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This paper elaborates a comprehensive theory of the thermodynamics of light management in solar cells
explicitly considering imperfect light trapping, parasitic absorption and nonradiative recombination losses. A
quantitative description of the entropic losses that reduce the open-circuit voltage and the energy conversion
efficiency from the radiative limit towards realistic situations is presented. The theory embraces the fundamental
limits for idealized solar cell devices given by the Yablonovitch limit and the Shockley-Queisser limit. We
discriminate between reversible and irreversible entropic loss processes for four fundamental light management
concepts: (i) conventional light trapping as an integral part of the device, (ii) geometric concentration of incident
light, (iii) angular restriction of incoming and outgoing light, and (iv) light concentration by luminescent solar
collectors. Based on this discrimination, a comprehensive discussion of the interplay between the loss processes
and light management is presented. As part of this analysis, a new figure of merit for efficient light trapping in
solar cells is introduced as well as an example of a deterministic light trapping concept which induces almost
optimal light trapping.
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I. INTRODUCTION

The necessity to contribute to a sustainable energy supply
is the driving force behind the tremendous progress that has
been made in developing more and more efficient solar cells
and solar modules during the last decades. In recent years,
this necessity has met the opportunity to use novel optical
concepts for light management in solar cells [1–5]. Among
the newly pursued approaches are the use of spectrally or
directionally selective filters [6–9], plasmonics [2,4,10–15]
nanophotonic light trapping [16,17], photonic crystals
[18–23], whispering gallery modes [24,25], nanowire solar
cells [26–30], and fluorescent solar concentrators [31–38].
While most concepts have been discussed theoretically for
more than a decade [39–53], only recently advanced optical
concepts that go beyond the classical concepts, like light trap-
ping with rough interfaces [54] and geometrical concentration,
have been realized experimentally. Among those concepts
are the implementation of photonic crystals as intermediate
reflectors [20] or directionally selective filters [6,55], the use
of metal nanoparticles for light scattering embedded in the
contact [11,56–60] or even in the active layer [61], as well the
fabrication of solar cells made from wires with diameters from
a few hundreds of nanometers [62,63] to a few microns [27],
which are made from systems like Si [27,63,64], GaAs [26], or
InP [62]. The light scattering in the wire array solar cells allow
high absorptances relative to the volume of absorber material
used. The importance of optical concepts for photovoltaics
in general can be seen by the fact that the improvement of
the optical properties of GaAs cells has recently led to new
energy conversion efficiency records [65] for single-junction
solar cells [66].

The aim of realizing devices with maximum efficiencies
and optimum light trapping requires a careful examination
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of the thermodynamic limits for both the solar cell energy
conversion efficiency and the open-circuit voltage. Especially
the question of how the open-circuit voltage depends on
optical concepts like light trapping or angularly selective
filters has been the subject of some debate recently [67,68].
The reference point for photovoltaic energy conversion is the
Shockley-Queisser (SQ) theory [69] for the thermodynamic
limit of the energy conversion efficiency of solar cells with
a single band gap energy. In the SQ theory, the solar cell
is described only by its band gap Eg and its temperature.
The absorptance needed to calculate absorption and emission
of the ideal solar cell in the SQ theory is a step function
with zero absorption below and full absorption above Eg .
This implies that the optical properties of the device and any
concepts for light trapping are not considered in the original SQ
theory.

The enhancement of light absorption in solar cells for
geometrical optics is subject to another independent thermo-
dynamic limitation. The Yablonovitch limit [40,41] describes
the maximum path length enhancement (in the limit of weak
absorptance) within the photovoltaic absorber, resulting from
the optimum coupling of the density of optical states within
the absorber to the density of optical states of the outside
world.

In view of the fact that cutting-edge photovoltaic and
photonic concepts come closer and closer to thermodynamic
limitations, a theoretical approach is needed that not only de-
scribes limiting ideal cases but that also embraces the physics
of real-world devices. Such a theory must be compatible
with both thermodynamic limits (namely the SQ theory and
the Yablonovitch limit) simultaneously but should be able to
quantitatively describe departures from the ideal cases. This
paper introduces a rigorous approach for the thermodynamic
limit of the open-circuit voltage by explicitly taking into
account the optics of the device. We derive an equation for
the open-circuit voltage that shows how it is reduced relative
to the SQ limit due to a series of entropic loss processes.
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Using this equation, we explain how the open-circuit voltage
is affected by the optics of the device in a series of cases,
including light trapping, geometrical concentration, angular
confinement, and the case of luminescent solar collectors. As
part of this analysis, a new figure of merit used as a criterion
for efficient light trapping in solar cells is introduced as well as
an example of a concept for an almost optimal light trapping
concept.

The paper is organized as follows: in Sec. II, existing
thermodynamic limits for idealized solar cell devices, the
SQ limit and the Yablonovitch limit, are summarized. In
Sec. III, our theory on thermodynamics of light management
is derived, starting with (Sec. III A) the recapitulation of
fundamentals and (Sec. III B) the description of reversible
and irreversible loss processes of the open-circuit voltage
and power conversion efficiency, followed by (Sec. III C)
the derivation of a universal term of the open-circuit voltage
which discriminates additive thermodynamic loss processes
and (Sec. III D) the application of this term to four funda-
mental light management concepts for photovoltaic energy
conversion: (i) conventional light trapping, (ii) geometric
concentration, (iii) angular restriction, and (iv) luminescent
light collection. In Sec. IV, the influence of light trapping on
the open-circuit voltage is discussed for realistic solar cells
and different light management concepts. Therefore, we first
present the derivation of a new figure of merit for efficient
light trapping in solar cells with nonvanishing absorptance
(Sec. IV A). The validity of this figure of merit is demon-
strated in the following for partial Lambertian light trapping
(Sec. IV B) and deterministic light trapping (Sec. IV C). The
derived theory of the thermodynamics of light management
is employed subsequently to describe the interplay between
electrical properties and light management (Sec. IV D) and
discriminate entropic loss processes that reduce the open-
circuit voltage of realistic solar cells (Sec. IV E).

II. THERMODYNAMIC LIMITS

A. SQ limit

The SQ approach considers radiative recombination as the
only limiting fundamental recombination loss mechanism in
the framework of the principle of detailed balance. With this
assumption, an ideal solar cell is also an ideal light-emitting
diode (LED). The only variables in the SQ theory are the sun’s
temperature Ts , the temperature Tc of the cell, the band gap
energy Eg , and “the solid angle subtended by the sun” [69].

The simplifications needed to arrive at such a simple picture
are (i) defining the sun’s radiation spectrum as that of a black
body with temperature Ts , (ii) the assumption of a steplike
absorption function for the solar cell, and (iii) the postulate of
sufficient carrier mobility such that all generated electron-hole
pairs contribute to the photo current. The line of arguments
developed by SQ was extended in later work by relaxing
these simplifications towards the cases of a terrestrial solar
spectrum [70], specific material-related spectral absorptances
[42], semiconductor materials with band tails [71] and band
gap fluctuations [72], organic absorber materials [73,74],
multijunction cells [75,76], intermediate band cells [77],

multiple exciton generation [78–80], fluorescent collectors
[31,81], and finite mobilities [82].

