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Quantum model of coupled intersubband plasmons
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We present a quantum model to calculate the dipole-dipole coupling between electronic excitations in the
conduction band of semiconductor quantum wells. We demonstrate that the coupling depends on a characteristic
length, related to the overlap between microscopic current densities associated with each electronic excitation.
As a result of the coupling, a macroscopic polarization is established in the quantum wells, corresponding to one
or few bright collective modes of the electron gas. Our model is applied to derive a sum rule and to investigate
the interplay between tunnel coupling and Coulomb interaction in the absorption spectrum of a dense electron
gas.
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I. INTRODUCTION

Intersubband transitions in quantum wells are widely ex-
ploited in optoelectronic devices for the mid- and far-infrared
domain, such as quantum cascade lasers [1] and detectors [2].
The properties of these devices can be described in a single-
particle picture [3] and are essentially based on two quantum
phenomena: electronic confinement and tunneling. However,
intersubband transitions are an intrinsically collective phe-
nomenon, involving large densities of interacting electrons [4].
The most important manifestation of this collective character
is the fact that, in the presence of electromagnetic radiation,
each electron is affected by an effective field induced by the
excitation of the other electrons, called a depolarization field
[3,4]. When a single subband is occupied, this results in a
blue shift of the absorption peak with respect to the transition
frequency, corresponding to the excitation of a collective mode
of the system, the intersubband plasmon [5]. The effect of
the depolarization field is even more spectacular in a highly
doped quantum well, when several subbands are occupied.
In this case, the measured optical spectrum consists of a
single resonance, whose energy is completely different with
respect to the bare intersubband transitions [6]. This resonance
corresponds indeed to the excitation of a collective mode of the
system, the multisubband plasmon, resulting from the phase
locking of all the different intersubband transitions.

Even though the study of many-body effects in the optical
response of an electron gas has been the object of a vast litera-
ture [4,5,7–13], its application to optoelectronic intersubband
devices is very limited [14]. Yet, devices fully exploiting the
collective character of intersubband transitions have an enor-
mous potential, as intersubband and multisubband plasmons
have the properties of a superradiant state, issued from the
coherent superposition of a huge number of oscillating dipoles
[15,16]. In order to develop new devices based on these states,
a new quantum engineering of the collective, rather than the
single-particle, states has to be constructed. In particular, one
has to investigate the interplay between tunnel coupling, one
of the fundamental features of intersubband devices, and the
coherence induced by Coulomb interaction.
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The aim of this work is to provide a quantum model
describing the coupling between intersubband plasmons in
a single quantum well and in systems of tunnel-coupled wells
and its consequences on the infrared absorption spectra. Our
approach, suitable when the depolarization field is the domi-
nant many-body contribution, relies on the use of the dipole
representation [17,18] to treat the light-matter interaction,
which naturally accounts for the depolarization field.

We first present our model in Sec. II and define the
relevant quantities for the calculation of the absorption spectra.
In particular, we define for each intersubband transition a
microscopic current density, which can be related to the
oscillator strength of the transition. We demonstrate that the
overlap between these currents leads to the definition of a
typical length for the Coulomb interaction, hence determining
the coupling between intersubband plasmons. The diagonal-
ization of the electronic Hamiltonian allows us to define a
microscopic current for each collective mode and to calculate
the absorption spectrum. A sum rule is established, expressing
the conservation of the total interaction with light when going
from the single-particle to the many-body picture. In Sec. III,
the theory is applied to the case of a single quantum well
with several occupied subbands. We demonstrate that the
semiclassical model describing the intersubband absorption
in terms of Drude-Lorentz oscillators is recovered as a special
case of our formalism, when all the overlap integrals between
intersubband currents are comparable. Then, in Sec. IV, the
absorption spectrum of a dense electron gas in a system of
asymmetric wells is investigated. In this case, we demonstrate
that the coupling between a bright and an almost dark transition
results in an optical spectrum composed of two peaks of
equal amplitude. Here the coherence induced by Coulomb
interaction gives rise to a phenomenon similar to the Autler-
Townes effect [19,20]. Finally, we explore in Sec. V a system
of two tunnel-coupled quantum wells with several occupied
subbands. The resulting absorption spectrum is interpreted in
terms of the collective currents of the multisubband plasmons
of the system.

II. THEORETICAL MODEL

This section is devoted to the presentation of our quan-
tum model, describing the optical properties of a dense
electron gas when the depolarization field is the dominant
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many-body contribution. Our model is based on the formalism
developed in Ref. [17], which takes advantage of the fact
that a treatment of the light-matter coupling in the dipole
representation naturally accounts for the depolarization effect,
arising from dipole-dipole Coulomb interaction. Indeed, in
this representation the interaction Hamiltonian is in general
written, neglecting the magnetic interactions [21,22], as:

Hint =
∫

1

ε0εs

(
−D · P + 1

2
P2

)
d3r = Hl−p + Hp, (1)

where εs is the background dielectric constant, P is the
polarization density operator, and D is the displacement field
operator. The Hamiltonian (1) is composed of two terms: Hl−p

describes the interaction between the matter polarization and
the electromagnetic field, while Hp describes the polarization
self-interaction.

