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Lattice thermal transport in large-area polycrystalline graphene
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We study lattice thermal transport in large-area polycrystalline graphene, such as the samples grown by
chemical vapor deposition (CVD) of carbon on Cu. These systems are composed of single-crystalline grains
with a broad range of sizes and crystal orientations, separated by atomically rough grain boundaries. We
solve the phonon Boltzmann transport equation and calculate the thermal conductivity in each grain, including
scattering from the grain boundary roughness. Thermal transport in the large-area sample is considered in the
Corbino-membrane geometry, with heat flowing through a network of thermal resistors and away from a pointlike
heat source. The thermal transport in polycrystalline graphene is shown to be highly anisotropic, depending on
the individual properties of the grains (their size and boundary roughness), as well as on grain connectivity.
Strongest heat conduction occurs along large-grain filaments, while the heat flow is blocked through regions
containing predominantly small grains. We discuss how thermal transport in CVD graphene can be tailored by
controlling grain disorder.
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I. INTRODUCTION

Experiments have shown that suspended graphene has
high in-plane thermal conductivity—approximately 5 ×
103 W m−1K−1 at room temperature [1,2]. Theoretical calcu-
lations of the intrinsic thermal conductivity of graphene based
on the relaxation-time approximation [3–5], tight binding
[6], molecular dynamics (MD) [7,8], and the ballistic ap-
proximation [9] all confirmed the superior thermal properties
found in experiment [10]. It was subsequently discovered
that the interactions between graphene and the substrate
dramatically reduce the thermal conductivity of supported
samples relative to their suspended counterparts [11]. The
ballistic thermal conductivity of graphene was calculated
assuming coherent transmission between ideal reservoirs and
reported to be isotropic in the plane of the monolayer sheet
[12]; however, when graphene is cut into nanoribbons, direc-
tional anisotropy of the in-plane thermal conductivity emerges
[13–15]. Moreover, disorder in the form of edge roughness
has been shown to dramatically reduce the lattice thermal
conductivity of nanoribbons relative to its value in large flakes
[6–8,15].

Most of the aforementioned measurements relied on small
graphene samples exfoliated from graphite. However, practical
application of graphene require large-area samples, such as
those grown by chemical vapor deposition (CVD) of carbon
on a thin-film, transition-metal catalyst like Cu [16]. The
CVD process can produce large-area sheets of monolayer
graphene [17], opening doors to its widespread use in practical
applications ranging from wafer-scale device integration to
transparent electrodes for touchscreen displays. Retaining the
superior transport properties of monolayer graphene, including
its record-high thermal conductivity, is highly desirable for
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many applications; however, CVD graphene is polycrystalline
(unlike its single-crystalline exfoliated counterpart) with
single-crystal grains of sizes (diameters) ranging from a few
nanometers to several microns, woven together into a rich
“patchwork quilt” [18].

Measurements have demonstrated that the grain size distri-
bution in polycrystalline graphene has a roughly exponential
profile, with numerous smaller, few-nanometer-sized grains
clustering around fewer relatively large, micron-sized grains
[19,20]. Thermal conductivity of suspended CVD graphene
was found to be lower than in single-crystalline samples, with
values at room temperature of approximately 2600 W m−1 K−1

[21,22]. Still, thermal transport in polycrystalline graphene
remains dominated by phonons [10,23], while the electronic
contribution is negligible, similar to thermal transport in
granular semiconductors [24] and in contrast to granular metals
[25]. Vlassiouk et al. [26] measured the thermal conductivity of
CVD graphene grown at different temperatures and therefore
possessing varying degrees of disorder, which translates into
varying characteristic domain (average grain) sizes. They
found thermal conductivity to be a weak function of the domain
size, with values ranging from 100 to 1000 W m−1 K−1,
depending on both the domain size and whether the data were
extracted from the Raman peak shift or the Stokes/anti-Stokes
ratio [26]. Faugeras et al. [27] similarly found the thermal
conductivity of CVD graphene based on Stokes/anti-Stokes
ratio in a Corbino membrane geometry to be approximately
600 W m−1 K−1.