B. Reciprocity relations

Another branch of generalizations to the SQ theory con-
cerns the inclusion of nonradiative recombination. In 1967,
Ross [83] derived an equation for the attainable “potential
difference μ caused by a radiation field in a photochemical
system.” An equivalent equation was derived also by Smestad
and Ries [84] and in Ref. [85] using somewhat different
approaches and notations. In the notation of Ref. [85], this
relation reads

VOC = V rad
OC + kTc

q
log

(
QLED

e

)
, (1)

where V rad
OC is the open-circuit voltage that would be attained if

radiative losses, i.e. losses by photon emission from the solar
cell, were the only loss mechanism. The quantity QLED

e is the
external LED quantum efficiency of the device defined via

QLED
e = J rad

0

J rad
0 + J nrad

0

. (2)

Here, we distinguish the saturation current J rad
0 that leads

to emission of one photon per injected electron from the
saturation current J nrad

0 that does not lead to photon emission.
The transition to the radiative limit is given by QLED

e = 1 (ideal
LED) and, consequently VOC = V rad

OC .
For thermal radiation and time symmetric systems, Kirch-

hoff’s law [86] is valid equating the absorptance of a body and
its emissivity. Thus, together with the knowledge of the body’s
temperature and Planck’s law [87], it is possible to calculate the
thermal emission if the absorptance is known. This concept is
the basis of the SQ limit; however, only in 1967, it was formally
shown by Ross [83] and later derived in more detail by Würfel
[88,89] that this principle can be extended to emission in
terms of a chemical potential by considering equilibrium with
a radiation field. However, the relation between absorption
and emission in a semiconductor is only valid as long as the
quasi-Fermi level splitting is constant over the whole volume of
the absorber. To combine the optical reciprocity with transport,
an equation connecting the external quantum efficiency Q

pv
e

of a solar cell and the electroluminescence emission φem was
derived in literature via [85]

δφem(E) = Qpv
e (E)φbb(E)

[
exp

(
qV

kTc

)
− 1

]
. (3)

Both Eqs. (1) and (3) are reciprocity relations because they
compare the same device in different operation modes. Equa-
tion (1) compares the open-circuit situation under illumination
with the situation of applied forward bias in the dark, while
Eq. (3) compares the short circuit under illumination, again
with applied forward bias in the dark. Both Eqs. (1) and (3)
have been extensively tested in a series of different material
systems [90–97]. Usually, the agreement is very good within
the experimental error. Deviations arise in systems where the
original derivation is not applicable, as for instance disordered
pin solar cells like amorphous or microcrystalline Si [98]. It
shall be noted that time symmetry is assumed for Kirchhoff’s
law, which is fundamental to the reviewed theories in this
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section. Only very recently have the consequences of breaking
the time symmetry on photovoltaic systems been investigated
[99].

C. Yablonovitch limit

The thermodynamic limit for light trapping is expressed
as the maximum path length enhancement. Coupling of all
optical modes inside the absorber to the outside world leads to
an effective path length

leff = 〈l〉 = 4n2w. (4a)

Here, n is the refractive index of the material, and w is the
thickness of the absorber. Equation (4) means that the weakly
absorbed light will travel on average a path that is 4n2 larger
than the cell thickness within the solar cell. To reach an average
path length enhancement of 4n2, the light has to be reflected
multiple times at front and back contact, which means that
parasitic absorption in the front or back contact layers will
have a large influence on the experimentally achievable path
length enhancement [6,66]. For weakly absorbed light, the
absorptance is simply given by

A(E) = 4n2wα(E). (4b)

For ergodic systems, where all photon states are occupied
equally, the Yablonovitch limit was derived first in 1982.
Minano and Luque provided an extension on the implications
of this limit to arbitrary photovoltaic devices [44,100,101].

Importantly, Eqs. (4a) and (4b) are valid for an isotropic
absorptance, i.e. if the angle under which the light beam
impinges on the solar cell does not affect the average path
length and therefore the absorptance. Angular selectivity of
the solar cell allows overcoming the limit presented in Eq. (4a)
since the path length can be enhanced for some angles of
incidence if it is reduced for others [100,101]. In general, the
absorption A(E, θ , ϕ) integrated over the angles θ and ϕ reads

4πn2α(E)w �
∫ 2π

0

∫ π/2

0
A(E,θ,ϕ) sin(θ ) cos(θ )dϕdθ,

(5)
where α is the absorption coefficient of the material (see
Supplemental Material [102]). Thus, reducing the absorptance
A(E, θ , ϕ) for certain angles could be used to increase the
path length for some angles much beyond the limit given by
Eq. (4a). To provide an example, if we define the étendue of the
incoming beam as εin = πSin sin2(θin), where Sin is the area
from which light is collected to fall onto the solar cell (i.e.
either the area of the solar cell or, in the case of geometrical
concentration, the area of the lens used for concentration) and
θin is the angle relative to the surface normal (see Fig. 1), the
effective path length enhancement becomes

leff = 〈l〉 = 4n2w
Sinπ

εin
= 4n2w

sin2 (θin)
. (6)

This enhancement in path length is valid for the beams that
impinge on the solar cell within the angle θin. For other angles,
light trapping would have to be worse such that Eq. (5) is
not violated. In addition, Eq. (6) implies that light trapping by
angularly selective absorption would require the solar cell to be
tracked such that the sun always impinges on the cell under the
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FIG. 1. (Color online) Schematic illustrations of four fundamen-
tal light-management concepts: (a) conventional light trapping as an
integral part of the device, (b) geometric concentration of incident
light, (c) angular restriction of incoming and outgoing light, and (d)
luminescent solar collectors. The acceptance angle (θin) and emission
angle (θout) of the light cones of incident and emitted light are shown.

same angle of incidence and benefits from the enhanced light
trapping. The benefits of angular selectivity for photovoltaics
have been first identified by Green [103] and described more
quantitatively in the light-trapping context by Campbell and
Green [104].

It is important to note that improving the absorptance
by light trapping also improves the emissivity according to
Kirchhoff’s law. This is still valid in the case of luminescence
emitted from solar cells or light-emitting diodes. This means
that improved light outcoupling and improved light incoupling
or light trapping are identical at least as long as the absorptance
is isotropic. Even in the radiative limit, it is therefore possible
to increase the energy conversion efficiency of a solar cell
by increasing the loss due to radiative recombination. This
is possible if the increase in energy conversion efficiency
due to a higher photocurrent (improved by light trapping)
outweighs the loss due to increased emission by improved
light outcoupling.

One fundamental limitation of the Yablonovitch limit is
the limitation of light propagation to geometrical optics. This
limitation is only valid if the thickness of the absorber layer
is much larger than the wavelength of the incident light
and geometrical parameters, such as grating periods of light-
trapping schemes, are of dimensions of many wavelengths.
In particular, for thin-film solar cells, these assumptions are
not valid. In a recent work, Yu et al. [17,49] have shown that
the generalized Yablonovitch limit for the case of vanishing
absorptance [Eq. (6)] remains valid for thicknesses and grating
periods in the order of the wavelength of visible light. Possible
ways presented in recent literature which in theory would allow
one to exceed the generalized form of the Yablonovitch limit
[Eq. (6)] are the concept of tunneling evanescent waves [16] or
the concept of subwavelength-scale electric-field confinement
[16,17].
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III. THEORY

A. Recapitulation of fundamentals

The fundamental textbook relation of the energy-
conversion efficiency η of a solar cell reads

η = JmppVmpp

Pin
= FFJSCVOC

Pin
, (7)

where JSC is the short-circuit current density, VOC is the open-
circuit voltage, Vmpp is the voltage at the maximum power
point, Jmpp is the current density at the maximum power point,
Pin is the incident solar energy current, and FF is the fill factor.
The VOC of a solar cell is given by [43]

VOC = kTc

q
ln

{
JSC

J0
+ 1

}
≈ kTc

q
ln

{
JSC

J0

}
, (8)

where k denotes the Boltzmann constant, Tc the absolute
temperature of the solar cell, q the elementary charge, and
J0 the saturation current of the solar cell.

With

J0 = J rad
0 + J nrad

0 (9)

and Eq. (2), we can rewrite Eq. (8) arriving at

qVOC = kTc ln

{
JSC

J rad
0

}
+ kTc ln

{
QLED

e

}
= qV rad

OC + kTc ln
{
QLED

e

}
. (10)

The second term contains all entropic loss processes that
are connected with nonradiative recombination and parasitic
absorption of photons within the system. It is important
to mention that V rad

OC as used in Eq. (10) has a significant
dependence on the optical and electrical properties of the solar
cell and is only of limited use as a reference value as we will
see in the following.