In order to use this representation to calculate the optical
properties of the electron gas, it is necessary to define
an intersubband polarization density, associated with the
excitation of an ensemble of intersubband oscillators along
the growth direction. The dipole-dipole interaction between
intersubband oscillators, hence the depolarization field, is
described by the Hp term.

Following this approach, we will first define the in-
tersubband polarization and write it in terms of micro-
scopic current densities describing the different intersub-
band transitions. We will then introduce the intersubband
plasmons, issued from the dipole-dipole coupling between
intersubband oscillators of the same transition. We will
then consider the mutual interaction between intersubband
plasmons, resulting in new collective modes of the system,
the multisubband plasmons. Finally, we will establish a link
between the microscopic current density and the absorption
spectrum.

A. Intersubband transitions and single-particle
absorption spectrum

Let us consider a quantum well or a system of tunnel-
coupled quantum wells, grown along the direction z. We
call ψi(z) the envelope functions and ωi the corresponding
eigenfrequencies. To simplify the notation, we consider a
constant effective mass m∗ throughout the structure. The
generalization to a piecewise constant effective mass is
straightforward: all the numerical calculations in this work
have been performed with a different effective mass for barriers
and wells.

For each intersubband transition α ≡ i → j (approximated
as vertical in the reciprocal space, neglecting the photon wave
vector), of frequency ωα = ωj − ωi , we define a bosonic
operator bα such that the matter part of the Hamiltonian is
written as [23]:

He =
∑

α

�ωαb†αbα. (2)

For simplicity, we do not write the sum over the in-plane
wave vector of the electronic excitations explicitly. Following
Ref. [17], we also introduce a current operator ĵz in the growth
direction z (because of the intersubband absorption selection
rule), expressed in terms of the intersubband transition

operators:

ĵz = i
e�

2m∗√S

∑
α

ξα(z)
√

�Nα(bα − b†α)

= i
∑

α

jα(z)(bα − b†α), (3)

where S is the area of the system, �Nα is the surface density
of the electronic excitations between the two subbands (i.e.,
�Nα = Ni − Nj ) and ξα(z) is given by

ξα(z) ≡ ξij (z) = ψi(z)
∂ψj (z)

∂z
− ψj (z)

∂ψi(z)

∂z
. (4)

The quantity jα(z) is a current per unit surface associated
with each intersubband transition α. Its spatial variation is
determined by ξα(z), which can thus be considered as a current
distribution. Analogously, one can introduce a function ρα

describing the spatial distribution of the charge oscillating at
the frequency of the transition α: ρα = ∂ξα(z)

∂z
.

By using the expression of the current operator, it is possible
to define an intersubband polarization operator P̂z, such that
the current is given by its time evolution:

∂P̂z

∂t
= ĵz = 1

i�
[P̂z,He]. (5)

The intersubband polarization contains contributions from all
the intersubband transitions and can be written as:

P̂z = e�

2m∗√S

∑
α

ξα(z)

ωα

√
�Nα(b†α + bα)

=
∑

α

jα(z)

ωα

(b†α + bα). (6)

Note that the spatial variation of the polarization operator is
also described by the current distribution ξα(z). Interestingly,
this quantity can be easily related to the dipole matrix element
zα of the transition α:∫ +∞

−∞
ξα(z)dz =

∫ +∞

−∞
ρα(z) zdz = 2m∗ωα

�
zα. (7)

This observation is very important for the following part of this
work, as it establishes a link between the optical properties of
the electron gas and the intersubband current densities. Indeed,
the integral of the current density is related to the dipole matrix
element through

S

e2ωα

∣∣∣∣ ∫ +∞

−∞
jα(z)dz

∣∣∣∣2

= ωα|zα|2�Nα. (8)

As the dipole matrix element also determines the strength
of the interaction with light, Eq. (8) allows establishing a
relation between the current density integral and the absorption
spectrum.

In a single-particle picture, the absorption coefficient is
calculated as [3]:

α2D(ω) = e2
�

2ε0cm∗√εs

∑
α

fα�NαL(ω − ωα)

= e2

ε0c
√

εs

∑
α

ωα|zα|2�NαL(ω − ωα), (9)
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where fα is the oscillator strength of the transition, c is the
speed of light, and L(ω − ωα) is a Lorentzian centered at
the intersubband transition frequency. By using Eq. (8), the
absorption coefficient can be related to the current densities
through:

α2D = e2S

ε0c
√

εs

A(ω) (10)

A(ω) =
∑

α

1

ωα

∣∣∣∣ ∫ +∞

−∞
jα(z)dz

∣∣∣∣2

L(ω − ωα). (11)

This result is detailed in the Appendix, where the Fermi’s
golden rule is applied to calculate the absorption spectrum in
the dipole representation. Physically, it expresses the relation
between the a.c. currents associated with the different optically
active intersubband transitions and the total absorption of the
electron gas.

