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Many ab initio calculations, in particular in solid state physics, rely on the antiresonant approximation. In this
paper we discuss the derivation, the validity, and the accuracy of this approximation, analyzing how the optical
properties of several bulk semiconducting materials and surfaces can be affected. We present accurate results for
different spectroscopic quantities in the linear and nonlinear responses and we analyze the discrepancies between
approximated and exact formulas. An investigation is made of the effect of the approximation on absorption
spectra for different materials, showing the reliability of the approximation even in the presence of local field
and excitonic effects. The energy loss is shown to be drastically affected. The effect of the band gap of materials
on the quality of the approximation is also discussed. Finally, we report on the influence of the antiresonant
approximation on second harmonic generation spectra.
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I. INTRODUCTION

Optical spectroscopies are widespread in many fields of
science, such as physics [1], chemistry [2,3], and biology [4].
Linear and nonlinear spectroscopies give valuable information
on the structural and electronic properties of materials.
Experimental and theoretical approaches have considerably
advanced over the last years deepening our understanding
of the processes occurring in condensed matter. Traditional
linear spectroscopies, such as absorption or electron energy
loss, rely on the knowledge of the dielectric tensor and the
number of ab initio calculations of electronic spectra has
increased impressively. Many of these calculations are based
on density-functional theory (DFT) and imply a summation
over a large number of valence and conduction states [5–7]. On
the other hand, nonlinear spectroscopies represent an attractive
alternative to linear spectroscopies. A lot of effort as been
devoted recently for finding nonlinear crystals [8,9] or for
describing effects, e.g., Kerr effect [10,11].

Among all the nonlinear processes, second harmonic gen-
eration (SHG) is considered as a versatile tool to study many
kinds of surfaces [12–14], interfaces [15,16], and nanostruc-
tures [17–19]. The theoretical description of the phenomena is
well established and gives reliable results [20–22], but the
numerical evaluation of the associated susceptibilities is a
nontrivial task, which limits its application to relatively simple
systems. The huge computational effort required, even with
nowadays computer facilities, explains the need for reliable
approximations that could speed up the numerical evaluation
and allow the study of complex large-scale systems.

One of the most commonly used approximation in linear
calculations is the so-called antiresonant approximation (AA),
in which the first order response is split into two terms, the
resonant and the nonresonant contributions, the latter being
neglected in the response functions [23]. The success of this ap-
proximation relies on its simplicity and ease of implementation
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for the calculation of linear response. However, its derivation
for the second-order susceptibility is more intricate and has
not been mentioned up to now.

Note that this approximation is different from the Tamm-
Dancoff approximation, used in the framework of the Bethe-
Salpeter equation [5] or for the Casidas linear response [24],
where only the coupling between the resonant and antiresonant
contributions is neglected in the Hamiltonian. In this article
we exemplify what are the consequences of neglecting the
antiresonant terms in the calculation of the optical response
at different levels of approximation. We investigate the AA
for the linear and the nonlinear optical responses. Our goal
is to provide criteria for determining the range of validity of
the approximation. We show, in particular, that the success of
the approximation depends strongly on the physical quantity
we want to calculate and we find that this approximation is
more suitable for some spectroscopies than others.

For the sake of generality, we will study both bulk materials
and surfaces. Thus, as examples we have chosen cubic bulk
semiconductor crystals and two semiconducting surfaces. For
the surfaces we have chosen the clean Si(001)2×1 and the
dihydride Si(001)1×1:2H. The clean surface is characterized
by asymmetric dimers formed between the two topmost Si
atoms, resulting in a very small gap (Eg) due to surface
states. On the other hand, the hydrogenated surface is a bulk-
terminated surface where hydrogen saturates all the dangling
bonds, suppressing all the surface states, leading to a larger
gap.

The paper is organized as follows. In Sec. II we present the
antiresonant approximation for the dielectric response εab(ω)
and the second-order susceptibility χabc(ω). Then, in Sec. III
we present the comparison of the AA with the full calculation,
where both resonant and antiresonant terms are included.
We present accurate results for linear spectroscopies, namely
absorption and energy loss spectra. We stress the influence
of the local field and excitonic effects on the AA spectra.
The effect on surface spectroscopies is presented through
reflectance anisotropy spectra. Finally, we analyze the role of
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the approximation on the second harmonic generation spectra.
We give our conclusions in Sec. IV.