Grain boundaries are expected to reduce thermal conduc-
tivity in two ways: by scattering phonons due to boundary
roughness and by introducing a mode mismatch across the
grain boundary (yielding the Kapitza resistance). Molecular
dynamics calculations produced a boundary conductance
(the inverse of the Kapitza resistance) in the range of 15
to 45 GW m−2 K−1, significantly higher than any thermal
interface conductance reported in the literature [28]. Lu and
Guo [29] used the nonequilibrium Green’s function (NEGF)
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technique together with the Brenner potential to study the
Kapitza boundary conductance of tilted grain boundaries
and found values in close agreement with the MD results
(16.4 GW m−2 K−1 independent of the tilt angle). A direct
comparison between MD and NEGF results is made difficult
by the fact that NEGF calculations typically ignore anharmonic
phonon interactions. Serov et al. [30] also used the NEGF
technique for phonons to study graphene nanoribbons (GNRs)
with tilt grain boundaries (GBs) and line defects (LDs).
They found the transmission values for single GBs and LDs
ranging from 50% to 80% of the ballistic thermal conductance.
The ballistic thermal conductance per unit area of graphene,
Gbal ≈ 4.2 GW m−2 K−1, can be obtained from the Landauer
formula, under the assumption that graphene is placed between
two thermal reservoirs with a small difference in temperature,
each injecting a thermal distributions of phonons, and that,
owing to the absence of scattering, each phonon manages to
carry all of its energy between the injecting and collecting
contacts (see, e.g., [30]). Considering that this upper bound
(ballistic) thermal conductance is significantly lower than the
Kapitza conductance of grain boundaries found by Bagri et al.
[28] and Lu and Guo [29], Serov et al. [30] concluded that the
earlier Kapitza results may have overestimated the interface
conductance. Using the relaxation time approach together
with a single average grain size, Serov et al. [30] related
the transmission function from their NEGF calculations to
the phonon relaxation time in order to obtain the thermal
conductivity of supported polycrystalline GNR interconnects
and found a strong dependence on the average grain size, with
thermal conductivity ranging from 100 to 600 W m−1 K−1,
following a trend similar to the dependence of thermal
conductivity in single-crystalline GNRs on their width [31,32].

However, no study to date has gone beyond single tilt
GBs or LDs to address the role of structural morphology and
sample-scale disorder on thermal conductivity. Sample-scale
disorder is clearly seen in CVD samples in two forms: one is a
random variation of grain size, shape, and crystal orientation,
while the other is boundary roughness along the GBs [33]. Both
forms of disorder are expected to affect thermal conductivity.
Grain boundary roughness (GBR) scatters phonons, which
reduces their mean-free path (mfp) from its intrinsic value in
single crystalline graphene, similar to the effect of interfaces
in layered three-dimensional (3D) materials like superlattices
[34]; this aspect will lead to a grain-size dependence of
thermal conductivity. On the other hand, grain-size variation
leads to a nonuniform phonon mfp and, consequently, to local
variations in the lattice thermal conductivity, analogous to 3D
nanocomposites [35]. Neither of these two effects have been
explored in two dimensions (2D).

In this paper we explore in-plane lattice thermal transport
in large-area polycrystalline graphene. We demonstrate the
sensitivity of the lattice thermal conductivity to the properties
of grains and grain boundaries, in particular the grain size and
boundary roughness. Rather than assuming a grain boundary
scattering with a single representative grain size, we divide
the 2D graphene sheet into grains of varying sizes using
a Voronoi tessellation. We derive a solution to the phonon
Boltzmann transport equation (pBTE) for a single grain with
partially diffuse grain boundaries in the presence of competing
internal scattering from umklapp phonon-phonon, isotope,

and impurity scattering processes by extending our earlier
model for phonons in GNRs [31]. Based on this solution,
we compute the lattice thermal conductivity in each grain of
the large polycrystalline CVD graphene sheet. Based on the
heat flux continuity equation for each grain, we iterate the
temperature profile until a steady state is reached. Thermal
transport in polycrystalline graphene samples is found to
be highly anisotropic and to depend strongly on both the
individual properties of the grains, i.e., their size and boundary
roughness, as well as on their relative positions and grain
connectivity.

This paper is organized as follows: In Sec. II we describe
the 2D Voronoi tessellation used to create a polycrystalline
graphene sheet in the simulation, with a grain size distribution
faithful to experiment. In Sec. III we solve the pBTE for
a single grain and introduce an effective GBR scattering
rate (Sec. III A), derive the thermal conductivity for a single
grain (Sec. III B), and describe how to obtain the steady-state
temperature distribution based on the heat flux continuity
equation (Sec. III C). Results are presented in Sec. IV. We
conclude with a summary and some final remarks in Sec. V.