B. From intersubband transitions to multisubband plasmons

In order to consider the effect of the depolarization field,
we diagonalize the Hamiltonian Hplasmon = He + Hp, which
physically describes the ensemble of interacting intersubband
dipolar oscillators. Hp is expressed in terms of the intersub-
band excitation operators as [17]:

Hp = e2

2ε0εs

∑
α,β

Sα,β

√
�Nα�Nβ(b†α + bα)(b†β + bβ), (12)

where Sα,β is given by:

Sαβ = 1

�ωα

1

�ωβ

(
�

2

2m∗

)2 ∫ +∞

−∞
dz ξα(z)ξβ(z). (13)

Sαβ defines a characteristic length, depending on the overlap
between microcurrents. Diagonal terms Sαα refer to the in-
teraction between dipoles associated with the same transition,
while off-diagonal terms Sαβ refer to dipoles belonging to
different transitions. Note that this expression is equivalent to
the Coulomb tensor [4,7,24]:

Sαβ ≡ Sij,kl =
∫ +∞

−∞
dz

[ ∫ z

−∞
dz′ ψi(z

′)ψj (z′)
]

×
[ ∫ z

−∞
dz′′ ψk(z′′)ψl(z

′′)
]
. (14)

The diagonalization of Hplasmon is done in two steps. We first
consider the interaction between oscillators corresponding to
the same intersubband transition (α = β), resulting in the usual
intersubband plasmons [25]. Second, the coupling between
these intersubband plasmons is considered, to finally obtain the
new eigenmodes of the system, the multisubband plasmons.

The destruction operators of the intersubband plasmons are
expressed as:

pα = ω̃α + ωα

2
√

ω̃α ωα

bα + ω̃α − ωα

2
√

ω̃α ωα

b†α, (15)

where ω̃α =
√

ω2
α + ω2

Pα is the plasma-shifted transition fre-

quency, with ω2
Pα = 2e2 �Nα ωα

�ε0εs

Sαα the plasma frequency [26].

Note that, as already noticed by Helm [3], the plasma frequency
does not depend on the dipole matrix element of the transition.

The term Hplasmon can then be written in terms of intersub-
band plasmons and their coupling as:

Hplasmon=
∑

α

�ω̃αp†
α pα+�

2

∑
α �=β

�α,β(pα+p†
α)(pβ+p

†
β).

(16)

The second term of Hplasmon expresses the dipole-dipole
interaction between intersubband plasmons associated with
different transitions [27], characterized by a coupling strength:

�αβ = ωPαωPβ

2
√

ω̃αω̃β

Cαβ

(17)

Cαβ = Sαβ√
SααSββ

.

Expression (17) shows that the coupling strength depends
not only on the characteristics of the individual intersubband
plasmons, but also on the overlap between the corresponding
microscopic currents Cαβ , which is comprised between −1
and 1.

The coupling between N intersubband plasmons produces
N new collective excitations, with eigenfrequencies Wn, which
can be computed by numerically diagonalizing the following
2N × 2N matrix [17,18]:

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̃1 0 �12 −�12 �1N −�1N

0 −ω̃1 �12 −�12 · · · �1N −�1N

�12 −�12 ω̃2 0 �2N −�2N

�12 −�12 0 −ω̃2 �2N −�2N

...
. . .

�1N −�1N �2N −�2N ω̃N 0
�1N −�1N �2N −�2N · · · 0 −ω̃N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(18)

Each new eigenmode of the system Wn is associated with
the excitation of a multisubband plasmon, described by the
operators:

Pn =
∑

α

(anα pα + bnα p†
α), (19)

where anα and bnα are the components of the eigenvectors Vn

of the matrix M, written in the form:

Vn =

⎛⎜⎜⎜⎜⎝
an1

bn1
...

anN

bnN

⎞⎟⎟⎟⎟⎠
2N×1

(20)

with the normalization condition
∑

i (|ani |2 − |bni |2) = 1,

which preserves the bosonic character of the collective
excitations.

At this stage the Hamiltonian (16) is written in terms of
independent multisubband plasmon modes as:

Hplasmon =
∑

n

�WnP
†
nPn. (21)
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C. Multisubband plasmon current density
and absorption spectrum

In order to calculate the absorption spectrum in the presence
of dipole-dipole interaction among intersubband plasmons, we
use the same approach as in Sec. II A. We write the intersub-
band polarization in terms of the multisubband plasmons. The
corresponding current densities are then calculated and related
to the absorption spectrum of the electron gas in the presence
of dipole-dipole interaction.