II. ANTIRESONANT APPROXIMATION

A. Linear response

Within the independent particle approximation (IPA) the
dielectric function of a bulk crystal is given by [25]

εab(ω) = δab + 8πe2

�V

∑
mnk

fnm(k)va
nm(k)vb

mn(k)

ω2
mn(k)[ωmn(k) − ω̃]

, (1)

where e is the charge of the electron, and fnm(k) = fn(k) −
fm(k), with fn(k) the Fermi occupation number of the Bloch
state |nk〉 with the energy Enk at point k. For temperature
T = 0 K, fn(k) = fn = 1, where n corresponds to a valence
(v) band and 0 where n corresponds to a conduction (c) band.
Also, V is the volume of the crystal, ω̃ = ω + iη is the angular
frequency with a small positive imaginary part η, that turns
on (adiabatically) the electromagnetic field �ωmn = Enmk −
Emnk, and va

nm(k) = 〈nk|v̂a|mk〉 is a velocity matrix element.
The sum over k is restricted to the first Brillouin zone. Finally,
the spin degeneracy is accounted for in the prefactor of the
sum.

In order to make self-evident the antiresonant terms of
Eq. (1), we separate the sum over n and m into v → c and
c → v transitions, i.e.,

εab(ω) = δab + 8πe2

�V

∑
vck

[
va

vc(k)vb
cv(k)

ω2
cv[ωcv(k) − ω̃]

− va
cv(k)vb

vc(k)

ω2
vc[ωvc(k) − ω̃]

]
. (2)

Considering only positive ω for εab(ω), we immediately
see that in the above equation the leading term is the one
containing 1/[ωcv(k) − ω̃] because as �ωcv(k) is a positive
energy the term will diverge as ω → ωcv(k). Thus, as discussed
in the Introduction, we call this term resonant. On the other
hand, the term proportional to 1/[ωvc(k) − ω̃] will not diverge
as ω → ωvc(k) since now �ωvc(k) is a negative energy.
Consequently, we call this term antiresonant. Therefore, the
antiresonant approximation (AA) to εab(ω) [23] results when
we neglect the antiresonant term in Eq. (2), i.e.,

εAA
ab (ω) = δab + 8πe2

�V

∑
cvk

va
vc(k)vb

cv(k)

ω2
cv[ωcv(k) − ω̃]

. (3)

In the independent particle approximation, two major
contributions to the dielectric function have been neglected,
namely local field and many-body effects. The inclusion of
such effects can be done in the framework of the time-
dependent density functional theory (TDDFT). The quantity
that governs the optical properties of the crystal in that case
is the macroscopic dielectric function εM , directly related
to microscopic dielectric matrix ε(q + G,q + G′; ω). Here q
denotes a vanishing wave vector and G,G′ are reciprocal lattice
vectors of the crystal. The longitudinal part of the dielectric
matrix is given by

εM (q; ω) = lim
q→0

1

ε−1(q + G,q + G′; ω)

∣∣∣∣
G=G′=0

. (4)

The inverse of the microscopic dielectric matrix is given
by ε−1(q + G,q + G′; ω) = δGG′ + v(q + G)χGG′(q; ω), with
v(q + G) = 4πe2/|q + G|2 and χ is the fully interacting
susceptibility. In frequency and reciprocal space, one has to
solve a Dyson-like matrix equation for obtaining χGG′(q; ω)
[25],

χGG′(q; ω) = χ
(0)
GG′(q; ω) +

∑
G′′G′′′

χ
(0)
GG′′

× (q; ω)(v + fxc)G′′G′′′(q; ω)χG′′′G′(q; ω). (5)

Here fxc is the exchange and correlation (xc) kernel and
χ

(0)
GG′(q; ω) is the noninteracting susceptibility defined by

χ
(0)
GG′′(q; ω) = 2

�V

∑
mnk

(fn(k) − fm(k + q))

× 〈n,k|e−i(q+G)r|m,k + q〉〈m,k + q|ei(q+G′)r|n,k〉
[ω̃ − ωmn(k)]

. (6)

The AA will be obtained by replacing χ (0) by χ (0)AA, as pre-
sented above for εab in the independent particle approximation.