II. 2D VORONOI TESSELLATION FOR
POLYCRYSTALLINE GRAPHENE

Since CVD graphene grows from many nucleation points
on the Cu thin film, we envision the growth process as the
grains expanding uniformly and isotropically outward from
each nucleation point until two adjacent patches of graphene
begin to meet [36]. At the contact point the growth halts
and a GB forms perpendicular to the line connecting the
two nucleation points. Such growth can be captured using
a Voronoi tessellation (VT) of the 2D space. The 3D VT
has been used widely to model the structure and transport in
polycrystalline and nanocomposite materials such as ZnO [37]
and SiC [38], but it has not yet been applied to mathematically
model the grain structure of CVD graphene. The VT is a
mathematical dual to the standard and widely used Delauney
triangulation [39] (which often forms the discretization used in
the popular finite-element method), and is based on exactly the
same process as how we envision the growth of CVD graphene:
The VT starts with a set of seed points in the 2D plane and
determines a division of space into distinct, nonoverlapping
polygons, following the same rules of construction of Wigner-
Seitz cells [40], except on the scale of grains instead of lattice
cells.

A common and efficient way of determining the VT is to
start from each point and grow radially outward until two
neighboring areas meet and begin to overlap [39], which
mimics the CVD growth process and produces grains which
visually resemble the images of CVD grown graphene (Fig. 1).
Once the VT is determined, several key properties can be
calculated from it, including the characteristic size of each
grain (defined by the square root of its area Si) and the
resulting distribution of grain sizes. In order to reproduce
the exponential behavior of the size distribution which was
observed experimentally [20], we find that the locations of
the starting points in 2D space (the “nucleation” points)
from which the VT is calculated has to be clustered rather
than distributed uniformly at random, as the uniform random
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FIG. 1. (Color online) Grains in polycrystalline graphene com-
puted based on the 2D Voronoi tessellation. Inset shows a phonon
traveling through a polycrystalline sample, encountering rough
grain boundaries. Grain boundaries are shown with � = 1 nm rms
roughness. D denotes the distance a phonon mode with wave vector
�q has traveled inside a particular grain.

distribution leads to a Poisson-Voronoi process [41]. As shown
in Fig. 1, we group the points into clusters with 50 points
each. Around the center of each cluster, points in each cluster
have a normal (Gaussian) distribution of positions. We have
found that distributing cluster centers uniformly at random
often leads to a clustering of clusters, which results in a final
distribution of grain sizes that is closer to the log-normal
than the experimentally relevant exponential distribution.
Therefore, we place cluster centers on a triangular lattice,
with a typical center distance of 2 μm. Such cluster center
placement gives each cluster optimal room and minimizes
their overlap, and results in the final grain size distributions
well aligned with experiment [18,20], as depicted in Fig. 2.
The resulting grains often resemble deformed and elongated
rectangles due to the clustering. As shown by Bartkowiak and
Mahan [37], an ordered hexagonal lattice has coordination
number six (every grain has six neighbors). As disorder grows,
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FIG. 2. (Color online) Histogram of a grain-size distribution
obtained based on the Voronoi tessellation, which corresponds
closely with experiment. The distribution represents a 10 × 10 μm2

polycrystalline graphene sheet with 5000 grains and an average grain
diameter of about 120 nm.

the formation of grains with larger and smaller coordination
numbers can occur, resulting in grains as few as three neighbors
(having triangular shape). However, we have confirmed that
the average number of neighbors remains close to six even
with increased disorder due to clustering.