Because of the principle of detailed balance, the emission
and absorption properties of a solar cell are interlinked, and
we have for the radiative (emission) saturation current

J rad
0 = qεout

∫
A(E)φbb(E)dE, (11)

where εout is the étendue of the emitted light and

φbb = 2E2

h3c2
exp

(
− E

kTc

)
(12)

is the black body radiation flux at the cell’s temperature per unit
area and unit spherical angle with h being Planck’s constant
and c the vacuum speed of light. Analogously, the short-circuit
current is defined by

JSC = qεin

∫
A(E)φsun(E)dE, (13)

with εin as the étendue of the incoming light and the photon
flux φsun(E) of the sun. Note that, for simplicity, we have
assumed that the absorptance A(E) is independent of the
angle of incidence and that all photons that are absorbed by
the photovoltaic absorber material contribute to JSC, i.e. the
external photovoltaic quantum efficiency Q

pv
e (E) equals A(E),

i.e. the carrier collection efficiency within the photovoltaic
absorber is unity.
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FIG. 2. (Color online) Thermodynamic limitations of the open-
circuit voltage VOC of a single solar cell (idealized semiconductor
with Eg = 1.38 eV, step-function-like absorptance and QLED

e (E) =
10−3) limiting also the overall power conversion efficiency since
η � JSCVOC/Pin.

B. Thermodynamic limitations of the energy
conversion efficiency

The thermodynamic limitations of the energy conversion
efficiency of a solar cell are described in literature making use
of η < ηlimit = JSC · VOC/Pin [see Eq. (7)] and an idealized
semiconductor material [A(E) = 1 for E � Eg]. In view of
this upper bound ηlimit, which neglects the effect of the fill
factor of the solar cell, the limitation of η is described by the
imperfect absorption of incident light which limits JSC and
four additive entropic loss processes that reduce VOC. In the
following, these limitations are recapitulated and illustrated
in Fig. 2 for an idealized semiconductor [Eg = 1.38 eV and
QLED

e (E) = 10−3].
(i) Imperfect absorption loss: For a single junction solar

cell, the use of the solar energy current is limited by the band
gap energy. The maximum accessible short-circuit current
density J max

SC is given for perfect absorption of light of energy
above Eg and no absorption of light of energy below Eg . In
order to obtain a properly defined thermodynamic limitation
for the open-circuit voltage of a single junction solar cell, we
refer in the following to the average energy of photons (above
the band gap energy Eg):

Ēsun(Eg) =
∫ ∞
Eg

Eφsun(E)dE∫ ∞
Eg

φsun(E)dE
. (14)

Thus, the energy loss due to nonabsorption amounts
to Ēsun(0) − Ēsun(Eg), where Ēsun(0) = ∫ ∞

0 EφsundE/∫ ∞
Eg

φsundE, i.e. Ēsun(0) is equal to the total power density in
the solar spectrum divided by J max

SC .
(ii) Carnot loss. From the thermodynamic perspective, a

solar cell can be viewed as a heat engine which generates work
while heat flows from the hot reservoir of the sun (Ts = 5800 K)
to the cold reservoir of the solar cell device with its surrounding
atmosphere (Tc = 300 K) [43,105]. To understand reversible
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entropy generation, we first consider the open-circuit voltage
of a monochromatic solar cell [106]. Such a device interacts
with the sun only at a single wavelength Emo and, therefore,
may be considered as a two-level system [107]. In the radiative
limit and under full concentration, the device exclusively
interacts with the sun, and there is no thermalization. Thus,
the open-circuit voltage qV mo

OC = Emo (1 − Tc/Ts) [107] is a
true Carnot value that describes the limiting efficiency of the
conversion of a single photon into electrical energy when
the device is kept under open-circuit voltage. This process
is reversible since injection of an electron-hole pair at V mo

OC
sends a photon of energy Emo to the sun such that no energy is
lost in the cycle. Considering now the average energy turnover
by photon (i.e. V mo

OC ) for an infinite number of monochromatic
two state solar cells with Emo � Eg , we obtain the Carnot limit
for the open-circuit voltage

V Carnot
OC = Ēsun(Eg)

q

(
1 − Tc

Ts

)
. (15)

This value corresponds to the maximum open-circuit voltage
that can be obtained by a reversible process that makes use of
all solar photons with energy larger than the band gap energy
Eg .

(iii) Thermalization loss: In a single junction solar cell,
the charge carriers which are excited beyond the band gap
thermalize to the energy levels close to Eg . As described by the
SQ theory, this irreversible loss process leads to a decrease of
VOC below the Carnot limit. In the Boltzmann approximation,
the corresponding open-circuit voltage was derived before, e.g.
Ruppel and Würfel [108], and in a thermodynamic context by
Markvart [109] and by Hirst and Ekins-Daukes [110] as

V max
OC = Eg

q

(
1−Tc

Ts

)
+kTc

q
ln

{
Ts

[
2(kTs)2+2kTsEg+E2

g

]
Tc

[
2(kTc)2+2kTcEg + E2

g

]
}

≈ Eg

q

(
1 − Tc

Ts

)
+ kTc

q
ln

(
Ts

Tc

)
. (16)

It must be emphasized that the first term on the right side of
Eq. (16) is not identical to the previously introduced V Carnot

OC
[see Eq. (15)] and that its Carnot-like form does not imply
reversible entropy generation. The second term represents the
increase in energy of charge carriers at the band edge due to
their thermal energy. The frequently used term in the second
line of Eq. (16) is a good approximation for band gaps of typical
solar cell materials [109] and gets worse towards smaller band
gaps when kTs is not negligibly small relative to Eg .

(iv) Étendue expansion loss: An additional thermodynamic
loss is associated with the increase in solid angle between the
photons emitted from the solar cell and the incident photons
from the sun. If the étendue of the emitted photons (εout) from
the solar cell is larger than the small étendue of the incident
photons of the sun (εout), entropy will be produced since the
directional order of the photons is decreased. This irreversible
thermodynamic loss process is expressed by [76,110,111]

V etendue
OC = V max

OC + kTc

q
ln

(
εin

εout

)
. (17)

It shall be noted that, in the case of full concentration, the solid
angle of the emitted photons and incident photons are equal,

and the thermodynamic emission loss vanishes. Furthermore,
the expression in Eq. (17) is equal to V rad

OC .
(v) Nonradiative loss: Finally, nonradiative recombination

losses or parasitic optical losses in the solar cell induce
thermalization of charge carriers in the device which produces
thermal losses, i.e. entropy. The contribution of this irreversible
thermodynamic loss process to the thermodynamic limitation
is described by

V nonrad
OC = V etendue

OC + kTc

q
ln

{
QLED

e

}
. (18)

C. Entropy generation at open circuit

Beyond the above-described thermodynamic limitations of
η and VOC, rigorous terms of the entropic loss processes associ-
ated with light trapping, parasitic absorption, and nonradiative
recombination will be derived in the following. The rigorous
derivation allows for a general description of the limitations
in realistic solar cells with FF < 1. The treatment explicitly
implies imperfect absorption of incident light close to Eg

which requires light-trapping concepts. We start from the
equation

qVOC = kTc ln

{
εin

∫
A(E)φsun(E)dE

εout
∫

A(E)φbb(E)dE

}
+ kTc ln

{
QLED

e

}
,

(19)
which is derived by inserting Eq. (11) and Eq. (13) into
Eq. (10). In the next step, we introduce the radiative and
nonradiative recombination rates Rrad and Rnrad. For radiative
recombination, we further distinguish between recombination
that leads to emission of a photon with a probability pe,
reabsorption of the photon in the photovoltaic absorber with
probability pr , and parasitic absorption with probability pa .
With these definitions, the overall saturation current is given
by