In this paper we will focus on two approximations for fxc.
The first one is the random phase approximation (RPA) and
corresponds to fxc = 0. It allows us to take into account local
field effects. The second one is the so-called “long-range
kernel” [6] approximation, where fxc is approximated by
−α/q2, where α is a mean value for the dynamical dependence
of fxc in a given range of energy. If used on top of a GW
or a scissors correction of the band structure, it has been
shown to simulate correctly excitons for a large variety of
semiconductors [6]. More sophisticated kernels exist, but they
are beyond the scope of this paper, as our goal is to discuss
the effect of the AA when the exciton is included in the
calculations.

B. Second-order response

To obtain the second harmonic susceptibility tensor
χabc(−2ω; ω,ω) in the antiresonant approximation, we
start from the independent particle expression of Ref.
[26], where χabc is split into two and three bands con-
tributions so that χabc(−2ω; ω,ω) = χ2band

abc (−2ω; ω,ω) +
χ3band

abc (−2ω; ω,ω), where

χ2band
abc = ie3

�2V

∑
mnk

fnm(k)va
nm(k)

{
vb

mn(k)	c
mn(k)

}
ω4

mn(k)

×
[

16

[ωmn(k) − 2ω̃]
− 1

[ωmn(k) − ω̃]

]
(7)

and

χ3band
abc = ie3

�2V

∑
mnl

∑
k

va
nm(k)

{
vb

ml(k)vc
ln(k)

}
[2ωln(k) − ωml(k)]

×
[

16fnm(k)

ω3
mn(k)[ωmn(k) − 2ω̃]

+ fln(k)

ω3
ln(k)[ωln(k) − ω̃]

+ fml(k)

ω3
lm(k)[ωml(k) − ω̃]

]
. (8)
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We omit the frequency dependence in χabc from now on to
simplify the notation. In the above expressions,

{
vb

ml(k)vc
ln(k)

} = 1
2

[
vb

ml(k)vc
ln(k) + vc

ml(k)vb
ln(k)

]
(9)

results from the symmetrization of the last two Cartesian in-
dices required for having χabc = χacb and 	b

mn(k) = vb
mm(k) −

vb
nn(k), where vb

mm(k) = 〈mk|v̂b|mk〉 is a velocity matrix
element. As for the linear case expression, the spin degeneracy
is accounted for.

We perform the same splitting of the band indices in χ2band
abc

and χ3band
abc as we did for the linear response. For χ2band

abc , it is
straightforward to obtain the AA approximation as

χ
2band,AA
abc = − ie3

�2V

∑
cvk

va
vc(k)

{
vb

cv(k)	c
cv(k)

}
ω4

cv(k)

×
[

16

[ωcv(k) − 2ω̃]
− 1

[ωcv(k) − ω̃]

]
. (10)

However, the effect of the AA approximation on χ3band
abc is less clear, due to the fact that three bands are now involved. For

defining precisely χ
3band,AA
abc , we write its vvc terms and the ccv terms [27] as

χ3band
abc = e3

�2V

∑
v1v2ck

[
− Fv1v2c

ω3
cv1

(
ωcv1 − ω

) + Fv1v2c

ω3
cv2

(
ωv2c − ω

) + 16Fv1cv2

ω3
cv1

(
ωcv1 − 2ω

) − Fv1cv2

ω3
v2c

(
ωcv2 − ω

)

− 16Fcv1v2

ω3
v1c

(
ωv1c − 2ω

) + Fcv1v2

ω3
v2c

(
ωv2c − ω

)
]

+ ie3

�2V

∑
c1c2vk

[ Fc1c2v

ω3
vc1

(
ωvc1 − ω

) − Fc1c2v

ω3
vc2

(
ωc2v − ω

)

