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Local temperature of out-of-equilibrium quantum electron systems
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We show how the local temperature of out-of-equilibrium, quantum electron systems can be consistently
defined with the help of an external voltage and temperature probe. We determine sufficient conditions under
which the temperature measured by the probe (i) is independent of details of the system-probe coupling, (ii) is
equal to the temperature obtained from an independent current-noise measurement, (iii) satisfies the transitivity
condition expressed by the zeroth law of thermodynamics, and (iv) is consistent with Carnot’s theorem. This
local temperature therefore characterizes the system in the common sense of equilibrium thermodynamics, but
remains well defined even in out-of-equilibrium situations with no local equilibrium.
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I. INTRODUCTION

Thermodynamics characterizes systems at equilibrium via
equations of state that depend on a few macroscopic vari-
ables, in particular, the temperature. The latter, not being
an observable in the dynamical sense, can be defined in
various ways. The zeroth law differentiates between classes
of thermodynamic states with different temperatures, and an
absolute temperature scale is introduced by the second law via
Carnot’s theorem. Maxwell relations express the temperature
as derivatives of thermodynamic potentials with respect to
the entropy. Fluctuation-dissipation theorems finally relate
the temperature to equilibrium fluctuations of observables
via associated response coefficients [1]. In equilibrium, these
definitions are consistent with one another.

The framework of thermodynamics, and the concept of
temperature in particular have been extended to nonequilib-
rium systems under the assumption of local equilibrium [2].
However, it has proven far more challenging to generalize the
temperature concept to systems where the local equilibrium
hypothesis does not hold [3,4]. Without local equilibrium,
different temperatures are commonly obtained by different
measurement protocols [4]. The consensus is accordingly
that trying to extend the concept of temperature to out-of-
equilibrium thermodynamics can at best deliver an operational
definition.

In this manuscript, we revisit and shed new light on this
fundamental issue. We focus our investigations on coupled
electric and thermal transport in quantum conductors brought
out of equilibrium by voltage and temperature biases. We show
that, under certain conditions which we specify, a local tem-
perature can be consistently defined in this out-of-equilibrium
system in the sense that (i) the temperature is insensitive to
details of the measurement protocol; (ii) the same temperature
is given by at least two completely different measurements (in
our case, a direct thermal measurement and an electric noise
measurement); (iii) two systems independently at equilibrium
with a third one are also at equilibrium with one another;
and (iv) the measured temperature is absolute in the sense
of Carnot’s theorem. Our definition of a local temperature,

being consistent with most of the conditions satisfied by the
temperature of a thermodynamic system at equilibrium, goes
well beyond the operational definitions previously proposed.
Even though our approach is based on linear response, we
stress that the systems we treat do not have local equilibrium,
as can be seen, for instance, in Fig. 2 (see also Ref. [5]).

Our approach is inspired by the experimental thermom-
etry technique of scanning thermal microscopy [6], whose
resolution has recently been brought down to the nanometer
range [7]. The system’s local temperature is defined via an
external local probe weakly coupled to the system via a
tunnel barrier [8]. At its other end, the probe is connected
to a macroscopic reservoir whose chemical potential and
temperature are set such that neither electric nor heat current
flow between the probe and the system. The probe is thus in
local equilibrium with a system that is itself not at equilibrium.
In linear response, the probe temperature guaranteeing this
local equilibrium is unique, and we show that this temperature
locally characterizes the system in the sense of points (i)–(iv).
The local temperature remains consistently defined even when
there is no local equilibrium in the system itself. In particular,
quantum interference effects that destroy equilibrium on
scales comparable to the Fermi wavelength do not alter the
consistency of our definition.