J0 = qScellw [Rnrad + (1 − pr )Rrad] , (20)

where w and Scell denote the thickness and the surface area
of the cell. To derive Eq. (20), we have to assume that the
recombination rates are independent of the position in the
absorber. Note that this assumption is consistent with our
earlier assumption Q

pv
e (E) = A(E) because, by Donolato’s

reciprocity relation [112], a carrier collection efficiency of
unity in the illuminated case implies flat quasi-Fermi levels in
the dark situation under applied voltage bias. Thus, we have

qVOC = kTc ln

{
εin

∫
A(E)φsun(E)dE

εout
∫

A(E)φbb(E)dE

}

+ kTc ln

{
εout

∫
A(E)φbb(E)dE

Scellw [Rnrad + (1 − pr )Rrad]

}
, (21)

taking into account that reabsorption (photon recycling) is not
a loss mechanism. In the next step, we define the internal
luminescence quantum efficiency via

Qlum
i = Rrad

Rrad + Rnrad
. (22)

This step is important because, with Qlum
i , we are able to

refer to a pure bulk property of the photovoltaic absorber
material. Analogously, the radiative recombination rate is a
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property that is connected to the absorption coefficient of the
absorber material via the van Roosbroeck-Shockley equation
[113] according to

Rrad =
∫

α(E)4πn2φbb(E)dE. (23)

With Eqs. (22) and (23), we finally arrive at an equation that
contains four additive terms that describe the four entropic loss
processes

qVOC = kTc ln

{∫
A(E)φsun(E)dE∫
A(E)φbb(E)dE

}
+ kTc ln

{
εin

εout

}

+ kTc ln

{
εout

∫
A(E)φbb(E)dE

4n2πScellw
∫

α(E)φbb(E)dE

}

+ kTc ln

{
Qlum

i(
1 − Qlum

i

) + (1 − pr )Qlum
i

}
. (24)

The first term of Eq. (24) accounts for the different tem-
peratures of the incoming and the outgoing photons. It

corresponds to V max
OC introduced in Eq. (16) for idealized

solar cells and considers the imperfect absorption photons
and the thermalization losses. The second term describes the
étendue expansion between the incident and emitted photons,
which was introduced in Eq. (17) for an idealized solar cell
[109,111]. These two terms together define V rad

OC in Eq. (1).
Term 3 represents the ratio between the outgoing photon flux
and the integral radiative recombination in the cell. This ratio
corresponds to the emission probability

pe = εout
∫

A(E)φbb(E)dE

4n2πScellw
∫

α(E)φbb(E)dE
. (25)

Because every photon generated by radiative recombination
will either be emitted (with probability pe), reabsorbed (pr ),
or parasitically absorbed (pa), pe + pa + pr = 1 holds for
the sum of the three probabilities. Therefore, we may write
Eq. (24) alternatively as

qVOC = kTc ln

{∫
A(E)φsun(E)dE∫
A(E)φbb(E)dE

}
+ kTc ln

{
εin

εout

}

+ kTc ln

{
pe

pe + pa

}
+ kTc ln

{
(pe + pa)Qlum

i(
1 − Qlum

i

) + (pe + pa)Qlum
i

}
. (26)

This alternative form enables one to discriminate term by term the entropic loss processes that reduce the open-circuit voltage
due to (1) photon cooling, (2) étendue expansion, (3) parasitic absorption, and (4) nonradiative recombination in the volume of
the photovoltaic absorber.

It is important to notice that, in the general case, none of those four entropic loss processes is independent from the others. For
instance, the numerator of term 3 of Eq. (24) cancels out with the denominators in terms 1 and 2, or the emission probability pe

shows up in term 3 and 4. Thus, the simple additive form of Eqs. (24) or (26) has to be handled with care.
In order to organize Eq. (24) in a form that only contains independent terms, we have to give up the additive form of Eqs. (24)

or (26). Instead, we write

qVOC = kTc ln

(
Qlum

i εin
∫

AφsundE

Qlum
i εout

∫
AφbbdE + (

1 − Qlum
i

)
εcell4n2w

∫
αφbbdE + Qlum

i paπScell4n2w
∫

αφbbdE

)
. (27)

For simplicity, we introduce for the following current densities (per unit étendue) for the sun’s radiation:

isun = q

∫
AφsundE, (28)

for the photons emitted by the solar cell

iem
rad = q

∫
AφbbdE, (29)

and for the total radiative recombination in the volume of the absorber

ivol
rad = qw4n2

∫
αφbbdE. (30)

With these definitions, we arrive at the general equation

qVOC = kTc ln

[
Qlum

i εinisun(
1 − Qlum

i

)
πScelli

vol
rad + Qlum

i

(
paπScelli

vol
rad + εouti

em
rad

)
]

, (31)

which, in contrast to Eqs. (24) and (26), contains no duplicate terms.
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D. Application to different photovoltaic systems

In the following, we use Eq. (31) to analyze different types of solar cell systems, normal solar cells, geometrical concentrators,
cells with angular selective filters, and fluorescent concentrators as illustrated in Figs. 1(a)–1(d). We first analyze the influence
of nonradiative recombination in the bulk of the solar cell embedded into the four different systems. Since the incoming and
outgoing light is considered outside of the system (i.e. in air or vacuum with a dielectric constant n = 1), the étendues read
εin/out = πSin/out sin2(θin/out), and we have for the external areas of the systems Sin = Sout = Sext for all systems in Fig. 1. With
this, Eq. (31) transforms into

qVOC = kTc ln

[
Qlum

i isunSext sin2(θsun)(
1 − Qlum

i

)
Scelli

vol
rad + Qlum

i Scelli
vol
radpa + Qlum

i Sext sin2
(
θout

)
iem
rad

]
. (32)

For the first case, the normal nonconcentrating solar cells, we have Sext = Scell, θout = π/2, and therefore we have

qVOC = kTc ln

[
Qlum

i isun sin2(θsun)(
1 − Qlum

i

)
ivol
rad + Qlum

i ivol
radpa + Qlum

i iem
rad

]
. (33)

The second case concerns a solar cell with geometric concentration. Here, we define the geometric concentration factor via
cgeo := Sext/Scell. Because of the conservation of étendue, we have sin2(θout) = 1/cgeo and, thus,

qVOC = kTc ln

[
cgeoQ

lum
i isun sin2(θsun)(

1 − Qlum
i

)
ivol
rad + Qlum

i ivol
radpa + Qlum

i iem
rad

]
. (34)

As a third case, we have a solar cell with angular restriction to the incoming and outgoing light. Here, we define a concentration
factor cang := 1/ sin2(θout), whereas for the surface areas, we have Sout = Scell, i.e. cgeo = 1. Thus, Eq. (32) turns into

qVOC = kTc ln

[
cangQ

lum
i isun sin2(θsun)

cang
(
1 − Qlum

i

)
ivol
rad + cangQlum

i ivol
radpa + Qlum

i iem
rad

]
. (35)

Finally, we consider a luminescent collector [114]. In
a fluorescent collector, the sunlight is first absorbed by a
fluorescent dye and subsequently reemitted at lower photon
energies. The reemitted light is randomized and, due to total
internal reflection, guided to a solar cell. The collection of
photons can be greatly enhanced by a band-stop filter that
is reflecting the photon energies of the light emitted by the
dye [31]. The energy shift by the dye relaxes the requirement
for étendue conservation [81] of conventional concentrators.
Furthermore, the absorptance AC of the collector is now
defined by the dye and by the filter such that we have to redefine
the current densities isun and iem

rad [Eqs. (28) and (29)] by

iCsun = q

∫
ACφsundE, (36)

and

iemC
rad = q

∫
ACφbbdE, (37)

respectively, whereas the recombination current density due to
bulk recombination, Eq. (30), remains unchanged. To warrant
perfect photon collection, we must assume that the chemical
potential μ of photons is uniform within the collector [81] and
that the collector is equipped with the band-stop filter [31,115]
as sketched in Fig. 1(d). With this assumption, the entire pho-
tovoltaic action of the system is described analytically in terms
of the étendues of photons entering and leaving the collector
from/into the ambient and from/into the solar cell [81].