− 16Fc1vc2

ω3
vc1

(
ωvc1 − 2ω

) + Fc1vc2

ω3
c2v

(
ωvc2 − ω

) + 16Fvc1c2

ω3
c1v

(
ωc1v − 2ω

) − Fvc1c2

ω3
c2v

(
ωc2v − ω

)
]
, (11)

where we omit the k dependence for brevity, and

Fnml(k) = va
nm(k)

{
vb

ml(k)vc
ln(k)

}
[2ωln(k) − ωmn(k)]

. (12)

It is now possible to find the antiresonant terms by simply neglecting the terms containing ωvc. Thus,

χ
3band,AA
abc = e3

2�2V

∑
v1v2ck

[ Fv1v2c

ω3
cv1

(
ωcv1 − ω̃

) − 16Fv1cv2

ω3
cv1

(
ωcv1 − 2ω̃

) + Fv1cv2

ω3
v2c

(
ωcv2 − ω̃

)
]

+ ie3

2�2V

∑
c1c2v

∑
k

[ Fc1c2v

ω3
vc2

(k)
[
ωc2v(k) − ω̃

] − 16Fvc1c2

ω3
c1v

(
ωc1v − 2ω̃

) − Fvc1c2

ω3
c2v

(
ωc2v − ω̃

)
]
. (13)

To calculate the optical response of a surface we use the
slab scheme [28–31]. The slab is composed of N atomic
layers [32], having two equivalent surfaces (say, front and
back). To this slab, one adds a vacuum region to compose
a supercell, that is repeated periodically to fill all the space.
The size of the slab and the amount of vacuum are chosen to
achieve convergence. The second harmonic generation from
the surface is then obtained [31–33] by replacing the velocity
matrix element associated with the a direction, that gives the
Cartesian direction of the second harmonic polarization, with
the modified velocity matrix element given by

Va
nm(k) = 〈nk| v̂

aC(z) + C(z)v̂a

2
|mk〉, (14)

where C(z) is taken to be 1 for one half of the slab and 0 for
the other half, allowing us to select the response from only one
(front or back) of the two surfaces of the slab.

III. EFFECTS OF THE ANTIRESONANT
APPROXIMATION

In this section we present ab initio results for bulk silicon
(Si), silicon carbide (SiC), aluminum arsenide (AlAs), gallium

arsenide (GaAs), gallium phosphide (GaP), and germanium
(Ge) semiconductors which exhibit a zinc-blende structure.
We first determine the electronic structure of the material
within DFT in the local density approximation (LDA), us-
ing norm-conserving Troullier-Martins pseudopotentials and
plane-wave basis sets with the ABINIT code [34]. For linear
optical spectra, we use the DP code [35].

We performed our calculations for materials containing gal-
lium using a pseudopotential with the electronic configuration
3d104s24p1. The cutoff energies used are 15 Ha for Si, 30 Ha
for SiC, 30 Ha for AlAs, 50 Ha for GaAs, 50 Ha GaP, and 40 Ha
for Ge. All materials have been studied with the experimental
lattice constant 5.43 Å for Si, 4.36 Å for SiC, 5.66 Å for AlAs,
5.65 Å for GaAs, 5.45 Å for GaP, and 5.66 Å for Ge [20,36].
The spectra for Si, Ge, SiC are obtained using 256 shifted k

points in the first Brillouin zone and 864 shifted k points for
GaAs, AlAs, and GaP. A broadening of 0.1 eV has been used to
smear out the artificial structures due to finite k-point sampling
for all materials considered. Finally, crystal local field effects
were taken into account by carefully converging the size of the
matrices in (G,G′) space using 89 G vectors for Si, SiC, and
Ge, 65 for GaAs, and 59 for AlAs and GaP.
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FIG. 1. (Color online) Real and imaginary part of the dielectric
function ε(ω). Solid line: Full ab initio calculation; dashed line: AA
ab initio calculation where the antiresonant term is neglected. Eg is
the direct band gap.

A. Linear spectroscopies

1. Optical spectra

In Fig. 1 we show optical spectra obtained for the real
and the imaginary part of the dielectric function εab(ω) using
Eq. (2) (full calculation, solid lines) and Eq. (3) (AA result,
dashed lines), for GaAs and AlAs in the independent particle
approximation. Since both bulk GaAs and bulk AlAs are cubic
crystals, the dielectric tensor is isotropic [37].

