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Comparison between a quantum kinetic theory of spin transfer dynamics in Mn-doped bulk
semiconductors and its Markov limit for nonzero Mn magnetization
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We investigate the transfer between carrier and Mn spins due to the s-d-exchange interaction in a Mn-doped bulk
semiconductor within a microscopic quantum kinetic theory. We demonstrate that the spin transfer dynamics is
qualitatively different for components of the carrier spin parallel and perpendicular to the Mn magnetization. From
our quantum kinetic equations we have worked out the corresponding Markov limit, which is equivalent to rate
equations based on Fermi’s golden rule. The resulting equations resemble the widely used Landau-Lifshitz-Gilbert
equations, but also describe genuine spin transfer due to quantum corrections. Although it is known that the
Markovian rate description works well for bulk systems when the initial Mn magnetization is zero, we find
large qualitative deviations from the full quantum kinetic theory for finite initial Mn magnetizations. These
deviations mainly reflect corrections of higher than leading order in the interaction, which are not accounted for
in golden-rule-type rates.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMS) have been studied
intensively in the past decades, since they combine the
versatility of semiconductors with the spin degree of freedom,
which promises future applications in spintronics [1–5]. The
magnetic properties of DMS arise from the s/p-d exchange
interaction [4,6,7] between carriers and magnetic impurities,
which typically consist of Mn ions acting as localized spin- 5

2
systems. Especially for short timescales and high Mn doping
concentrations the exchange interaction can dominate the spin
dynamics [8,9]. The description of the resulting spin transfer
dynamics in DMS is usually based on rate equations, where
the rates are computed using Fermi’s golden rule [9,10]. The
standard derivation of the golden rule involves a Markov
approximation [8,11] and is perturbative with respect to the
exchange coupling constant. In Ref. [12] a projection operator
method was applied to derive spin relaxation rates for DMS
quantum wells. There, also a Markovian assumption as well
as a perturbative argument were used. Another approach to
the description of the macroscopic magnetization dynamics
is the use of the phenomenological Landau-Lifshitz-Gilbert
equations [13,14].

Recently, starting from a Kondo-like interaction Hamilto-
nian a density matrix approach based on correlation expansion
was developed [15] in order to describe the spin dynamics in
the ultrafast regime. Until now, this quantum kinetic theory
(QKT) has only been applied to the case of an initially zero
Mn spin. There, it has been found that in three-dimensional
systems, the time evolution of the carrier spin is exponentially
decreasing, where the decay rate coincides with its value
according to Fermi’s golden rule [16]. The latter was shown
by performing the Markov limit (ML) of the QKT using
only terms in second order of Jsd . In lower-dimensional
systems, excitation conditions can be found where significant
differences between the ML and the QKT become visible
although the memory induced by the exchange interaction
is orders of magnitude shorter than the time scale for the
evolution of the carrier and Mn dynamics [16]. In particular,

quantum kinetic effects are most pronounced when suitably
tuned oppositely circular polarized two-color laser pulses are
used for the excitation [17].

In this article, we study the spin dynamics of conduction
band electrons in a bulk ZnMnSe semiconductor for the
case of a nonzero initial Mn spin where electron spins can
precess around the Mn magnetization. It turns out that the
spin transfer dynamics that is superimposed to the precession
is qualitatively different for electron spins aligned parallel
or perpendicular to the Mn magnetization. Starting from
our quantum kinetic equations we derive the corresponding
Markov limit for finite Mn magnetization. The resulting
equations can be interpreted as modified Landau-Lifshitz-
Gilbert equations. Assuming Mn concentrations much larger
than the itinerant electron density analytical solutions of these
Markovian equations are presented. The resulting analytical
expressions also exhibit a different dynamics for perpendicular
and parallel spin transfer, which, however, quantitatively and
qualitatively disagrees with the prediction of the full QKT.
Here, the failure of the Markovian approach can be traced back
to contributions of higher than leading order in the exchange
coupling constant.

The outline of this paper is as follows: In a first step, we
briefly summarize the QKT [15] that was used as a basis for
our numerical calculation and introduce the model used in
this paper. Then, we derive the Markov limit of the QKT
along the lines described in Ref. [16] for an initially zero
Mn magnetization 〈S〉, but allow for a finite value of 〈S〉
and an arbitrary angle between the conduction band electron
spin and the Mn spin. In a subsequent section we present
numerical results of our QKT for the spin transfer dynamics of
the parallel and perpendicular components and compare them
with the ML. The analytical solution of the ML equations in
combination with a rearrangement of the contributions to our
QKT allows for a clear physical interpretation of the pertinent
source terms. By selectively studying the impact of different
source terms we are able to demonstrate the importance of
contributions of higher than leading order in the coupling
constant.
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II. QUANTUM KINETIC EQUATIONS