Starting with Eq. (36), we introduce nonradiative recombi-
nation in the solar cell in the same way as above and arrive
at the same result, i.e. Eqs. (24) and (36) just with A replaced

by AC . For a fluorescent concentrator, we have, again, a geo-
metric concentration factor cgeo := Sext/Scell, but unlike in the
geometric concentrator, we have for the angular concentration
cang = 1/ sin2(θout) = 1. Therefore, Eq. (32) reads

qVOC = kTc ln

×
[

cgeoQ
lum
i i∗sun sin2(θsun)(

1 − Qlum
i

)
ivol
rad + Qlum

i ivol
radpa + cgeoQlum

i iem∗
rad

]
.

(38)

It shall be noted that the derivation of Eq. (32) by simply
replacing A by AC is only valid as long as photon collection
within the fluorescent concentrator is warranted [115], which
is the case for the parameters used in the calculations below.

Figure 3(a) compares the results for all four cases discussed
above (assuming no parasitic absorption, i.e. pa = 0, and a
ratio iem

rad/ivol
rad = 0.5 for all curves). Firstly, the figure shows

the open-circuit voltage calculated from Eq. (31) for a normal
solar cell (cgeo = cang = 1) as a function of the internal
luminescence efficiency Qlum

i . Note that the VOC axis in
Fig. 3(a) is offset by the radiative limit V

rad,1
OC of this solar

cell without concentration. Also shown are the VOC curves
calculated for geometric concentrations cgeo = cang = 10 and
100 from Eq. (34). These curves are simply shifted by an
amount kTc ln(cgeo) with respect to VOC of the cell without
concentration.

To calculate VOC for the case of angular restriction, we
use Eq. (35) with cang = 100. The corresponding curve in
Fig. 3(a) has a radiative limit that is larger by an amount
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FIG. 3. (Color online) (a) The enhancement of the open-circuit
voltage VOC relative to the open-circuit voltage in the radiative
limit V

rad,1
OC is shown as a function of the internal luminescence

quantum efficiency Qlum
i for the four fundamental light-management

concepts: conventional light trapping (cgeo = cang = 1), geometric
concentration of incident light (cgeo > 1,cang = 1), angular restriction
of incoming and outgoing light (cgeo = 1,cang > 1), and luminescent
solar collectors (fc cgeo > 1). (b) The change in open-circuit voltage
losses 
VOC caused by parasitic light absorption (solid: pa = 0;
dashed: pa = 0.1) as a function of the internal luminescence quantum
efficiency Qlum

i is shown for geometric concentrators (pe = 0.5;
cgeo = 1,cang = 1), angular restriction (pe = 0.005; cgeo = 1,cang =
100), and the fluorescent concentrator (pe = 0.05; fc cgeo = 10). The
dashed lines correspond to the influence of parasitic light absorption
with pa = 0.1.

of kT ln(cang) than the reference value V
rad,1

OC . However,
upon decreasing Qlum

i , the curve rapidly approaches that of
the nonconcentrating cell because of cgeo = 1. Finally, the
fluorescent collector calculated with the help of Eq. (38)
displays a radiative limit that corresponds to a concentration
factor of 100. This is due to the assumption of a spectral
filter that restricts the emitted radiation iem∗

rad to 1% of the
emitted radiation iem

rad of the solar cell [31,115]. Note that,
for simplicity, the reduction of the solar radiation i∗sun by the
spectral filter and the consequent small reduction of VOC have
been neglected [i.e. we have assumed log(i∗sun/isun) ≈ 0]. Upon
increasing nonradiative recombination (Qlum

i � 1), the curve
increasingly follows the assumed geometrical concentration
factor cgeo = 10. Thus, a fluorescent collector equipped with
a spectral filter displays different concentration factors: Close
to the radiative limit, the concentration factor is defined by
the reduced emission (iem

rad/iem∗
rad = 100), and with nonradiative

recombination dominating, the concentration factor is defined
by the reduction of photovoltaic area (cgeo = 10).

The open-circuit voltage losses 
V nonr
OC due to nonradiative

recombination and parasitic light absorption are summarized
by terms 3 and 4 in Eq. (26). These losses are seen in Fig. 3(a)
as the difference of the curves to their respective values of
V rad

OC at Qlum
i = 1. Figure 2(b) visualizes these differences

without offset. For the understanding of the curves, it is
helpful to note that the emission probability pe defined in
Eq. (25) may equally be expressed by pe = iem

radcgeo/(ivol
radcang).

Because of the assumption iem
rad/ivol

rad = 0.5 for all curves, the
losses for the normal solar cell and all geometric concentrators
correspond to the curve with pe = 0.5, whereas for the
case of angular restriction, we have pe = 0.005, and for
the fluorescent concentrator, pe = 0.05. The dashed lines
in Fig. 3(b) correspond to the influence of parasitic light
absorption with pa = 0.1, instead of pa = 0 for the solid lines.
The largest influence attributed to parasitic absorption is seen
for Qlum

i = 1. Here, the loss 
V nonr
OC is entirely due to term 3

in Eq. (26). With decreasing Qlum
i , the dashed curves approach

the corresponding solid lines, i.e. the influence of parasitic
absorption becomes negligible when compared to nonradiative
recombination in the bulk.

Up to this point, we have seen that the influence of
nonradiative loss processes, i.e. nonradiative recombination
and parasitic absorption of solar cells embedded in different
optical systems is well described by the present approach.
However, the contributions of different entropic loss processes
in Eq. (26) turn out as not being independent of each other
even when only tuning a bulk property as Qlum

i . This difficulty
becomes even more pronounced when comparing different
light-trapping schemes directly because each of the terms in
Eq. (26) contains a contribution of the optical properties. The
following section will show how to deal with this challenge.

IV. INFLUENCE OF LIGHT TRAPPING ON THE
OPEN-CIRCUIT VOLTAGE

A. Path-length distribution in geometrical optics

Light trapping aims at enhancing JSC, which is eventually
defined by the absorptance A(E) as a property of the absorber
material and the solar spectrum [see Eq. (13)]. A convenient
way to describe the quality of light-trapping schemes in
geometrical optics independently from material and spectral
properties is the path length distribution P (l) [100,101,116].
Usually, the distribution P (l) is condensed to its expectation
value 〈l〉, the average path length. The insufficiencies of 〈l〉 as
a figure of merit for the quality of light trapping in solar cells
were first established to the field by Luque and Minano [44].

In this section, we will demonstrate illustratively the limited
validity of 〈l〉 as a criterion for light trapping and derive an
improved figure of merit. For a known dependence of the
absorption coefficient α of the photovoltaic absorber material
on photon energy E, we have

A(α) =
∫ ∞

0
[1 − exp (−αl)]P (l)dl = 1 − N (α), (39)

where we have defined the nonabsorptance N = 1 − A. This
quantity is defined by the Laplace transform of the path length
distribution P (l) via

N (α) =
∫ ∞

0
P (l) exp (−αl) dl. (40)

Note that, in the following, we assume for simplicity that
there is neither direct reflection at the surface of the device
nor parasitic absorption within the device such that N can
be looked at as the portion of light that is reflected after at
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least one passage through the device. This implies P (l) = 0
for l < 2w and N (α) → 0 for α → ∞. Making use of the
derivative theorem for the Laplace transform of Eq. (39), we
obtain

−dN

dα
=

∫ ∞

0
lP (l) exp (−αl) dl = dA

dα
. (41)

Based on Eq. (41), we can rewrite 〈l〉 by

〈l〉 =
∫ ∞

0
lP (l) = lim

α→0

dA

dα
. (42)

Eventually, the average path length 〈l〉 is the synonym for
the derivative of the absorptance at α → 0, i.e. in the dilute
limit where we have a very small absorptance A anyway.
Since light trapping is aiming at maximizing JSC in Eq. (13),
we are more interested in optimizing the spectral range of
intermediate A. Thus, the Yablonovitch criterion, though
representing a thermodynamically well-defined limit, is not
very suitable as a figure of merit to judge the quality of a
light-trapping scheme. Alternatively, we propose to use the
integral theorem of the Laplace transform∫ ∞

α

N (α′)dα′ =
∫ ∞

0

1

l
P (l) exp (−αl) dl (43)

to define an alternative figure of merit. In the limit α → 0,
Eq. (43) reads〈

1

l

〉
=

∫ ∞

0

1

l
P (l)dl =

∫ ∞

0
N (α′)dα′. (44)

Thus, minimizing the expectation value 〈1/l〉 minimizes
the integral nonabsorptance N , likewise maximizing the
integral absorptance A. As we will show in the following, an
effective path defined by Eq. (44) offers a much more selective
figure of merit.