As can be seen from Fig. 1, the imaginary part of dielectric
function is unchanged, whereas the real part is different in the
AA calculation. The fact that the imaginary part is unchanged
can be easily understood by taking the limit η → 0+ in Eqs. (2)
and (3). Using the relation

lim
η→0+

1

x ± iη
= P 1

x
∓ iπδ(x), (15)

ε2(ω) = Im[εab(ω)] appears as a collection of δ functions and
for positive frequencies contains only a contribution from
the resonant part. Here P denotes the principal value. The
nonresonant part does not contribute to the imaginary part of
the dielectric function, while the real part is modified.

It is clear that if one is only interested in the optical
absorption, proportional to ε2(ω), it can be computed exactly
under the AA, in the independent particle approximation.

On the other hand, the real part ε1(ω) is affected by the
approximation. The discrepancy between the full and the AA
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FIG. 2. (Color online) Imaginary part of the dielectric function
ε(ω) for GaAs with (a) local field effects included in the RPA and (b)
excitonic effects included using the long-range kernel (α = 0.2 [6])
and a scissors of 0.8 eV [6]. Solid line: Full calculation; dashed line:
AA calculation where the antiresonant term is neglected; dotted line:
IPA calculation as a reference.

real part is visible on the entire range of the energy and is
particularly important at vanishing frequency. We note that the
discrepancy between the two calculations does not disappear
at high energy.

As the inclusion of local field and excitonic effects requires
the inversion of a matrix, mixing real and imaginary part of
χ (0), we can expect the imaginary part to be in turn affected by
the AA, in the presence of local field and many-body effects.

In Figs. 2(a) and 3(a) we report the effect of the AA when
local field effects are taken into account using the random
phase approximation.

As a matter of fact, absorption spectra when local field
effects (solid line) are included do not seem to be affected
drastically by the AA (dashed line), for both materials. More-
over, the effect of the AA is negligible compared to the effect
of the local fields in itself (see the IPA spectra included for
reference, dotted line). We have chosen two semiconducting
materials, namely GaAs and AlAs, having different gaps. One
can notice that the AA overestimates slightly the absorption
of GaAs or AlAs in the main absorption region but this small
effect seems to be of the same order of magnitude for both
materials. We will analyze later (Sec. III A 3) the link between
the gap and the AA on the RPA calculations.

In Figs. 2(b) and 3(b) we present the effect of the AA,
when including many-body effects. The screening has been
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FIG. 3. (Color online) Imaginary part of the dielectric function
ε(ω) for AlAs with (a) local field effects included in the RPA and (b)
excitonic effects included using the long-range kernel (α = 0.35 [6])
and a scissors of 0.9 eV [6]. Solid line: Full calculation; dashed line:
AA calculation where the antiresonant term is neglected; dotted line:
IPA calculation for reference.

simulated by applying a scissors operator (SO) and the exciton
has been treated thanks to the long-range kernel. In the
following we will refer to that calculation as α+SO.

One can notice that the exciton increases the discrepancy
between the AA and the full calculation. However, the effect
of the inclusion of the exciton is by far more important than
the discrepancy introduced by the AA.

The conclusion that comes naturally is that the AA is a
good approximation for absorption spectra in the RPA or in
the presence of excitonic effects.

We checked also that the modifications of the real part
ε1(ω), due to the AA, are very similar in the three frameworks
IPA, RPA, and α+SO.

2. Energy loss spectra

With the aforementioned macroscopic dielectric function
εM , one can obtain electron energy loss spectra (EELS)
for vanishing momentum transfer from the loss func-
tion −Im[1/εM (ω)]. Obviously, because −Im[1/εM (ω)] =
Im[εM (ω)]/{Re[εM (ω)]2 + Im[εM (ω)]2}, the EELS spectra
are expected to be more affected by the AA than the absorption
spectra. Moreover, the structure of EELS is mainly given by
regions where both the real and the imaginary part are close to
zero, corresponding to plasmon frequencies. As it is shown in
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[
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)]
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FIG. 4. (Color online) Energy loss function for Si. Dots: Exper-
iment [40]; dashed line: Full RPA calculation; dot-dashed line: AA
RPA calculation.