The physics of electronic transport in quantum coherent
systems coupled to external probes dates back to Büttiker’s
work on dephasing [9]. Probes have been used to calculate local
electronic distributions [10] and local spin accumulations [11]
in such systems. The approach has recently been extended
to probe thermometry in voltage- and/or temperature-biased
structures [8,12–16], with several investigations focusing
on Fourier’s law [8,12–15]. Reference [16] investigated the
probe temperature of ac driven systems in the weak-driving,
low-frequency limit. Neglecting thermoelectric effects, it was
found that the temperature measured by the probe is the same as
the one extracted from a local fluctuation-dissipation relation.
Recently, local temperature measurements were investigated in
the more general case including thermoelectric effects, where a
closed-form analytic expression for the temperature was found
for open electrical circuits [8]. Effective temperatures have
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recently been defined from fluctuation-dissipation relations in
strongly correlated systems [17].

References [6–8,12–16] considered the probe temperature
as an operational definition of the local temperature of the
sample, without examining whether this definition satisfies
conditions obeyed by a temperature in the thermodynamic
sense. Here, we fill this gap by investigating the fundamental
issue of whether a local temperature can be consistently
defined in quantum electron systems out of equilibrium and
under what conditions this temperature is the same as that
measured by an external probe.

II. MODEL AND SCATTERING APPROACH TO
TRANSPORT

The system we investigate is sketched in Fig. 1. It is
an electronic system connected to external reservoirs where
electrons are thermalized and have a well defined Fermi-Dirac
distribution. One of the reservoirs is coupled to the conductor
via a tunnel probe, and both its temperature Tp and chemical
potential μp are set such that neither electric nor heat current
flow between the conductor and the probe. Thus the conductor
and the probe are in local equilibrium, even though the
conductor itself is not and may be traversed by heat and
electric currents. We emphasize that, out of equilibrium, the
temperature distributions of different microscopic degrees of
freedom (e.g., electrons and phonons) do not, in general,
coincide, so that one has to distinguish between measurements
of the electron temperature and the lattice temperature. To
keep our discussion as clear as possible, we consider here
transport mediated solely by electrons, but note that phonon
heat transport and the influence of electron-phonon coupling
can be incorporated as, e.g., in Refs. [18,19].

We use the scattering approach to transport [9,20,21] which,
in linear response, expresses the electrical current, I = eI (0),
and heat current, J = I (1), flowing from reservoir α into the
conductor as

I (ν)
α =

∑
β

[
L(ν,1)

αβ (μβ − μ0) + L(ν+1,1)
αβ

(
Tβ − T0

T0

)]
. (1)

Here, e is the electron charge and μ0 and T0 are the base
chemical potential and temperature, which we fix at their
equilibrium values. The sum over β runs over the transport
as well as the probe terminals. The linear response coefficients

FIG. 1. Schematic of a mesoscopic conductor connected to two
electron reservoirs via transport leads, and to a third reservoir via a
weakly coupled probe. The chemical potentials and temperatures in
all three reservoirs are indicated.

L are given by [21]

L(ν,λ)
αβ = 1

h

∫
dE (E − μ0)ν (−1)λ

(
∂λ
Ef

)
Aαβ(E) , (2)

where E is the energy, f = {1 + exp[(E − μ0)/kBT0]}−1

is the equilibrium Fermi-Dirac distribution and Aαβ(E) =
2Nα(E)δαβ − Tαβ(E), where Nα is the number of transport
channels in lead α and Tαβ = Tr(s†αβsαβ) is given by the sub-
block sαβ of the scattering matrix connecting lead β to α. The
trace in this latter expression is taken over both the electron spin
and the transport channels. For the currents, only coefficients
with λ = 1 in Eq. (2) matter; however, those with λ = 2 appear
in expressions for the current noise. Charge conservation and
gauge invariance are expressed mathematically by the unitarity
of the scattering matrix,

∑
α L

(ν,λ)
αβ = 0 = ∑

β L
(ν,λ)
αβ .