B. Lambertian light trapping

The paramount reference example for light trapping is
the Lambertian situation where the light at one or both
of the surfaces is completely randomized. As we will see
in the following, the Lambertian scheme is only one of an
infinite number that fulfills the Yablonovitch criterion, but
it does not represent a specific limit. Thermodynamics and
optics allow for the better and for the worse. However, for a
theoretical treatment, Lambertian light trapping is relatively
easy to handle and therefore a convenient reference.

In the following, we compare a Lambertian scheme to what
we denote as partial Lambertian light trapping. We assume
a semiconductor slab of thickness w with a perfectly flat
back surface as illustrated in Fig. 4(a). With a probability
pλ, the incoming light is scattered at the front surface into a
Lambertian distribution whose angle distribution is given by

PL(θ ) = 2 sin(θ ) cos(θ ). (45)

With a probability 1 − pλ, the light is coupled into the
absorber according to Snell’s law. After a single pass through
the device, the light encounters again either Lambertian
scattering or a flat surface. In the first case, a portion T = 1/n2

of the light is lost to the ambient, whereas the remainder is
redistributed according to Eq. (45). The quantity n denotes
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FIG. 4. (Color online) (a) Schematic illustration of the light
scattering and light propagation for the partial Lambertian light-
trapping scheme. (b) Schematic illustration of light propagation for
the exemplary deterministic light-trapping scheme discussed in this
contribution. The light cone is preserved during the 32 passes through
the solar cell. The mapping rules for the redirection of the light at the
front and rear interface are shown in (c).

the refractive index of the absorber material. In the second
case, light is redirected into the absorber if its direction is
given by an angle θ with sin2(θ ) > 1/n2; otherwise, it is
lost into the ambient. With this approach, we are able to
describe a transition from perfect Lambertian light trapping
with pλ = 1 to the total absence of light trapping pλ = 0.
We use a simple Monte Carlo program for the calculations
of absorptance and path length distribution. The results are
compared to analytical expressions for perfect Lambertian
light trapping with excellent agreement when using a number
of rays nray = 106.

The model semiconductor used in the following calcula-
tions is defined by an absorption coefficient

α = α0

√
E − Eg

kT
, (46)

where α0 is the absorption coefficient for a photon energy
E = Eg + kT with a band gap energy Eg = 1.38 eV. The
semiconductor is assumed to have a refractive index n = 4.
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The sun’s spectrum is given by a black body radiation at
Tsun = 5800 K.

Figure 4 shows (a) the calculated absorptance spectrum and
(b) the corresponding path length distributions for probabilities
pλ between 1 and 0. The extreme value pλ = 0 describes the
case of no light scattering and coupling of incident light in
the solar cell, and the extreme value pλ = 1 describes the
limit of complete Lambertian light trapping. Looking at the
absorptance spectra of the quasi-Lambertian schemes with 1 >

pλ > 0 in Fig. 5(a), we find that the slopes dA/dα at α = 0
correspond to 4n2, i.e. the schemes fulfill the Yablonovitch
criterion. This result, surprising at a first glance, follows from
the fact that all these schemes couple all light directions inside
the absorber to the outside world. This coupling becomes
weaker with decreasing pλ but is present as long as pλ > 0.
In other words, there are no perfect guided modes for pλ > 0.
Looking at the path length distributions P (l) in Fig. 5(b),
we see that decreasing pλ leads to a strong increase for the
probability of short paths, but at the same time also, very long
path lengths become more probable because the weak coupling
between inside directions and the outside world keeps some
photons very long inside the absorber. In terms of the mean
path length 〈l〉, both effects cancel out. Obviously, the weaker

FIG. 5. (Color online) (a) The absorptance A of an ideal solar
cell employing the partial Lambertian light-trapping scheme as a
function of the thickness-corrected absorption coefficient (αw) with
w being the thickness of the solar cell and α the energy dependent
absorption coefficient. The probability pλ, which denotes probability
of incoming light being scattered at the front surface into Lambertian
distribution, is varied from no light trapping (pλ = 0) to Lambertian
light trapping (pλ = 1). (b) The path length distribution P as a
function of the relative path length (l/w).

coupling implies poorer light trapping and absorptance, which
induces a decrease in JSC according to Eq. (13). For the model
semiconductor and a device thickness of 100 μm, the JSC

decreases from 28.9 mA/cm2 for the full Lambertian light
trapping (pλ = 1) to 16.1 mA/cm2 for the partial Lambertian
light trapping with pλ = 0.25.

C. Deterministic versus random light trapping

Having learned that Lambertian light trapping is by far not
the worst light-trapping scheme that fulfills the Yablonovitch
criterion for vanishing absorption, we might wish to find out
whether there are better ones. The key drawback of Lambertian
light trapping and the associated random distribution of scat-
tered light is the presence of very short paths within the distri-
bution P (l). Since the mean value of the length of light paths is
fixed by the Yablonovitch criterion, narrowing the distribution
would be the obvious choice as Luque and Minano showed
in their contribution from 1991 [44]. If we would be able to
confine to P (l) = δ(l − 4n2w), the absorptance would read

A(α) = 1 − exp(−α4n2w). (47)

Of course, this optimum case is not realizable because
coupling all directions inside the absorber to the outside world
implies finite probabilities up to infinite path lengths. Thus,
this optimum light trapping is rather an upper bound than an
upper limit. However, as we will see in the following, it is
possible to construct hypothetical light-trapping schemes in
a gedankenexperiment that come very close to the optimum
case. It shall be stressed that we do not provide any physical
design for a light-trapping concept but rather theoretical
considerations on the rules of light redirection in optimized
light-trapping schemes that in principle obey all thermody-
namic laws. In Fig. 4(b), such a light-trapping scheme is
schematically illustrated. It will be called in the following the
“deterministic light-trapping scheme”. For this particular light-
trapping scheme, incident light from the incoming solid angle
d�in = 2π at its incidence on the front interface is transmitted
completely and is refracted into the solid angle cone d�cone =
2π/n within the absorber layer volume (in this example, the
refractive index is set to n = 4). As the solid angle cone
exhibits rotational symmetry, it is well described by a single
range of angles dθ1 [c.f. Fig. 3(b)]. Each time a light ray within
the absorber volume impinges on the front or rear interface,
it is redirected such that its angle θi increases for 0 < i � n

and decreases for n < i � 2n. The detailed mapping rules are
shown Fig. 4(c). As a consequence of the redirection, each light
ray which impinges on the solar cell propagates 2n times from
the front to the rear interface of the solar cell. Importantly,
the solid angle cone d�cone = 2π/n is preserved for all 2n

redirections. In consequence, the full solid angle 4π in the
absorber volume is accessed by the incident light impinging
on the solar cell. In order to determine the absorptance and path
length distribution for the deterministic light-trapping scheme,
we use a simple Monte Carlo program. The results converged
very well when using a number of rays nray � 106.