III. PHONON TRANSPORT MODEL

Since the dominant carriers of heat in graphene are phonons,
we focus on the lattice component of thermal conductivity and
neglect the relatively small electronic contribution [10,23].
At room temperature in graphene, the dominant phonon
wavelength for thermal transport purposes is about 2–3 nm,
while the typical grain size (see Fig. 2) is about 120 nm.
A typical phonon is much “smaller” than a typical grain,
so the semiclassical transport picture is justified. Therefore,
we model lattice thermal transport in each grain of the
polycrystalline structure by using the linearized pBTE. Our
approach to solving the pBTE is broken into several steps. The
grain structure of the polycrystalline graphene, as modeled
by the Voronoi tessellation, represents a natural discretization
of the problem. Therefore, we will first solve the pBTE for
an individual grain in order to obtain the expression for the
thermal conductivity tensor for each grain. We focus here on
the effects of roughness at the grain boundaries on the lattice
thermal transport, as captured by the spatial variation in the
phonon distribution function. In a steady state, the phonon
distribution function Nb,�q(x,y) is a function of the phonon
branch b, wave vector �q, and position in the 2D xy plane and
is governed by the time-independent pBTE:

�υb,�q · ∇Nb,�q(x,y) = −Nb,�q(x,y) − N0
b,�q(T )

τ int
b,�q

, (1)

where τ int
b,�q is the total relaxation time due to all internal

scattering mechanisms, including umklapp phonon-phonon,
isotope, impurity, and, for supported graphene samples, sub-
strate interactions. Based on our past work [15,31], we obtain
τ int

b,�q in the usual single-mode relaxation time approximation
(SM-RTA). Although the SM-RTA does not fully capture
the details of all the anharmonic phonon-phonon scattering
in intrinsic graphene [42], in particular the redistribution of
modes due to normal phonon scattering [43], it is adequate for
our purposes since our previous work has shown it to produce
accurate results for finite-sized samples in the presence of edge
roughness scattering in both suspended [15] and supported [31]
GNRs. We note, however, that the derivation that follows is
independent of how τ int

b,�q is calculated, whether by SM-RTA or
iteratively.

Under small applied temperature gradients, the steady-
state solution of the pBTE has two components: one arising
from the temperature variation due to the neighboring grains
having different temperatures, and a second component due
to the spatial variation arising from phonon scattering at the
rough grain boundaries [44]. Therefore, we write Nb,�q(x,y) =
N0

b,�q(T ) + nb,�q(x,y), where N0
b,�q(T ) captures the effect of

position-dependent temperature T (x,y), while the second term
nb,�q(x,y) captures the more “explicit” position dependence
originating from GBR scattering. Introducing this partition
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into the time-independent pBTE (1), we obtain

(�υb,�q · ∇T )
dN0

b,�q (T )

dT
+ �υb,�q · ∇nb,�q(x,y) = −nb,�q (x,y)

τ int
b,�q

.

(2)
Before introducing the grain boundaries, let us consider the
homogenous case and a phonon mode (b,�q) propagating
from (x0,y0) a distance d to (xd,yd ) in the direction of
mode velocity �υb,�q . In the absence of grain boundaries, the
steady-state solutions at any two points along the direction of
propagation have to be equal, nb,�q(x0,y0) = nb,�q(xd,yd ), oth-
erwise phonons would either be accumulated [if nb,�q(x0,y0) >

nb,�q (xd,yd )] or depleted [if nb,�q(x0,y0) < n�q(xd,yd )] in the
region between (x0,y0) and (xd,yd ). Consequently, nb,�q(x0,y0)
has to be constant along the direction of propagation, which
implies that �υb,�q · ∇nb,�q(x,y) = 0 and the solution has the
familiar homogeneous “bulk” form with no explicit position
dependence:

nbulk
b,�q = −τ int

b,�q (�υb,�q · ∇T )
dN0

b,�q (T )

dT
. (3)

Once grain boundaries are introduced, the solution becomes
position dependent along the direction of propagation of the
phonon mode (b,�q) because of two competing processes:
One is scattering at the grain boundaries, which partially
randomizes the direction of propagation of the incoming
phonons, and the other is scattering inside the grain. If there is
a grain boundary at a point (x0,y0), the solution inside the grain
starts from the boundary value at (x+

0 ,y+
0 ) and approaches the

bulk value in Eq. (3) away from the boundary [31],

nb,�q (xd,yd ) = nbulk
b,�q

[
1 − exp

(−d/�int
b,�q

)]
+ nb,�q (x+

0 ,y+
0 ) exp

(−d/�int
b,�q

)
, (4)

for a phonon wave leaving the boundary at (x0,y0) and traveling
a distance d in the direction of �υb,�q . Inside the grain, phonons
will scatter due to interactions with other phonons, isotopes,
impurities, and, for supported samples, substrate interactions;
these interactions are captured by the mfp due to internal
scattering, �int

b,�q = υb,�qτ int
b,�q .