Ref. [38], the RPA already manages to reasonably reproduce
the experimental plasmon peak in the case of silicon. Thus,
this material appears as a good test case for investigating the
validity of the approximation for energy loss spectra.

In Fig. 4 we present the EEL spectrum for bulk silicon. The
RPA spectrum compares well with the experimental data (dots,
taken from Ref. [6]), while we observe drastic modifications
for the RPA spectrum using the AA (dot-dashed line), both
in the position and the intensity of the peak. The plasmon
frequency has more than doubled, moving from 15.8 to 32.8
eV. Looking more in detail to the real part of the dielectric
function, as shown in Fig. 5, one notes that the modifications
due to the AA are visible on the entire range of frequencies
and strongly affect the position of the zero. The zero of the
exact real part results from the cancellation of the two small
and slowly decreasing contributions, the resonant and the
antiresonant terms. When either one of these two terms is
neglected, it leads to an important change in the position of
the plasmon frequency.

The second effect of the approximation is the surprising
change in intensity of the peak. The f -sum rule concerning
the loss function [39] should lead to a AA peak smaller in
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FIG. 5. (Color online) Real part of the dielectric function ε(ω) for
Si. Solid line: Full RPA calculation; dashed line: AA RPA calculation.
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FIG. 6. Effect of the antiresonant approximation on the static
dielectric value. Dots represents the RPA values for different materials
considered. The solid line represents the ratio obtained analytically
for IPA calculations. The direct gap refers here to the DFT direct
band gap obtained from the LDA band structure, without applying
any scissors operator or GW correction.

intensity, as it is at higher energy. Our results show that sum
rules are not fulfilled in the framework of the antiresonant
approximation and that the AA is completely inappropriate
for energy loss spectra at vanishing momentum.

3. Dielectric constants

In the independent particle approximation (IPA), the effect
of the AA on the dielectric constant, obtained at ω = 0 (ε∞),
is straightforward because full and AA quantities are related
by the relation

(
εFull
∞ − 1

εAA∞ − 1

)
= 2. (16)

In Fig. 6 we show that this ratio varies as soon as local field
effects are included. We previously mentioned that the link
between the gap and the accuracy of the AA is not obvious
for RPA and α + SO spectra. This is observed and confirmed
here. The error introduced in the dielectric constant does not
seem to be correlated to the band gap, when local fields are
taken into account. The ratio seems to be randomly distributed
around the value of 2, independently of the material. These
results contradict the general statement telling that small band
gap materials are more affected by the AA.

We also want to stress that due to the mixing of the
transitions, it is not possible to deduce the correct static value
from the AA calculation, making the AA unusable for that
purpose. This is illustrated in Table I, for Si, GaAs, and AlAs, in
the random phase approximation, including scissors correction
(RPA+SO) and the long range kernel for the excitonic effect
(α+SO). Smaller values of α are taken from Ref. [6] for
correctly reproducing the experimental static values. We see
that the antiresonant approximation is far from the expected
value for RPA, but the agreement improves when the scissors
operator (RPA+SO) and the long range kernel (α+SO) are
included.

B. Surface spectroscopy

We exemplify here the effect of the AA on surface
spectroscopy using the reflectance anisotropy spectroscopy
(RAS). We have checked that the same conclusions hold
for the other main surface spectroscopy, namely the surface
differential reflectance. The qualitative effects of the AA do
not depend on the scheme used to calculate the energies and
velocity matrix elements required in Eqs. (1) and (3). Thus,
we use a nearest neighbor semiempirical tight-binding (TB)
scheme to determined the electronic structure of the surfaces.
The TB method, using a sp3d5s∗ basis set [41,42], gives
reliable results and in the case of surfaces we obtain very well
converged spectra as a function of the size of the slab, with an
easy numerical implementation of the function C(z) described
in Sec. II B. Moreover, we have checked for bulk GaAs and
AlAs that the conclusions concerning the effect of the AA
obtained with the tight-binding and the ab initio approaches
are the same.