In Fig. 6(b), the path length distributions P (l) of the
deterministic light trapping is compared to Lambertian light
trapping. It is shown that the deterministic light-trapping
scheme exhibits a narrow path length distribution without
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FIG. 6. (Color online) (a) The absorptance A of an ideal solar cell
employing the deterministic light trapping, the partial Lambertian
light-trapping scheme, as well as the optimal light trapping as an
upper boundary are plotted as a function of the thickness-corrected
absorption coefficient (αw) with w being the thickness of the solar cell
and α the energy dependent absorption coefficient. (b) The path length
distribution P is shown for the Lambertian light-trapping scheme and
the deterministic light-trapping scheme as a function of the relative
path length (l/w).

light paths of short lengths. In particular, the minimum path
length of the deterministic light-trapping scheme is around
59 times the thickness of the solar cell if the refractive index
is n = 4. In contrast, the Lambertian light-trapping scheme
exhibits a broad distribution of paths lengths including very
long paths but, most importantly, very short light paths down to
twice the thickness of the solar cell. Since both light-trapping
schemes fulfill the Yablonovitch criterion, their average light
paths length is fixed at 4nw and, in turn, their absorptance
intersects for vanishing absorption (α → 0). This aspect is
presented in Fig. 6(a), which shows the absorptance of solar
cell applying the Lambertian and deterministic light trapping
as a function of the thickness corrected absorption (αw).
Moreover, it is shown in Fig. 6(a) that, for nonvanishing
absorption, the deterministic light trapping comes very close
to the optimum case presented in Eq. (47). Hence, the
presented deterministic light-trapping scheme outperforms the
Lambertian light-trapping scheme for nonvanishing absorption
in the solar cell. This aspect is attributed to the absence of short
light paths for the deterministic light-trapping scheme. For
nonvanishing absorption, due to the exponential correlation
of absorptance and path lengths, the contribution to imperfect

FIG. 7. (Color online) Effective path lengths 〈l〉 and 〈1/l〉−1 for
partial Lambertian light trapping (open symbols), the deterministic
light-trapping scheme (full symbols), and the value 4n2 (dashed line),
which is the maximum value for 〈l〉 and an upper bound for 〈1/l〉−1.

absorptance in the solar cell increases stronger with decreasing
path lengths than the length itself. As a consequence, short light
paths must be avoided in order to exhibit good light trapping
for nonvanishing absorption.

The relevance of avoiding short light paths in order to
exhibit good light trapping in the case of nonvanishing
absorption is reflected in the alternative figure of merit for light
trapping, which we introduced in Sec. III A [see Eq. (44)].
It states that, by minimizing the expectation value 〈1/l〉,
the integral absorptance

∫
A(α)dα is maximized. Figure 7

compares the effective path lengths 〈l〉 according to Eq. (42)
and 〈1/l〉−1 according to Eq. (44) for partial Lambertian
light-trapping schemes and the deterministic light-trapping
scheme. The effective path length 〈l〉 = 64 is the same for all
curves belonging to (partial) Lambertian light trapping as soon
as pλ > 0, as well as for the deterministic case. In contrast,
the alternative figure of merit 〈1/l〉−1 increases continuously
with increasing pλ. Furthermore, we have a marked difference
between the completely randomized case (pλ = 1) and the
deterministic case. This is because the short light paths in the
Lambertian case significantly contribute to increase 〈1/l〉, i.e.
to decrease 〈1/l〉−1. In contrast, deterministic light trapping
avoids these paths totally.

It shall be noted that the presented deterministic light-
trapping scheme is only one example for a light-trapping
scheme which comes close to the optimal (upper bound) of
light trapping. Several alternative rules for the redirection of
the solid angle cone in the absorber volume of the solar cells
can be imagined which induce a similarly high or even higher
value of 〈1/l〉−1 where 〈1/l〉−1 = 4n2 is the upper bound only
achieved by the physically impossible delta distribution P (l) =
δ(l − 4n2w). It shall also be noted that, strictly speaking, the
illustrated design rules for the deterministic light trapping
are only valid for even integer values of n2. Nevertheless,
it is straightforward to design similar rules realizing almost
comparable deterministic light-trapping schemes for arbitrary
values of n.

Although the deterministic light-trapping scheme intro-
duced in this section is a fully hypothetical concept which
bears no physical structure for realization, it complies with the
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laws of thermodynamics. Hence, it is useful for the discussion
of the introduced figure of merit for light trapping as well as the
discussion of general design principles such as the importance
of avoiding shortest light paths for devices with intermediate
absorptance.

D. Interplay between electrical properties, light trapping,
and parasitic absorption

The interplay between electrical properties, namely VOC

and FF, and the light trapping as well as the parasitic
absorption in the solar cell is illustrated for two exemplary
cases. Of particular interest is the impact of the optical
properties of the solar cell on the entropic losses of VOC,
which were subdivided in Eq. (26) into four terms. Optical
Monte Carlo simulations of solar cells applying Lambertian or
deterministic light-trapping schemes were conducted for the
full spectral range in order to determine the absorptance A

in the volume of the solar cell. In these simulations, parasitic
absorption in the solar cells was considered as a fractional loss
ABR in the intensity of a light ray each time it impinges on the
rear side of the solar cell. From the Monte Carlo simulations,
the emission probability pe, reabsorption probability pr , and
the parasitic absorption probability pa of light emitted in
the volume of the solar cells were derived. Knowing these
quantities over the full spectral range, for a given internal
luminescence quantum efficiency Qlum

i and a given thickness
w of the solar cell, VOC can be calculated according to Eq. (26).
Furthermore, since FF is well described by [117]

FF ≈
qVOC/kTc − ln

{
0.72 + qVOC

kTc

}
1 + qVOC

kTc

, (48)

and JSC is given by Eq. (13), we can calculate the energy
conversion efficiency η of the solar cell for an ideality factor
of unity.

In Fig. 8, JSC, VOC, and η of solar cells applying the
deterministic light-trapping scheme are shown as a function
of the effective thickness (α0w). In the first series [Figs. 8(a)–
8(c)], parasitic losses are not considered (ABR = 0) and Qlum

i
is varied from 0.9 to 9 × 10−11. Since JSC depends ultimately
on the absorptance A and is independent of Qlum

i , it increases
with increasing thickness of the solar cell until it saturates at
the maximum JSC. At maximum JSC, all photons with energies
above the band gap of the model semiconductor are absorbed.
In contrast to JSC, VOC decreases for all effective thicknesses
of the solar cell with increasing nonradiative recombination,
i.e. decreasing Qlum

i . This decrease is caused by nonradiative
recombination in the volume of the solar cell which is an
entropic loss process that reduces the VOC [term 4 in Eq. (26)].
Furthermore, independent of Qlum

i , VOC also decreases with
increasing thickness of the solar cell due to an decrease in the
average generation rate over the volume and constant average
recombination rate over the volume [118]. Also, with increas-
ing thickness, the emission probability pe decreases due to
reabsorption, and in turn nonradiative recombination increases
[see term 4 in Eq. (26)]. It is important to note that the emission
probability pe is a quantity related to the optical properties of
the solar cell rather than a material-related quantity. Still, pe

strongly influences the entropic loss process associated with

FIG. 8. (Color online) Short-circuit current density JSC, open-
circuit voltage VOC, and energy conversion efficiency η of a solar
cell applying the deterministic light-trapping scheme as a function
of the effective thickness (α0w). (a)–(c) The parasitic absorption is
neglected ABR = 0, and the internal luminescence quantum efficiency
Qlum

i is varied from 0.9 to 9 10−11. (d)–(f) ABR is varied from 10−3

to 100, and the Qlum
i is set to 0.5. For comparison, the reference

quantities in the radiative limit (J max
SC , V rad

OC , ηrad) for zero parasitic
absorptance and an infinitesimal thick solar cell are shown.

nonradiative recombination, which is truly material dependent.
Hence, it is demonstrated that the entropic loss process in VOC

associated with nonradiative recombination depends strongly
on the optical properties of the solar cell.