At the grain boundary phonons will interact with the
atomic-scale roughness, which is formed at the boundary
during the growth [33]. Some fraction p�q of the incoming
phonons will pass through unscattered, while the rest (1 − p�q)
will be absorbed by the boundary and re-emitted in a random
direction (diffuse part). The following boundary condition
holds for partially coherent transmission of the phonon wave

Nb,�q(x+
0 ,y+

0 ) = p�qNb,�q(x−
0 ,y−

0 ) + [1 − p�q]N0
b,�q(T ), (5)

where + and − superscripts refer to just before and just after
the grain boundary at (x0,y0), respectively, and N0

b,�q(T ) is the
equilibrium Bose-Einstein phonon distribution. Based on our
previous work on phonon scattering from rough boundaries in
graphene ribbons [15,31], we employ a momentum-dependent
specularity parameter

p�q = exp(−4q2�2 sin2 �GB). (6a)

As originally proposed by Graebner et al. [45], p�q represents
the fraction (0 � p�q � 1) of unscattered phonons to the total
number of phonons that impinge on the rough boundary with

a given rms roughness height (�). This expression allows us
to connect the specularity parameter p�q directly to the rms
magnitude of the GBR �, the phonon wave vector �q, and the
angle �GB between the incident phonon and the normal to
the grain boundary, so that GBR scattering has the expected
dependence on the phonon wavelength: Large wavelengths
pass through unaffected, while small wavelengths scatter
diffusely from the GBR. We assume that �GB is random,
obeying a uniform distribution, and we average p�q to obtain
its effective value as

p̄q = 1

2π

∫ 2π

0
p�qd�GB = e−2q2�2

I0(2q2�2), (6b)

where I0 is the modified Bessel function of the first kind.
We return now to consider the number of phonons entering

the grain at (x0,y0) and leaving it at (xD,yD), where the distance
D is the distance traveled by a phonon in mode (b,�q) inside
that grain before reaching the next grain boundary (Fig. 1).
Substituting Nb,�q(x0,y0) = N0

b,�q(T ) + nb,�q(x0,y0) into Eq. (5),
we find the boundary condition on the spatially varying part
of the solution as nb,�q(x+

0 ,y+
0 ) = p�qn�q(x−

0 ,y−
0 ). Since the

solution for mode (b,�q) is not directly dependent on other
modes (other than through phonon-phonon scattering, which
is captured at the level of the internal mfp �int

b,�q), the number of
phonons in mode (b,�q) entering the grain at (x0,y0) has to equal
the number leaving it at (xD,yD) in order for the solution to
be in steady state. In other words, nb,�q(x−

0 ,y−
0 ) = nb,�q (x−

D,y−
D),

from which we obtain nb,�q(x+
0 ,y+

0 ) = pb,�qn�q(x−
D,y−

D) by using
the boundary condition at (x0,y0). Introducing this expression
into Eq. (4) allows us to solve for nb,�q as

nb,�q(xD,yD) = nbulk
�q

[
1 − (1 − p̄q) exp

( − D/�int
b,�q

)
1 − p̄q exp

( − D/�int
b,�q

)
]

. (7)

The solution in the presence of grain boundaries is lower than
the bulk solution, which will translate into the polycrystalline
graphene having lower thermal conductivity than its single-
crystalline counterpart. The reduction will be grain specific,
and will depend on the sizes of individual grains (through D)
and on GBR (through p̄q).

A. Effective GBR scattering rate

An effective scattering rate �GBR
i due to the interactions

of phonons with the GBR in the ith grain can be defined by
averaging the solution in Eq. (7) over the grain [44,46]

�int
b,�qn

bulk
b,�q = [

�int
b,�q + �GBR

i,b,�q
]〈nb,�q (x,y)〉. (8)

Here 〈· · · 〉 denotes a spatial average over the grain. Combining
Eqs. (3) and (8) with the pBTE from Eq. (2) we obtain for the
GBR rate

�GBR
i,b,�q = 〈�υb,�q · ∇nb,�q (x,y)〉/〈nb,�q (x,y)〉,

which is evaluated analytically to obtain the final expression
for the effective GBR scattering rate

