysRevB.71.075322
http://dx.doi.org/10.1103/PhysRevB.71.165333
http://dx.doi.org/10.1103/PhysRevB.71.165333
http://dx.doi.org/10.1103/PhysRevB.71.165333
http://dx.doi.org/10.1103/PhysRevB.71.165333
http://dx.doi.org/10.1103/PhysRevB.76.035308
http://dx.doi.org/10.1103/PhysRevB.76.035308
http://dx.doi.org/10.1103/PhysRevB.76.035308
http://dx.doi.org/10.1103/PhysRevB.76.035308
http://dx.doi.org/10.1140/epjb/e2006-00298-2
http://dx.doi.org/10.1140/epjb/e2006-00298-2
http://dx.doi.org/10.1140/epjb/e2006-00298-2
http://dx.doi.org/10.1140/epjb/e2006-00298-2
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1103/PhysRevLett.95.246803
http://dx.doi.org/10.1063/1.3528457
http://dx.doi.org/10.1063/1.3528457
http://dx.doi.org/10.1063/1.3528457
http://dx.doi.org/10.1063/1.3528457
http://dx.doi.org/10.1103/PhysRevB.88.140508
http://dx.doi.org/10.1103/PhysRevB.88.140508
http://dx.doi.org/10.1103/PhysRevB.88.140508
http://dx.doi.org/10.1103/PhysRevB.88.140508
http://dx.doi.org/10.1103/PhysRevB.89.045307
http://dx.doi.org/10.1103/PhysRevB.89.045307
http://dx.doi.org/10.1103/PhysRevB.89.045307
http://dx.doi.org/10.1103/PhysRevB.89.045307
http://dx.doi.org/10.1103/RevModPhys.85.1421
http://dx.doi.org/10.1103/RevModPhys.85.1421
http://dx.doi.org/10.1103/RevModPhys.85.1421
http://dx.doi.org/10.1103/RevModPhys.85.1421
http://dx.doi.org/10.1126/science.283.5409.1905
http://dx.doi.org/10.1126/science.283.5409.1905
http://dx.doi.org/10.1126/science.283.5409.1905
http://dx.doi.org/10.1126/science.283.5409.1905
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevLett.95.256802
http://dx.doi.org/10.1103/PhysRevLett.101.126803
http://dx.doi.org/10.1103/PhysRevLett.101.126803
http://dx.doi.org/10.1103/PhysRevLett.101.126803
http://dx.doi.org/10.1103/PhysRevLett.101.126803
http://dx.doi.org/10.1088/1367-2630/12/7/073013
http://dx.doi.org/10.1088/1367-2630/12/7/073013
http://dx.doi.org/10.1088/1367-2630/12/7/073013
http://dx.doi.org/10.1088/1367-2630/12/7/073013
http://dx.doi.org/10.1038/nphys582
http://dx.doi.org/10.1038/nphys582
http://dx.doi.org/10.1038/nphys582
http://dx.doi.org/10.1038/nphys582
http://dx.doi.org/10.1038/nphys2053
http://dx.doi.org/10.1038/nphys2053
http://dx.doi.org/10.1038/nphys2053
http://dx.doi.org/10.1038/nphys2053
http://dx.doi.org/10.1038/ncomms2544
http://dx.doi.org/10.1038/ncomms2544
http://dx.doi.org/10.1038/ncomms2544
http://dx.doi.org/10.1038/ncomms2544
http://dx.doi.org/10.1038/nnano.2013.73
http://dx.doi.org/10.1038/nnano.2013.73
http://dx.doi.org/10.1038/nnano.2013.73
http://dx.doi.org/10.1038/nnano.2013.73
http://dx.doi.org/10.1103/PhysRevLett.87.236601
http://dx.doi.org/10.1103/PhysRevLett.87.236601
http://dx.doi.org/10.1103/PhysRevLett.87.236601
http://dx.doi.org/10.1103/PhysRevLett.87.236601
http://dx.doi.org/10.1103/PhysRevB.66.035306
http://dx.doi.org/10.1103/PhysRevB.66.035306
http://dx.doi.org/10.1103/PhysRevB.66.035306
http://dx.doi.org/10.1103/PhysRevB.66.035306
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevB.78.075412
http://dx.doi.org/10.1103/PhysRevB.78.075412
http://dx.doi.org/10.1103/PhysRevB.78.075412
http://dx.doi.org/10.1103/PhysRevB.78.075412
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1126/science.1222360
http://dx.doi.org/10.1103/PhysRevLett.107.236804
http://dx.doi.org/10.1103/PhysRevLett.107.236804
http://dx.doi.org/10.1103/PhysRevLett.107.236804
http://dx.doi.org/10.1103/PhysRevLett.107.236804