Let us define the N × N matrix inverse

Xαn = (anα + bnα)−1. (22)

By using Eq. (19), the intersubband polarization operator
reads:

P̂z = e�

2m∗√S

∑
n

∑
α

ξα(z)
√

�Nα√
ωαω̃α

Xαn(Pn + P †
n ). (23)

The multisubband current density can now be calculated as
the time evolution of the polarization under the Hamiltonian
Hplasmon:

Ĵz = i

�
[P̂z,Hplasmon] = i

∑
n

Jn(z)(Pn − P †
n ) (24)

with the spatial distribution of the multisubband plasmon given
by

Jn(z) = e�

2m∗√S
Wn

∑
α

ξα(z)
√

�Nα√
ωαω̃α

Xαn. (25)

The absorption coefficient is obtained by integrating the
contributions of the different multisubband plasmon current
densities. Indeed, the absorption is related to the polarization of
the medium, induced by the different intersubband transitions
and in the presence of the depolarization field. The absorption
coefficient is hence written as:

α2D(ω) = S

ε0c
√

εs

A(ω) (26)

A(ω) =
∑

n

1

Wn

∣∣∣∣ ∫ +∞

−∞
Jn(z)dz

∣∣∣∣2

L(ω − Wn) (27)

as also shown in the Appendix.
This quantity can also be expressed in terms of the

eigenvalues and eigenvectors of the matrix M, together with
the characteristics of the individual intersubband transitions:

A(ω) =
∑

n

Wn

∣∣∣∣∑
α

√
�Nα

√
ωα

ω̃α

zαXαn

∣∣∣∣2

L(ω − Wn)

=
∑

n

WnFnL(ω − Wn). (28)

WnFn can be considered as an effective oscillator strength of
the multisubband plasmon modes (the multisubband equiva-
lent of fα�Nα). It is important to underline that each effective
oscillator strength results from the contribution of all the
optically active intersubband plasmons. They are weighted by
the different quantities associated with individual transitions
(dipole matrix element, transition frequencies) but also depend

on the coupling between intersubband plasmons, which enters
through the eigenvectors of the matrix M (aJα and bJα).

The coupling between intersubband plasmons results in a
redistribution of the absorption amplitude from the intersub-
band transitions to the multisubband plasmon modes. The total
absorption satisfies the following sum rule:∑

α

ωα|zα|2�Nα =
∑

n

WnFn. (29)

This relation expresses the conservation of the total transition
probability. It stems from the fact that the dipole-dipole
interaction term Hp commutes with the light-matter interaction
term Hl−p.

III. ABSORPTION SPECTRUM OF A QUANTUM WELL
WITH SEVERAL OCCUPIED SUBBANDS

As a first application of our model, we consider a single
quantum well with several occupied subbands. This system
has been experimentally studied in Ref. [6], where it has been
demonstrated that even though several intersubband transitions
are optically excited, the absorption spectrum displays a single
peak, concentrating the whole interaction with light. We will
show that our model recovers this result.

Let us consider a 15 nm GaAs/Al0.45Ga0.55As quantum
well, n doped with a density 7 × 1018 cm−3, such that three
subbands are occupied [see Fig. 1(a), where the Fermi level
is indicated by a dashed line]. Figure 1(b) presents the
single-particle absorption spectrum (green continuous line),
calculated as A(ω) = ∑

α ωα|zα|2�NαL(ω − ωα). The values
of the dipole matrix elements of the four optically active
transitions are also shown.

Figure 2 presents the spatial extension of the calculated
microscopic current densities. Each microcurrent, normalized
to its maximum amplitude, is reported in color scale as a
function of z and plotted in the energy interval between the
confined levels involved in the corresponding transition. The
microcurrents associated with dipole-allowed transitions are
symmetric with respect to the center of the quantum well,

FIG. 1. (Color online) (a) Calculated band structure, energy lev-
els and square moduli of the wave functions of a GaAs/Al0.45Ga0.55As
quantum well, 15 nm wide, doped Nv = 7 · 1018 cm−3. The cor-
responding Fermi energy at 0K is indicated with a black dashed
line. (b) Green continuous line: Calculated absorption spectrum
in single particle picture. Values of optical dipoles zij of the
transitions corresponding to the various peaks are shown. Black
dashed line: Absorption spectrum calculated with our model. The
phenomenological broadening of the transitions is 8 meV.
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FIG. 2. (Color online) Calculated spatial distributions of the mi-
croscopic current densities jij for optically active (a) and dark
(b) transitions in the 15 nm GaAs/Al0.45Ga0.55As quantum well of
Fig. 1(a). The distributions are plotted between the energy levels
involved in the transition and multiplied by a Gaussian function for
visualization purposes. Coulomb lengths Sij,kl are also shown.

as shown in Fig. 2(a), while microcurrents whose dipole is
zero for parity are odd [Fig. 2(b)]. Note that transition 1–4
is optically active, even though z14 is less than 10% of zi,i+1,
i = 1,2,3.