�GBR
i,b,�q = υb,�q

Di

Fi,b,�q

/[
1 − �int

b,�q
Di

Fi,b,�q

]
, (9)

with Di being the average distance a phonon travels inside
the ith grain. Adamyan and Zavalniuk [47] showed that Di
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can be related to the surface area of the grain Si , calculated
for each grain from the VT, as Di = f

√
Si , where f is the

dimensionless form factor which captures the particularities
of the specific geometry of each grain. (For grains roughly
approximated as disks, f = 8

3π3/2 ≈ 0.48.) Parameter Fi,b,�q
captures the competition between GBR scattering and internal
scattering:

Fi,b,�q = (1 − p̄q)
[
1 − exp

(−Di/�
int
b,�q

)]
1 − p̄q exp

(−Di/�
int
b,�q

) . (10)

The GBR scattering rate �GBR
i,b,�q in Eq. (9) can be added to the

rates due to other scattering processes internal to the grain
to obtain the total scattering rate of mode (b,�q) in grain i as
�i,b,�q = �int

b,�q + �GBR
i,b,�q [31].

Let us put this result in a broader context: We solved the
pBTE with internal scattering mechanisms (phonon-phonon
and mass difference) while we introduced rough GBs through
boundary conditions on phonon mode occupations. It turns
out that, from the total phonon occupation in the presence of
rough GBs, we can extract a single effective grain boundary
scattering rate, which captures the interplay between internal
and boundary scattering [34] and is sensitive to how large a
grain is with respect to the bulk mean-free path of a given mode.
The effective GB scattering rate therefore differs for large and
small flakes: For a mode that scatters many times between
two boundaries (Di/�

int
b,�q � 1), �GBR

i,b,�q = υb,�q
Di

(1 − p̄q), which
is a well-known expression for single-boundary scattering,
i.e., the phonon “forgets” about the first boundary before
reaching the second. In contrast, for modes that move almost
ballistically between the two GBs (Di/�

int
b,�q � 1), we obtain

�GBR
i,b,�q = 2υb,�q

Di

1−p̄q

1+p̄q
, which is a well-known expression derived

by Ziman [48]. Considering that the mean-free path due to
internal scattering in single-crystalline suspended graphene is
of order 600–700 nm [31,49] and the average grain size is about
120 nm, phonon scattering inside a grain happens infrequently.

B. Thermal conductivity of individual grains

Once the total phonon lifetime τi,b,�q = �−1
i,b,�q has been

computed, the thermal conductivity κi of grain i is obtained as
a sum over all phonon modes [5,50],

κi(T ) = �

Siδ

∑
b,�q

υ2
b,�qτi,b,�qωb,�q

dN0
b,�q (T )

dT
, (11)

where δ = 0.335 nm is the thickness of the graphene mono-
layer [15], Si is the surface area of grain i, and υb,�q and
ωb,�q are the phonon group velocity and vibrational frequency
calculated from the full phonon dispersion based on the
nearest-neighbor force constant model [51,52].

C. Thermal resistor network

In the steady state, the net heat flux through the boundary
of each grain must be zero. Therefore, fluxes in and out of its
neighbors and any external heating source Qi applied to ith
grain must add to zero. This assertion allows us to calculate

the temperature Ti inside the ith grain from∑
j=n.n.

Gij (Ti − Tj ) + SiQi = 0, (12)

with the summation index j running over all the grains
that neighbor grain i. The thermal conductance Gij between
neighboring grains i and j is given by the usual expression

Gij = [diκi(Ti) + djκj (Tj )]Aij

d2
ij

. (13)

Here dij = di + dj is the distance between the centers of the
two grains, i.e., the length of the straight line connecting the
two centers, while di and dj are the lengths of the line’s
segments inside the ith and j th grains, respectively. Aij is
the area of the grain contact region given by the product of
the length of the grain boundary lij separating the two grains
and the thickness of the graphene sheet Aij = lij δ. This way
we effectively obtain a thermal resistor network, which can
be solved iteratively, repeatedly updating the temperature of
each grain based on the past values of the temperatures of its
neighbors until convergence [53]. We stress that the effect of
the grain boundary roughness scattering on heat transport is
captured within the thermal conductivity of each grain. We
assume there is no interface thermal resistance, because all
grains are of the same material and have the same acoustic
impedances. We do not account for interface resistance that
might stem from grain misorientation.