For the surfaces, the Si-Si parameters are taken from
Ref. [43] and the H-H and Si-H from Ref. [44]. Intra-atomic
matrix elements are important for obtaining quantitative results
in TB [45]. As the intra-atomic matrix elements do not exist
in the literature for the sp3d5s∗ basis set, we optimized these
parameters, imposing the Thomas-Reiche-Kuhn [46] sum rule
to be fulfilled. We also checked that for a smaller basis set
(sp3s∗), we recover the values given by the literature for Si
with our approach. The intra-atomic matrix elements used in
the surface calculations are given in Table II.

For the clean Si(001)2×1 and dihydride Si(001)1×1:2H
surfaces, atomic positions are taken from previous studies (see
for instance Ref. [31] and references therein). Supercells are

TABLE I. Static dielectric constants for different materials considered. Values of α are chosen to reproduce the experimental value of the
static dielectric constant [6]. IPA values are not shown because the ratio is exactly 2 analytically. Full values are found to be in agreement with
previous calculations [6].

RPA RPA+SO α+SO

Material Full AA (εFull−1)
(εAA−1)

Full AA (εFull−1)
(εAA−1)

Full AA (εFull−1)
(εAA−1)

Si 12.34 7.012 1.886 11.24 6.376 1.905 12.05 6.592 1.976
(α = 0.09)

GaAs 13.13 7.349 1.910 10.67 6.047 1.916 11.05 6.150 1.951
(α = 0.05)

AlAs 8.855 5.197 1.872 7.612 4.511 1.883 8.185 4.664 1.961
(α = 0.15)
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TABLE II. Intra-atomic matrix elements for bulk Si. Other intra-
atomic matrix elements are obtained by symmetry. For the surfaces,
we used bulk Si intra-atomic matrix elements.

〈s|d|px〉 〈s∗|d|px〉 〈px |d|dxy〉 〈px |d|d3z2−r2 〉 〈pz|d|d3z2−r2 〉
Si 0.636 0.247 0.309 0.203 0.258

composed of 32 atomic layers and the spectra are obtained
using a 256 off-symmetry k-points grid in the 2D Brillouin
zone. A smaller broadening of 50 meV has been used to keep
track of small structures for reflectance anisotropy spectra.

In Fig. 7 we present the real and imaginary parts of the
dielectric function εyy(ω) for the two surfaces Si(001)2×1
and Si(001)1×1:2H. Note that the reconstruction induces the
presence of surface states in the case of Si(001)2×1. Without
the loss of generality, we only show the εyy(ω) component
[47]. The effect of the AA on the dielectric function appears
to be the same as in bulk materials. In particular, the clean
surface that exhibits surface states does not seem to be more
affected than the dihydride surface.

In Fig. 8 we present the reflectance anisotropy for the case
of the clean Si(001)2×1 surface. The reflectance anisotropy is
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FIG. 7. (Color online) Real and imaginary part of the dielectric
function εyy(ω). Solid line: Full tight-binding calculation; dashed
line: AA tight-binding calculation where the antiresonant term is
neglected.
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FIG. 8. (Color online) Reflectance anisotropy for the clean
Si(001)2×1 surface. Solid line: Full calculation; dashed line: AA
calculation where the antiresonant term is neglected. Dotted line:
AA∗ calculation as explained in the text. Spectra have been scaled by
a factor as the slab contains two surfaces.

defined as the difference [48]

RA = 	Rx(ω) − 	Ry(ω)

R0
= 4ω

c
Im

(
εxx(ω) − εyy(ω)

εb(ω) − 1

)
.

(17)
As this quantity depends on both the real and imaginary
parts of the dielectric functions, it will be affected by the
AA. Indeed, one can see that, although the shape of the
spectrum is conserved, the reflectance anisotropy differ by
50% around 1 eV. This can be explained by the fact that the
reflectance anisotropy is obtained through the difference of
two independent quantities, εxx and εyy , that can be affected
in a different way by the antiresonant approximation.