Figure 2 also indicates the nonzero Coulomb lengths Sαβ

for some pairs of transitions. The highest values, ≈ 9 Å, are
obtained for pairs of transitions between consecutive subbands,
regardless of the quantum number of the subbands involved
[Fig. 2(a)]. All these values are exactly equal in the case of an
infinite quantum well, where Sn,n+1;m,m+1 = LQW/(2π2) for
all n,m.

Smaller values of Sα,β are instead obtained when the
transition 1–4 is involved, indicating the existence of different
scales of Coulomb lengths in the same quantum well. As an
example, in Fig. 2 we report the value of S12,14, the highest one.
Note that Sαβ is also non negligible when the microcurrents
involved present the same parity, even when they correspond
to optically forbidden intersubband transitions, such as 1–3
and 2–4 [Fig. 2(b)].

Table I presents the calculated values of the normalized
overlap between intersubband currents Cα,β for all the possible
pairs of transitions. Cα,β is very close to 1 whenever transitions
between consecutive subbands are involved, and it is in general

TABLE I. Calculated values of the normalized overlap Cα,β

between microscopic currents.

(i,j) (1,2) (2,3) (3,4) (1,3) (1,4) (2,4)

(1,2) 1 0.93 0.93 0 −0.28 0
(2,3) 0.93 1 0.97 0 0.09 0
(3,4) 0.93 0.97 1 0 0 0
(1,3) 0 0 0 1 0 0.84
(1,4) −0.28 0.09 0 0 1 0
(2,4) 0 0 0 0.84 0 1

FIG. 3. (Color online) Calculated spatial distributions of the
microscopic collective current densities Jn [Eq. (25)] in the 15
nm GaAs/Al0.45Ga0.55As quantum well of Fig. 1(a). The distributions
are plotted in the whole well energy range, and multiplied by a
Gaussian function for visualization purposes. Values of effective
oscillator strengths WnFn = WnFn

max{WnFn} are also shown, with WnFn

as defined by Eq. (28).

non-negligible for microcurrents presenting the same parity.
This reflects the behavior already mentioned for Sα,β .

The mutual coupling between the six intersubband transi-
tions in this system leads to six multisubband plasmons. The
corresponding current densities Jn(z) are plotted in Fig. 3, ex-
pressing the spatial extension of the macroscopic polarization
associated with each collective mode. In addition in Fig. 3 we
indicate the effective oscillator strengths, normalized to the
maximum value (WnFn). It is evident from Fig. 3 that two
of the multisubband plasmons are dark, as the corresponding
current densities are odd with respect to the center of the
quantum well. Furthermore, even though there are four modes
with a nonzero effective oscillator strength, we can consider
that just one is bright, as its effective oscillator strength,
WBFB , is at least ∼20 times greater than the others. This
means that a macroscopic polarization is established in the
quantum well only for this state, issued from the superposition
in phase of all the different intersubband oscillators. This
unique bright mode has the properties of a superradiant state
[15]. It is possible to estimate an effective dipole of the bright
multisubband plasmon, ZB . For this, we first observe that, due
to Pauli blocking, in a quantum well with several occupied
subbands not all the electrons in the system are involved in
the interaction with light, but only a fraction corresponding
to the occupation of the first subband: Neff = N1. As a
consequence WBFB = N1WB |ZB |2. In the present example we
obtain ZB = 25.3 Å, corresponding to an oscillator strength
of 1.75.

The absorption spectrum calculated with our model is
shown in linear scale in Fig. 1(b) (black dashed line) and in
logarithmic scale in Fig. 4(a). It displays four resonances at the
energies of the multisubband plasmons, whose amplitudes are
proportional to their effective oscillator strength. The optical
response of the electron gas is almost completely concentrated
into a single peak, which has an amplitude more than one order
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FIG. 4. (Color online) (a) Inset: Calculated band structure,
energy levels and square moduli of the wave functions of
a GaAs/Al0.45Ga0.55As quantum well, 15 nm wide, doped Nv = 7 ·
1018 cm−3. The corresponding Fermi energy at 0 K is indicated with
a black dashed line. Main panel: Absorption spectrum in logarithmic
scale calculated by using our quantum model. (b) Blue continuous
line: absorption spectrum calculated by using Eqs. (30) and (31). Red
dashed line: absorption spectrum calculated by extending the sum in
Eq. (30) to all optically active transitions.

of magnitude greater than the other resonances, in agreement
with the experimental results obtained in Ref. [6].