III. PROBE TEMPERATURE

In linear response, there is a single chemical potential μp

and temperature Tp ensuring I (0,1)
p = 0. The probe temperature

is

Tp

T0
=κ−1

pp

∑
α �=p

[(
L(0,1)

pp L(1,1)
pα − L(1,1)

pp L(0,1)
pα

)
μα

+ (
L(0,1)

pp L(2,1)
pα − L(1,1)

pp L(1,1)
pα

)Tα

T0

]
, (3)

with κpp = (L(1,1)
pp )2 − L(0,1)

pp L(2,1)
pp . Equation (3) applies to gen-

eral thermoelectric circuits (with voltage biases, temperature
biases, or both) and agrees with the previous result [8] for the
specific case of heat transport in an open electrical circuit. An
expression similar to Eq. (3) was derived in Ref. [22]. As an
example, a plot of Tp for an armchair graphene nanoribbon
with a thermal bias of 	T = 50 K is shown in Fig. 2(a).

IV. DEPENDENCE OF Tp ON PROBE-SYSTEM COUPLING

Let us first consider the case of single-channel probe-system
coupling. For this case, it was shown in Ref. [11] that the
subblocks sαp (and spα) of the scattering matrix factorize as
sαp = γ (E)s̃αp, with the (possibly energy-dependent) coupling
between system and probe encoded in γ (E) only. Thus
one has Tαp(E) = |γ (E)|2T̃αp(E). Next, we rewrite Eq. (2),
expanding the coefficients Aαβ about the equilibrium chemical
potential as

L(ν,1)
αβ = 1

h

∫
dE (E − μ0)ν (−∂Ef ) {Aαβ(μ0)

+(E − μ0) [∂EAαβ(μ0)] + O[(E − μ0)2]} . (4)

This expansion is consistent with the Sommerfeld expan-
sion leading, e.g., to Mott’s relation for the thermopower.
By symmetry, we have that the Aαβ(μ0) term contributes
when ν = 0 while the (E − μ0) [∂EAαβ(μ0)] term contributes
when ν = 1. Setting β = p, we factorize the coefficients
A in the integral in Eq. (4) and write ∂EAαp(μ0) =
|γ (μ0)|2 ∂EÃαp(μ0) + Ãαp(μ0) ∂E|γ (μ0)|2. When Ãαp(μ0)
∂E|γ (μ0)|2 � |γ (μ0)|2[∂EÃαp(μ0)], |γ (μ0)|2 factors out of
both the numerator and denominator of Eq. (3), in which
case the temperature measured by the probe is independent of
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(a)

(b)

(c)

FIG. 2. (Color online) Local temperature of an armchair
graphene nanoribbon probed by an atomically sharp Pt tip scanned
3.5 Å above the graphene plane. Here, μ0 = −0.15 eV from the Dirac
point, and a thermal bias 	T = 50 K is applied between hot and
cold electrodes forming an open electrical circuit. (a) Tp calculated
from Eq. (3); (b) T (noise)

p = Tp(1 + χ ) calculated from Eq. (8); (c)
Tp and T (noise)

p at the three points indicated in (a) as functions of
the tip-sample coupling Tr(�p), which we vary with an artificial
scaling factor multiplying the tunneling-width matrix �p. At this
scan height, the tip-sample coupling is mediated by two dominant
transmission channels, with an intrinsic Tr(�p) ∈ [3.6 μeV,24 meV]
over the image.

the strength and energy dependence of the coupling between
system and probe. Thus as long as linear thermoelectric effects
involving transmission from and to the probe are dominated
by the energy dependence of transmission coefficients inside
the system [as opposed to the energy dependence of γ (E)]
and when the system-probe coupling proceeds via a single
transport channel, Tp is independent of γ (E). This condition
is typically satisfied for tunneling probes, which have trans-
missions that vary over an energy scale in the 	 ∼ eV range.
Their energy dependence can therefore safely be ignored when

probing nanoelectronic systems whose transmission fluctuates
over a scale set by the Thouless energy ETh � 10−1 eV for a
typical system of linear size L � 10 nm.