In the previous calculation, all the quantities are replaced
by their AA counterpart, including the bulk dielectric function.
However, the numerical burden is mainly associated with
the evaluation of the dielectric response of the surface. An
intermediate approach is to compute the RA spectra applying
the approximation to the surface calculation only. This less
stringent approximation is presented in Fig. 8 and referred as
AA∗ (dotted line). It appears that the AA∗ spectrum perfectly
reproduces the exact spectrum, up to 3 eV. Rewriting slightly
Eq. (17), it can be shown that the AA∗ scheme turns to
be exact for the IPA calculation in the gap of the material
{Im[εb(ω)] = 0}. This is particularly interesting because the
RAS focuses mainly on differences occurring at energies in
the band gap, where one finds the main differences between
different possible reconstructions [48]. As shown previously,
the AA is a good approximation for the imaginary part, at any
level of sophistication (RPA, α+SO). Thus we expect the RA
spectra to be also well approximated with the approximation
in the AA∗ scheme, in presence of local field and excitonic
effects, in the low energy range.

C. Second harmonic generation

The experimentally accessible quantity of interest for the
second harmonic response is |χabc| since neither the real nor
the imaginary parts of χabc have direct and measurable physical
meaning separately [49].
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calculation; dashed line: AA calculation where the antiresonant term
is neglected.

Bulk GaAs, AlAs, and SiC have a zinc-blende cubic
symmetry, leading to only one nonzero independent tensor
component χxyz. In order to achieve convergence, we used
denser grids of 18 522 k points for GaAs and 5488 for AlAs
and SiC. The number of conduction bands has also been
increased up to 21 conduction bands for all materials. For
the two surfaces we present the χzxx component, where z is
the direction perpendicular to the surface. The results for the
bulk materials are presented in Fig. 9.

From that figure we readily see that the larger the gap the
smaller is the error introduced by χAA

abc . When Eg becomes very
small, as in the case of bulk GaAs, the spectra obtained from
χAA

abc differs considerably from the full result of χabc, especially
in the low energy range. This is connected again to the fact
that, for ω = 0, the value obtained within the approximation
is half of the exact value. On the other hand, when Eg is large,
as for the silicon carbide, the spectrum obtained from χAA

abc

is basically identical to that obtained from χabc. Moreover,
the discrepancy between the two spectra reduces for high
energies.

The use of a cut-off function in the calculation of the matrix
elements defined in Eq. (14) is mandatory for obtaining a
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FIG. 10. (Color online) |χzxx | and |χAA
zxx | for the Si(001)1×1:2H

(top panel) and Si(001)2×1 surfaces (bottom panel) from tight-
binding calculations. Solid line: Full calculation; dashed line: AA
calculation where the antiresonant term is neglected.

SHG signal from the surface. Thus, the effect of the AA on
such systems is an important issue. Results for the surfaces
are reported in Fig. 10. The clean Si(001)2×1 surface SHG
signal is not properly reproduced, whereas we obtain a reliable
SHG spectra for the Si(001)1×1:2H surface. This shows
that the conclusions concerning bulk materials also hold for
surfaces.

IV. CONCLUSIONS

We have derived the antiresonant approximation for the
calculation of the second-order susceptibility. Examples of
semiconductors, cubic bulk crystals, and two surfaces, were
used to evidence the effects of the approximation on the
real and imaginary of the dielectric function and on the
loss function. Absorption spectra have shown to be reliably
computed under the antiresonant approximation in the RPA
or in presence of many-body effects, and to be exact in the
IPA. We have shown and explained how energy loss spectra
cannot be described by this approximation. The effect of the
gap has been discussed, showing that there is no link between
the band gap of the materials and the discrepancy between
the full and the AA calculations on the dielectric constant.
In the case of surfaces, where both the real and imaginary part
are needed in the calculation of the reflectance anisotropy, the
effect of the AA is more important. But we have presented an
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efficient scheme allowing one to use safely the approximation
to compute the reflectance anisotropy in the main region of
interest, namely in the gap of the material. Finally, we have
reported the effect the approximation on second harmonic
generation, showing a strong dependence on the band gap
for the reliability of the approximation. This limits the range
of validity of the approximation for large band gap materials
in case of second harmonic generation.
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