Note that in the quantum well studied here the coupling
with light is mainly determined by intersubband transitions
between consecutive levels, mutually interacting on the same
length scale, as determined by the value of Sα,β (see Fig. 2). The
normalized overlap between the corresponding microcurrents
is very close to one, as it can be seen in Table I. In this case,
it is possible to calculate a dielectric function by using the
following expression [6,11]:

ε(ω) = εs

(
1 −

nocc∑
n=1

ω2
Pn,n+1

ω2 − ω2
n,n+1 + iγ ω

)
, (30)

where nocc is the number of occupied subbands. The absorption
spectrum (in cm−1) accounting for the depolarization field is
then calculated as [3,4]:

α(ω) = −ω

√
εs

c
Im

[
1

ε(ω)

]
. (31)

Equation (30) is a direct generalization of the dielectric
function describing the excitation of a single intersubband

transition: ε(ω) = εs

(
1 − ω2

P12

ω2−ω2
12+iγ ω

)
. In this expression,

each intersubband transition contributes to the permittivity
through a Drude-Lorentz term, with a weight given by the

corresponding squared plasma frequency. The absorption
spectrum corresponding to Eq. (30) is presented as a blue
continuous line in Fig. 4(b). It is very similar to that calculated
with our model and shown in Fig. 4(a) (except for the absence
of the peak at ≈ 270 meV, corresponding to energy �ω̃14).

Equation (30) is quite useful, as it can be easily generalized
to the case of nonparabolic subbands [28]. Nevertheless, it
is important to underline that it does not provide a general
expression of the dielectric function: it can only be used
when all the Coulomb lengths involved are equal. In order
to clarify this point, the red dashed line in Fig. 4(b) presents
the absorption spectrum obtained by extending the sum in
Eq. (30) to all the optically active transitions, in this case all
those between consecutive subbands plus the 1–4 transition.
In this curve, the amplitude of the peak at 270 meV is almost
equal to that of the peak at 155 meV. The different amplitude
assigned to the 270 meV peaks in the two models is due to
the fact that in Eq. (30) all the dipoles interact with the same
Coulomb length, while our model does take into account the
different Coulomb lengths between dipoles (see Table I).

As a consequence, our model can be used to calculate the
dielectric response of electron gases confined in arbitrary one-
dimensional potentials, unlike Eq. (30).

IV. ABSORPTION SPECTRUM OF A SYSTEM OF TWO
TUNNEL-COUPLED ASYMMETRIC QUANTUM WELLS

We consider as a second application of our model the cal-
culation of the absorption spectrum for a system of two tunnel-
coupled GaAs/Al0.45Ga0.55As quantum wells (8.1/3/2.3 nm).
Figure 5(a) presents the band diagram and the square moduli
of the wave functions in this system. The values of the dipole
matrix elements are also reported: as the 1–3 transition is
diagonal in the real space, its dipole is 70% lower than the
one of the 1–2 vertical transition. Figure 5(b) presents the
microscopic current densities (normalized to their maximum
amplitude) of the 1–2 and 1–3 transitions. They are mostly

FIG. 5. (Color online) (a) Calculated band structure for cou-
pled GaAs/Al0.45Ga0.55As quantum wells, with dimensions (in nm)
8.1/3.0/2.3. (b) Calculated microscopic current densities ξi,j for the
two possible transitions 1–2 and 1–3. The distributions are plotted
between the energy levels involved in the transition and multiplied
by a Gaussian function for visualization purposes.
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FIG. 6. (Color online) (a) Calculated absorption spectrum for the
coupled well structure presented in Fig. 5(a) in the single particle
picture. (b) Calculated absorption spectrum with our model for
different values of electronic densities on the first subband. (c)
Absorption spectrum calculated by using our model (black continuous
line) with Ns = 2.4 · 1012 cm−2 (black continuous line), compared
with the single particle absorption spectrum (green dashed line).
Inset: calculated band structure for coupled GaAs/Al0.45Ga0.55As
quantum wells, with dimensions (in nm) 8.1/3.0/2.3. (d) Level
energies schematization of the charge-induced coherence between
levels 2 and 3, reminiscent of the Autler-Townes effect.

localized in the largest quantum well. As a consequence,
their Coulomb length is non-negligible, resulting in an overlap
factor close to one in modulus (C12,13 = −0.95).

The single-particle absorption spectrum corresponding to
this structure is presented in Fig. 6(a). It shows that, in
this picture, the interaction with light is almost completely
concentrated in the 1–2 transition peak, due to the difference
in the dipole matrix elements between the vertical and the
diagonal transition.

The absorption spectrum calculated by using our model is
shown in Fig. 6(b), in color scale, as a function of the electronic
density in the first subband. The single-particle transition
energies are indicated by dashed lines. It is apparent that
with the increasing electronic density, dipole-dipole Coulomb
interaction redistributes the absorption amplitude between two
peaks, at different energies with respect to the single-particle
ones. In particular, for a density ≈ 2.4 × 1012 cm−2 the two
peaks have the same amplitude. The absorption spectrum
calculated for this electronic density is presented in Fig. 6(c)
(black continuous line) and compared to the single-particle
one (green dashed line).