In the second series in Figs. 8(d)–8(f), the influence of
parasitic losses is evaluated by varying the absorption at
the back reflector (ABR = 10−3 − 1) while keeping the
amount of nonradiative recombination constant (Qlum

i = 0.5).
Obviously, for increasing parasitic absorption, JSC of thin
solar cells which exhibit weak absorption of incident light
decreases. In order to reach a high JSC, the thickness corrected
absorption coefficient of these solar cells needs to be increased
such that incident light is absorbed before it reaches the
back reflector. Aside of JSC, also VOC of thin solar cells
decreases with increasing parasitic absorption. However, in
this case, the entropic losses that reduce the VOC depend on
three of the entropic loss processes described in Eq. (26).
With increasing parasitic absorption, the absorptance A in the
volume of the solar cell decreases, the emission probability
pe decreases, and the parasitic absorption probability pa

increases. Thus, three of the entropic loss processes that reduce
the VOC are changed: (i) the entropic loss in VOC associated
with photon cooling, (ii) the entropic loss in VOC associated
with parasitic absorption, and (iii) the entropic loss in VOC

associated with nonradiative recombination. This result is of
high relevance, since it points out the impact of absorption
losses in solar cells, i.e. light management, on VOC. This
interrelation is intensively discussed and researched in recent
literature [5,66,67,119,120]; however, a correct derivation and
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FIG. 9. (Color online) The maximum energy conversion effi-
ciency ηmax for the deterministic light-trapping scheme (solid sym-
bols) and the Lambertian light-trapping scheme (open symbols) as
(a) a function of internal luminescence quantum efficiency Qlum

i and
(b) as a function of the parasitic absorption at the back reflector ABR.
For comparison, the maximum energy conversion efficiency radiative
limit ηmax

rad is shown.

discrimination of all entropic loss terms reducing VOC was
missing, so far as we know.

While a discrimination of the contribution of these three
terms will be discussed in the following section, at this stage,
the strong influence of the optical properties of the solar cell
on eventually all four entropic loss processes that reduce the
VOC shall be highlighted. For both series presented above, the
JSC increases, and VOC decreases with increasing thickness
of the solar cell. Thus, the energy conversion efficiency η

exhibits a maximum conversion efficiency ηmax. In Fig. 9,
the ηmax is shown for the deterministic light-trapping scheme
and the Lambertian light-trapping scheme (a) as a function of
Qlum

i and (b) as a function of the parasitic absorption at the
back reflector (ABR). Independent on Qlum

i and for parasitic
absorption ABR < 0.05, ηmax is larger for the deterministic
light-trapping scheme than for the Lambertian light-trapping
scheme. Eventually, this proves that the deterministic light-
trapping scheme is also efficiency wise in most cases superior
to the Lambertian light-trapping scheme. Only for very high
parasitic absorption at the back reflector, due to the longer
average first light pass through the solar cell, the ηmax of the
Lambertian light-trapping scheme is larger when compared
with the deterministic light-trapping scheme. However, if
the mapping rules of the deterministic light-trapping scheme
would be alternated such that incident light is redirected at the
front interface into the solid angle cone of largest angles θ , the
deterministic light would be superior to the Lambertian light
trapping for any parasitic absorption.

FIG. 10. (Color online) The open-circuit voltage losses 
V r
OC

due to nonradiative recombination as a function of internal lu-
minescence quantum efficiency Qlum

i are calculated by term 4 in
Eq. (26) (solid lines) and compared to the Monte Carlo simulations
of deterministic light trapping (open symbols) for (a) a fixed pa = 0
and pe = 0.005, 0.05, and 0.5 and (b) a fixed pe = 0.05 and pa = 0,
0.25, and 0.75.

E. Discrimination of entropic loss processes

Having studied the interrelation between the electrical
properties, including VOC, FF , and η, of solar cells and
meaningful reference light-trapping schemes in the previous
sections, these results will be set in the context of the
general theory presented in Sec. III. In particular, the way
light-trapping schemes influence the different types of entropic
loss processes of VOC, discriminated in Eq. (26), will be studied
for the deterministic light-trapping scheme. First, in order to
demonstrate the compatibility of the data derived from the
Monte Carlo simulations and Eq. (26), we compare in Fig. 10
the nonradiative losses in VOC as a function of Qlum

i , calculated
for a given pa and pe by term 4 in Eq. (26), to the nonradiative
losses derived for the deterministic light trapping by Eq. (1).
The good agreement for various absorption probabilities pa

and emission probabilities pe shall be noted as a verification
of the theory presented in Sec. III D by numerical experiments.

In detail, the discrimination of the entropic loss processes
that reduce the VOC for the reference case of no angular and
no geometrical concentration (cang = cgeo = 1), geometrical
concentration (cgeo = 10), and only angular concentration
(cang = 100) is shown in Fig. 11. For comparison, in Fig. 11(a),
the VOC of these three cases are shown as a function of the
luminescent quantum efficiency. In Figs. 11(b)–11(d), for the
three light-trapping schemes, the contributions of entropic
loss processed of VOC are discriminated by considering the
contributions of each of the four terms of Eq. (26) associated to
four entropic loss processes. The term 1 considers the inherent
entropic loss process of the device due to photon cooling
which is independent of angular or geometrical concentration.
The term 2 represents the entropic loss processes by étendue
expansion; term 3 represents the entropic loss process by
parasitic absorption of light und subsequent thermalization;
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-

FIG. 11. (Color online) (a) Open-circuit voltage VOC of solar
cells employing the deterministic light trapping (cang = cgeo = 1),
deterministic light trapping with geometrical concentration (cgeo =
10) and angular concentration (cang = 100) are shown as a function
of the internal luminescence quantum efficiency Qlum

i . The parasitic
absorption at the back reflector ABR is 2%. The discrimination of
the four fundamental entropic loss processes decreasing the VOC as
described in Eq. (26) is shown for the three light-trapping schemes in
(b)–(d), respectively.

and term 4 represents the entropic loss process by nonradiative
recombination. For the reference case (cang = cgeo = 1), the
change in VOC with increasing Qlum

i is caused by a reduction
of the entropic losses due to nonradiative recombination
(term 4). The losses attributed to étendue expansion (term
2) and parasitic losses (term 3) remain constant. For the
case of geometrical concentration, the entropic losses caused

by nonradiative recombination and parasitic absorption are
identical to the reference case. However, due to the geometrical
concentration, the entropic losses by étendue expansion are
decreased compared to the reference case, resulting in a
positive contribution to the overall VOC by term 2. Finally,
for the case of angular restriction [see Fig. 11(c)], the entropic
losses by photon cooling are identical to the reference case,
but the entropic losses associated with étendue expansion are
decreased since étendue of the emitted photons is decreased
by cang. Furthermore, due to the angular concentration, a large
fraction of the radiatively emitted photons is trapped in the
solar cell which eventually increases the parasitic absorption
loss compared to the case of no angular concentration.
Finally, also the entropic losses due to nonradiative losses
for (Qlum

i < 1) are increased due to an increased nonradiative
recombination of charge carriers which are generated by
the reabsorption of trapped emitted photons due to angular
concentration.

V. CONCLUSIONS

This paper presents a comprehensive theory of the ther-
modynamics of light management in solar cells considering
explicitly imperfect light trapping, parasitic absorption, and
nonradiative recombination losses. Our rigorous approach
is compatible with the fundamental thermodynamic limits
of light trapping (i.e. in the Yablonovitch limit) and of
power conversion (i.e. in the Shockley-Queisser limit). It
quantitatively describes entropic losses that reduce the open-
circuit voltage and the energy conversion efficiency from
the radiative limit towards realistic situations. The theory is
applicable to a variety of solar cell devices like (i) solar
cells with conventional light trapping, (ii) solar cells with
geometric concentration of the incident light, (iii) solar cells
with angular restriction of incoming and outgoing light,
and (iv) luminescent concentrators. Our theory is applied
in some detail to analyze conventional light trapping in
nonconcentrating solar cells. Thereby, we introduce a new
figure of merit for geometric light trapping, given by the mean
inverse optical path length. The applicability of this figure
of merit is demonstrated by the comparison of Lambertian
light trapping and deterministic light trapping. We show
that deterministic light-trapping concepts can outperform the
Lambertian scheme by avoiding short light paths. Employing
our theory to realistic solar cells, we demonstrate its particular
strength to analyze the interplay between electrical properties
and light management in solar cells as well as a unique way
to discriminate between the different entropic losses in the
open-circuit voltage for the various types of solar cell devices
introduced.
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