IV. RESULTS

We consider a polycrystalline graphene sample of dimen-
sions 10 μm × 10 μm. The graphene layer consists of 5000
grains, which were generated according to an experimentally
relevant distribution (Fig. 2), with the average diameter of
about 120 nm. The rms roughness of each grain boundary is
assumed to be � = 1 nm.

The thermal transport geometry we consider is similar to the
Corbino membrane from Ref. [27]. We assume that graphene is
placed on a substrate that has a circular opening of radius 4 μm.
The coordinate origin in the simulation domain is the point
on the graphene sheet right above the center of the circular
opening; r is the in-plane radial coordinate. The substrate acts
as a heat sink and is kept at 300 K, thereby our boundary
condition on temperature is T (r � 4 μm) = 300 K. We apply
a heat source Q to the grains inside a radius r1 = 1 μm around
the center and allow heat to diffuse. Q is determined, upon
iteration of the temperature, to ensure the peak temperature
in the center to be 20 K above the temperature of the heat
sink. Convergence is reached when the total flux entering each
grain equals the flux leaving it and the temperatures of all
grains reach a constant value. Figure 3 shows a steady-state
temperature profile.

Once the temperatures reach a steady state, we extract the
effective thermal conductivity in a manner analogous to the
experimental setup using the radial heat flow method. We
calculate the temperature profile T1 at all points along an
inner ring of radius r1 = 1 μm and T2 along an outer ring of
radius r2 = 3 μm to obtain an effective thermal conductivity
as κeff = Q log(r2/r1)

2π(T1−T2) . Now, if the sample were uniform and the
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FIG. 3. (Color online) Steady-state temperature profile, repre-
sented by color (red is high, blue is low; color bar is in degrees Kelvin)
in the 10 μm × 10 μm polycrystalline graphene sample. Black lines
show the grain boundaries. Temperature is resolved at the level of
individual grains.

heat flow radial, picking any two points on the circles with radii
r1 and r2 would yield the same effective thermal conductivity.
But, in a polycrystalline sample there will be anisotropy, so it
is interesting to see how κeff depends on the direction of heat
flow: We pick points from the r1 and r2 circles at a given angle
� with respect to the x axis and evaluate κeff .

The computed values of κeff at room temperature, presented
in Fig. 4, show a very strong directional anisotropy, with
values ranging from 350 W m−1 K−1 in some directions all
the way up to 1500 W m−1 K−1 in others. The average over
all directions, which is the value for which it makes sense to
make comparisons to experimental results, is 600 W m−1 K−1,
in agreement with the results form Refs. [26,27]. However,
the computed values are very sensitive to the amount of
grain boundary roughness �, assumed here to be 1 nm, and
the relative topology of the grains. The results presented in
Fig. 4 represent only one of an infinite number of different
arrangements of grains with varying positions and connections
resulting from different possible ways to tesselate the graphene
sheet. Even when we fix the size distribution to reproduce the
experimental results, as we have done in this study, the number
of different arrangements of grains having that size distribution
is staggering. Nonetheless, for a given size distribution, all the
possible variations will be bounded between two extremes:
A series average of thermal conductivity over the grains will
produce a lower bound dominated mainly by the many small
grains, while a parallel average without the self-consistent
iteration of heat flux will provide an upper bound dominated
by the large heat flux of the small number of large grains in
the tail of the size distribution.

In Fig. 5 we compare the thermal conductivity calculated
for the grain distribution depicted in Fig. 3 and over a range
of temperatures with the experimental data taken from Cai
et al. [21]. The two sets of experimental data, depicted
in triangles and circles, were obtained from micro-Raman
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FIG. 4. Polar plot of the directional dependence of thermal
conductivity in large-area polycrystalline graphene, showing large
anisotropy due to the variation in the relative positions and sizes of
grains. The polar angle � denotes the direction of heat propagation
with respect to the x axis from Figs. 3 and 6, while the radial
coordinate corresponds to the magnitude of thermal conductivity
(concentric circles with radii in 500 W/m K increments are shown).