The activation of the 1–3 transition, almost dark in single-
particle picture, can be seen as the manifestation of the micro-
scopic oscillation with a common phase of all the intersubband

dipoles. This phenomenon is reminiscent of the Autler-Townes
effect [19,20], which is a general quantum-mechanical effect
observed on three-level quantum systems (cascade, λ, or V
configurations) presenting an allowed 1–2 and a forbidden
1–3 transition [29]. When an intense and coherent coupling
field at a frequency close to that of the 2–3 transition is shone
on the system, the absorption of a second probe field (weak)
presents a splitting. The splitting observed in the absorption
spectrum in Fig. 6(b) can thus be seen as the signature of a
laser-free Autler-Townes effect, in which the external coupling
field is replaced by the charge-induced coherence [see scheme
in in Fig. 6(d)].

Note that in this case the absorption spectrum predicted
by our model coincides with the one calculated by using the
expression derived by Allen et al. [4,7,30] by using time
dependent perturbation theory for the case of one occupied
subband and two possible final states in an inversion layer.

V. TUNNEL COUPLING BETWEEN MULTISUBBAND
PLASMONS

Finally, let us consider two tunnel-coupled GaAs quantum
wells, each of thickness L = 15 nm, identical to that presented
in Sec. III, separated by a Al0.45Ga0.55As barrier. The quantum
wells are uniformly doped with an electronic density 7 ×
1018 cm−3.

Two different lengths determine the properties of the sys-
tem: the wave function extension in the barrier and the length
of dipole-dipole interaction between intersubband plasmons.
Our model allows the calculation of the optical properties of
the electron gas by including these two characteristic lengths.
The tunnel coupling is taken into account by considering the
single-particle eigenstates of the coupled well system, while
the charge-induced coherence is included by calculating the
coupling between all the intersubband plasmons associated
with the transitions between extended states.

The main panel of Fig. 7 presents the calculated absorption
(in color scale) as a function of the energy and of the
barrier thickness. In the limit of a large barrier, the absorption
spectrum of a single well of thickness L (presented in the right
panel) is recovered. This is characterized by a main bright
mode at energy EL, indicated by a dashed white line. In the
opposite limit, for a barrier thickness approaching zero, the

FIG. 7. (Color online) Calculated absorption spectra for a 30 nm
(panel (a)) and 15 nm (panel (c)) GaAs/Al0.45Ga0.55As quan-
tum well. Inset: Band diagram and square moduli of the wave
functions in the structure. (b) Calculated absorption spectrum for
a GaAs/Al0.45Ga0.55As structure 15/barrier/15 (in nm) for different
values of the coupling barrier.
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spectrum shown in the left panel is obtained, which presents a
single resonance at energy E2L.

Note that E2L < EL: this can be understood by writing the
energy of the multisubband plasmon in the single quantum
well as [28]:

EMSP =
√

E2
P + E2

ISB. (32)

Here E2
P = ∑

n (�ωPn,n+1 )2 is the effective plasma energy of
the multisubband plasmon, and EISB is the contribution of the
confinement to the energy of the multisubband plasmon. The
latter is given by the harmonic mean of the different inter-
subband transitions, weighted by the corresponding plasma

energy: EISB = �

√
�2

P∑
n

ω2
Pn

ω2
n

. E2L is thus lower than EL because

of the reduced transition energies in the wider well, as the
plasma contribution EP = ��P is the same in the two quantum
wells.

The main panel of Fig. 7 also shows that for barrier
thicknesses between 5 Å and 25 Å, two absorption resonances
with comparable amplitudes are observed. Interestingly, their
energies present only a slight variation with the barrier
thickness and stay close to EL and E2L.

In order to understand the microscopic origin of these
resonances and the role of tunneling, let us fix the barrier
thickness at 15 Å. The calculated band diagram and the square
moduli of the wave functions are presented in the inset of
Fig. 8, showing the electronic doublets resulting from tunnel
coupling. The absorption spectrum is presented in the main
panel of Fig. 8, reporting two bright multisubband modes of
comparable amplitude. Their closeness to the energies EL

and E2L (indicated by dashed lines) suggests that tunneling
affects multisubband plasmons of adjacent quantum wells in an
unconventional way. Instead of giving rise to a doublet around
the uncoupled energy (EL), it allows the coexistence of two

FIG. 8. (Color online) On the right, calculated absorption spec-
trum for coupled GaAs/Al0.45Ga0.55As quantum wells of structure
L/barrier/L (in nm, 15/1.5/15). The two wells are uniformly doped,
such that the electronic density is Nv = 7 · 1018 cm−3. The vertical
dashed lines indicate the resonances of quantum wells of width L

(15 nm) and 2L (30 nm). Inset: band diagram and square moduli of
the wave functions in the structure. On the left, spatial distribution of
microscopic collective currents corresponding to the two resonances
(arbitrary units for the color scale). The distributions are plotted in
the whole well energy range, and multiplied by a Gaussian function
for visualization purposes.

single-well multisubband plasmons, one due to a L = 15 nm
well and the other to a 2L = 30 nm well. This observation is
reinforced by the spatial distribution of the collective currents
Jn(z), also shown in Fig. 8. The current associated with the
peak at EL is composed of two lobes, localized in the individual
quantum well. The multisubband current relative to the E2L

peak still has two lobes, but in this case it is nonzero also on
the barrier.