V. CURRENT NOISE TEMPERATURE

The condition I (0,1)
p = 0 leading to Eq. (3) means that

time-averaged currents into the probe vanish; however, they
have nonzero time-dependent fluctuations. At equilibrium, a
well-known fluctuation-dissipation relation relates the zero-
frequency electric current noise power to the system’s equilib-
rium temperature, S = 4GkBT0 [23], with the linear conduc-
tance G of the system. We next use a Sommerfeld expansion
to show that a similar fluctuation-dissipation relation exists
between the probe temperature Tp and the noise of the electric
current between the system and the probe.

In the scattering approach, the electric current cross
correlation between terminals α and β is given by [24]

Sαβ

G0
=

∫
dE

∑
γ δ

Tr[Aγ δ(α)Aδγ (β)]

× [fγ (1 − fδ) + fδ(1 − fγ )] , (5)

where G0 = e2/h is the conductance quantum, and
Aγ δ(α,E) = 1αδαγ δαδ − s†αγ (E)sαδ(E) with the 2Nα × 2Nα

identity matrix 1α . Within linear response and with Eq. (2),
we obtain the current noise in the probe as

Spp = 4 G(μp,Tp) kBT (noise)
p , (6)

where

G(μp,Tp) =G0

[
L(0,1)

pp + L(0,2)
pp (μp − μ0)

+ (
L(1,2)

pp − L(0,1)
pp

) (
Tp − T0

T0

)]
(7)

is the sample-to-probe conductance evaluated at the local
electrochemical potential and temperature, and T (noise)

p =
Tp (1 + χ ) with

χ = − 1

2L(0,1)
pp

∑
α

[
L(0,2)

pα (μα − μ0) + L(1,2)
pα

(
Tα − T0

T0

)]
.

(8)

Equation (6) is the Johnson-Nyquist noise for an equilibrium
system with, however, T (noise)

p instead of Tp. Clearly, when the
system is at equilibrium, T (noise)

p = Tp, and a direct calculation
using the Sommerfeld expansion shows that when the system
is biased out of equilibrium, χ ∝ I (1)

p , implying T (noise)
p = Tp

when I (1)
p = 0. We conclude that the temperature Tp measured

at the probe is equal to the purely electrically measured
temperature T (noise)

p in the regime of validity of the Sommerfeld
expansion.

In order to illustrate these findings and to test their validity
under somewhat more general conditions typical of a realistic
tunneling probe, we calculate both Tp and T (noise)

p for an
armchair graphene nanoribbon probed by an atomically sharp
Pt tip (see Fig. 2). The tunnel coupling is mediated by the
s, p, and d orbitals of the apex atom of the tip, leading to a
coupling matrix �p between the system’s modes and the probe

035407-3



MEAIR, BERGFIELD, STAFFORD, AND JACQUOD PHYSICAL REVIEW B 90, 035407 (2014)

orbitals. We found that the overlap between the Pt orbitals and
the C π orbitals in graphene yields two dominant transmission
channels into the tip. The connection between the eigenvalues
of �p and the tunnel probabilities |γn(E)|2 is discussed, e.g.,
in Ref. [25]. For details of the model used for a scanning
thermoelectric probe of graphene, see Refs. [8,26].

It is apparent from Figs. 2(a) and 2(b) that the local
temperatures inferred from a direct thermal measurement and
from an independent current noise measurement are almost
identical. Indeed, the maximum value of the discrepancy χ

[cf. Eq. (8)] is just 0.0162. This agreement is remarkable,
especially since there is no local equilibrium, as indicated
by the short-wavelength coherent spatial oscillations of the
temperature (see Ref. [5] for additional information). Fig-
ure 2(c) shows Tp and T (noise)

p at three points within the sample
[indicated in Fig. 2(a)] as functions of the tip-sample coupling.
Despite the fact that the tip-sample coupling is effectively
mediated by two transmission channels in this case, both Tp

and T (noise)
p are seen to be essentially independent of Tr(�p)

over several orders of magnitude, confirming the analytical
argument given above.