spectroscopy and correspond to two different objectives used
to focus the laser [21]. In the calculations we assume � =
0.5 nm because this value produced better agreement with the
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FIG. 5. (Color online) Comparison of the calculated thermal
conductivities (curves) with experimental data for suspended CVD
graphene taken from Ref. [21] (symbols). The two sets of experi-
mental data (triangles and circles) were obtained from micro-Raman
spectroscopy using two different objectives to focus the laser. The
black solid curve corresponds to the grain size distribution depicted in
Fig. 3 and κeff was obtained upon the temperature iteration described
in Sec. III C. For the same collection of grains, the upper limit
to thermal conductivity would be obtained by connecting them in
parallel (dashed blue line). The lower limit corresponds to the same
collection of grains in series (dashed red line). Results from the
effective medium theory (a single grain having the same average
diameter) are presented by the black dash-dot curve.
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FIG. 6. (Color online) Spatial profile of the normalized heat flux
magnitude, represented by color (red is high, blue is low). The grain
distribution is the same as in Fig. 3.

experimental data. The black solid curve represents the data
obtained after the temperature iteration procedure described
in Sec. III C; note that curve passes through all the error
bars on the measured data. For the same collection of grains,
we present the thermal conductivity that corresponds to all
the grains connected thermally in series, based on thermal
conductivities of grains alone (dashed red curve); this type
of connection puts a lower bound on the conductivity for a
given set of grains. Also, we present the thermal conductivity
data for all grains connected in parallel (blue dashed curve),
which puts an upper bound on the conductivity. Note that the
experimental data (with error bars) is below our calculated
in-parallel curve, which is an indication that our grain size
distribution is realistic. Moreover, differently connected grains
would result in quantitatively different thermal conductivity;
however, considering the large experimental error bars, a
number of grain distributions would likely give reasonable fits,
quantitatively slightly different but qualitatively the same as
the black curve, which corresponds to one specific distribution.
For reference we also show the results from the effective
medium theory, calculated with a single grain of the same
average diameter as our grain size distribution and plotted in
a dash-dot black curve in Fig. 5.

The importance of grain connectivity can be illustrated
via the strong directional anisotropy of the normalized heat
flux magnitude, shown in Fig. 6. H̃i , the normalized heat flux
magnitude of grain i, is defined here as the sum of the absolute
values of all the fluxes entering or leaving each grain through its
boundaries with other grains, Hi = ∑

j Gij |Ti − Tj |, divided

by the largest value maxi{Hi}. Larger grains typically carry
larger heat flux due to the size-dependent thermal conductivity.
It is also evident that size alone does not determine the relative
contribution to heat conduction. When larger grains neighbor
each other and are interconnected, they exchange more heat,
thus leading to a form of filamentation: Chains of larger grains
contribute to stronger thermal transport, while those grains that
are surrounded by smaller ones contribute comparatively less
to the overall thermal transport, as evidenced by the smaller
normalized heat flux through them. We conclude that both
structural morphology and grain connectivity have a strong
effect on thermal transport, analogous to their impact on
electronic transport in polycrystalline graphene [54].

V. CONCLUSION

We studied thermal transport in large-area (10 μm ×
10 μm) polycrystalline graphene samples, such as those
commonly grown by CVD on Cu. We developed a model for
the grain structure of CVD graphene based on a 2D Voronoi
tessellation. To analyze thermal transport in polycrystalline
graphene, we solved the phonon Boltzmann transport equation
for phonons in a single grain with a generally rough grain
boundary, used that result to compute the thermal conductivity
in each grain, and lastly iterated the temperature distribution
over the large-scale sample based on the heat flux continuity
equation for each grain in order to obtain a steady-state
temperature profile. Based on our results, we conclude that
thermal transport in polycrystalline graphene samples is highly
anisotropic and depends strongly on both the individual
properties of the grains, i.e., their size and boundary roughness,
as well as one their relative positions and interconnections.

Controlling disorder in the form of roughness and grain size
distribution is an effective way to tailor the thermal properties
of CVD graphene. We envision further customization of heat
flow in CVD graphene by controlling the growth of individual
grains, which has been experimentally demonstrated [36],
and patterning the samples in order to block or conduct
heat in particular directions. This effect can be achieved
either by controlling the distribution and positions of the
areas containing small, few-nanometer-sized grains which
efficiently block the flow of heat, or by taking this approach
to the extreme and patterning holes in the sample along those
directions in which we wish to block the flow of heat. Doing
so would produce thermal conduits and allow for a form of
thermal interconnects which, combined with graphene-based
thermal rectifiers [55,56], form the building blocks of thermal
circuits.
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