The coexistence of the two absorption peaks is limited
to a very short range of barrier thicknesses, between ≈ 10
and 20 Å. In fact, when the barrier is thin (below ≈ 5 Å)
the wave functions of the quantum well of thickness 2L

are only perturbatively modified. In the opposite limit, for
barriers thicker than 20 Å, the influence of tunneling, still
present on the shape of the wave functions, cannot be seen in
the absorption spectrum. This is the result of two different
contributions. First, it is a manifestation of the oscillator
strength transfer in favor of the high-energy mode EL, as
already discussed in previous sections. Second, the coupling
between microscopic current densities involves four wave
functions [see the expression of Cα,β Eq. (17)], while the
tunnel coupling results from the overlap between two wave
functions.

VI. CONCLUSIONS

We have presented a quantum formalism to calculate the
absorption spectrum of a dense two-dimensional electron gas
confined in an arbitrary potential, taking into account the
effect of the depolarization field. The latter is included as a
polarization self-interaction term in a Hamiltonian written in
the dipole representation. Our approach allows calculating the
polarization of the electron gas in terms of microscopic current
densities, whose spatial extension determines the optical
properties of the system. The only requirement to perform the
calculation is the knowledge of wave functions and electronic
populations. We have presented three examples of the effect of
the dipole-dipole coupling on the absorption spectrum of the
system: a single quantum well displaying a unique collective
bright state; a system of coupled asymmetric quantum wells,
in which the charge-induced coherence activates an almost
dark intersubband transition; a system of symmetric highly
doped quantum wells, showing an absorption doublet. A
straightforward extension of our method allows the inclusion
of the coupling with a cavity photon, and the study of
ultrastrong coupling between multisubband plasmons and a
microcavity mode [6,18,28].

In conclusion, this work presents a theoretical investigation
of the interplay between tunnel coupling and dipole-dipole
interaction in the infrared optical properties of an electron gas.
Our model could be used to conceive novel infrared quantum
emitters, taking advantage of the superradiant character of the
bright multisubband plasmon states.
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APPENDIX: DERIVATION OF THE ABSORPTION
COEFFICIENT

Let us consider the light-matter interaction term of the
Hamiltonian (1):

Hl−p = − 1

ε0εs

∫
PzDz d3r, (A1)

where only the z component is considered because of the
intersubband absorption selection rule. We adopt a fully
quantum description, in which the electric displacement vector
Dz is expressed in terms of the creation a

†
q and destruction aq

operators of a photon with wave vector q and frequency ωc,q:

Pz =
∑
α,q

jα(z)

ωα

eiqr(bqα + b
†
−qα) (A2)

Dz = i
∑

q

Aqfq(z)
|q|
ωcq

eiqr(aq − a
†
−q) (A3)

Aq =
√

�ωcq

2μ0SLq
(A4)∫

f 2
q (z) dz = Lq, (A5)

where fq(z) is an arbitrary guided mode with wave vector q,
S is the area of the system and Lq the light-matter interaction
length.

Then Hl−p is evaluated to be:

Hl−p =
∑
α,q

Cq
i
√

ωcq sin θq

ωα

∫
jα(z) dz (bqα + b

†
−qα)

× (aq − a
†
−q) (A6)

Cq =
√

�

2εsε0SLq
fq(z0). (A7)

Here we applied the long wavelength approximation
around the position z0 of the quantum well system and
sin θq = |q|c/√εsωcq is the propagation angle inside the
substrate.

Let us consider a perturbative regime where the external
field is weak. Then we can consider an absorption process,
where the electronic system is initially in its ground state, |F 〉,
and there is one photon. The initial state of the system is then
a
†
q|F 〉. The final state is no photon an intersubband excitation

with an energy �ωα = �ωcq: b
†
qα|F 〉. Then according to

Fermi’s golden rule the absorption rate is proportional to:

Aα(ω) = |〈F |a†
qHl−pb†qα|F 〉|2δ(ω − ωα)

= |Cq|2 sin2 θq
1

ωα

∣∣∣∣ ∫ jα(z)dz

∣∣∣∣2

δ(ω − ωα). (A8)

Here ω = ωcq is the frequency of the incident photon, and
the factor sin2 θq expresses the selection rule for polarization
of the incoming radiation. Then Eq. (10) in the main text is
obtained by summing all possible excitations α and replacing
the Dirac δ with broadened Lorentzians, and discarding the
q dependence. Clearly, if we use the expression of the
polarization field for multisubband plasmons

Pz =
∑
n,q

Jn(z)

Wn

eiqr(Pqn + P
†
−qn) (A9)

we will obtain Eq. (27), since the formal expression of the
polarization field is the same as Eq. (A2) above.
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