VI. CONSISTENCY WITH THE ZEROTH LAW

We next use the same probe to sequentially measure the
local temperature of two different, independent two-terminal
systems. We assume that in the absence of bias, the two
systems are at equilibrium with one another, with, in particular,
the same equilibrium Fermi function, and that once they are
biased, there is at least a pair of positions x1 on system 1
and x2 on system 2 where the probe measures the same μp

and Tp. We then connect these two points by a transmission
line with the same transparency |γ (E)|2 as the probe (see
Fig. 3). We assume a weak coupling γ (E) and treat it to the
lowest order in perturbation theory, so that the transmission
coefficients between the two systems factorize as (we use
prime indices for system 2) Aαβ ′ = −Ãαp|γ (E)|2Ãpβ ′ , in
terms of the transmission coefficients Ã of the disconnected
systems.

FIG. 3. (Top) Two systems sequentially probed by the same probe
at local positions x1 and x2. (Bottom) Same systems as in the top panel
now connected by a transmission line locally coupled to the systems
at x1 and x2.

The currents flowing through the neck (I (ν)
+ from system 2

to system 1 and I
(ν)
− from 1 to 2) are

I
(ν)
+ = − 1

h

∫
dE (E − μ0)ν

∑
α=1,2

∑
β ′=1′,2′

Aαβ ′fβ ′ , (9a)

I
(ν)
− = − 1

h

∫
dE (E − μ0)ν

∑
α′=1′,2′

∑
β=1,2

Aα′βfβ . (9b)

Factorizing the transmission coefficients as indicated above,
using the unitarity condition

∑
α Aαβ = ∑

β Aαβ = 0, the
condition of vanishing currents at the probe I (0,1)

p = 0, and
a Sommerfeld expansion, we obtain the net currents I (ν) ≡
I

(ν)
+ − I

(ν)
− ,[
I (0)

I (1)

]
=

[
M a ∂E M

a ∂E M a M

]⎡
⎣μ′

p − μp

T ′
p − Tp

T0

⎤
⎦ , (10)

where M = h−1|γ |2Ãpp(μ0)Ã′
pp(μ0) and a = (πkBT0)2/3.

We see that I (ν) = 0, i.e., the two systems, once biased, are at
local equilibrium with each other when connected via points
where their probe temperature and chemical potential are
the same. This brings further consistency to the temperature
defined by the probe, in the sense of the zeroth law of
thermodynamics.

VII. CONSISTENCY WITH CARNOT’S THEOREM

The junction between the system and probe can act as a
heat engine when the temperature and chemical potential of
the latter are biased away from their local equilibrium values
μp → μp + δμ, Tp → Tp + δT . The resulting flow of heat
is accompanied by electrical work, and the efficiency of the
engine is η = −I (0)

p δμ/I (1)
p . To linear order, the currents are

given by

I (ν)
p = L(ν,1)

pp δμ + L(ν+1,1)
pp δT /T0 . (11)

They are identical to those for a two-terminal engine in linear
response, for which the maximal efficiency is

ηmax =
(√

1 + ZT − 1√
1 + ZT + 1

)
|δT |
T0

, (12)

with a dimensionless figure of merit ZT −1 =
L(0,1)

pp L(2,1)
pp /(L(1,1)

pp )2 − 1. We see that, aside from linear
transport coefficients, ηmax depends on the ratio of the
temperatures of the system and probe only, and therefore
defines an absolute temperature scale in the sense of Carnot’s
theorem.

VIII. CONCLUSION

We have shown that defining the local temperature of a
system out of equilibrium via an external thermal probe is
consistent with both the zeroth and second laws of thermody-
namics, as well as a fluctuation-dissipation theorem. Moreover,
the temperature is independent of the probe-sample coupling
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over a wide range of conditions within the tunneling regime.
Although our results were derived within linear response
theory, they apply to quantum systems lacking any local
equilibrium, such as that illustrated in Fig. 2, where the absence
of local equilibrium is signalled by the breakdown of Fourier’s
law.
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