In Ref. [15], a quantum kinetic density matrix approach
for the spin dynamics in Mn-doped semiconductors was
developed starting from the Hamiltonian:

H = H0 + Hsd + Hpd + Hem, (1)

where H0 describes the single particle band energies, Hsd

accounts for the exchange interaction between the s-type
conduction band electrons and the spins of the d-type electrons
of the Mn dopands, while Hpd stands for the interaction of the
latter with p-type holes. Finally, Hem comprises the dipole
coupling to an external laser field. The exchange interactions
Hsd + Hpd as well as the random spatial distribution of Mn
atoms give rise to a hierarchy of higher-order correlation
functions. In order to obtain a finite set of dynamical variables
a specially adapted correlation expansion has been worked out
in Ref. [15].

Since the aim of the present paper is to investigate the spin
transfer between conduction band electrons and Mn dopands,
the model can be reduced to:

H = H0 + Hsd. (2)

H0 now accounts only for electrons in a single spin degenerate
conduction band:

H0 =
∑
lk

Ekc
†
lkclk, (3)

where c
†
lk (clk) are the creation (annihilation) operators of

conduction band electrons with k vector k and spin index
l = 1,2. For simplicity we shall assume parabolic bands Ek =
�

2k2

2m∗ , with an effective mass m∗. The exchange interaction is
given by [18,19]:

Hsd = Jsd

∑
I i

ŜI · ŝe
i δ(ri − RI ), (4)

where Jsd is the exchange constant and ŜI (ŝe
i ) are operators

for the spin of the Mn atom (conduction band electron) in units
of � at the position RI (ri). As in Ref. [15] we assume an on
average spatially homogeneous distribution of Mn positions
RI .

According to the analysis in Ref. [15] the relevant dynam-
ical variables for this reduced model are:

C
l2
l1k1

= 〈
c
†
l1k1

cl2k1

〉
, (5a)

Mn2
n1

= 〈
P̂ I

n1n2

〉
, (5b)

K
l2n2k2
l1n1k1

= δ
〈
c
†
l1k1

cl2k2 P̂
I
n1n2

ei(k2−k1)RI
〉
, (5c)

C̄
l2k2
l1k1

= δ
〈
c
†
l1k1

cl2k2e
i(k2−k1)RI

〉
, (5d)

where P̂ I
n1n2

:= |I,n1〉〈I,n2| describes the spin state of the I th
Mn ion (n = − 5

2 , . . . , 5
2 ). The expectation value represented

by the brackets involves a quantum mechanical average as
well as the disorder average over the randomly distributed
Mn positions. C

l2
l1k1

and Mn2
n1

are the electron and Mn density

matrices. K
l2n2k2
l1n1k1

and C̄
l2k2
l1k1

are the correlated parts of the
corresponding density matrices, i.e., in these quantities all parts
that can be factorized into products of lower-order correlations
functions are subtracted from the expectation values. The

explicit but lengthy definitions of K
l2n2k2
l1n1k1

and C̄
l2k2
l1k1

can be
found in Ref. [15].

It turns out that the resulting equations of motion can
be simplified by introducing the following new correlation
functions:

Q
l2n2k2
l1n1k1

:= K
l2n2k2
l1n1k1

+ Mn2
n1

C̄
l2k2
l1k1

. (6)

Rewriting the equations of motion from Ref. [15] in terms of
these functions we obtain:

−i�
∂

∂t
Mn2

n1
= Jsd

1

V

∑
k

∑
nll′

sll′

[
Cl′

lk

(
Snn1M

n2
n − Sn2nM

n
n1

) + 1

V

∑
k′

(
Snn1Q

l′n2k′
lnk − Sn2nQ

l′nk′
ln1k

)]
, (7a)

−i�
∂

∂t
C

l2
l1k1

= JsdnMn

∑
nn′l

Snn′

[
Mn′

n

(
sll1C

l2
lk1

− sl2lC
l
l1k1

) + 1

V

∑
k

(
sll1Q

l2n
′k1

lnk − sl2lQ
ln′k
l1nk1

)]
, (7b)

(
−i�

∂

∂t
+ Ek2 − Ek1

)
Q

l2n2k2
l1n1k1

= b
l2n2k2
l1n1k1

I + b
l2n2k2
l1n1k1

II + b
l2n2k2
l1n1k1

III
, (7c)

with source terms

b
l2n2k2
l1n1k1

I = Jsd

∑
nl

{
Snn1 sll1C

l2
lk2

Mn2
n − Sn2nsl2lC

l
l1k1

Mn
n1

}
︸ ︷︷ ︸

=:b
l2n2k2
l1n1k1

I.1

−Jsd

∑
nll′

sll′C
l2
lk2

Cl′
l1k1

(
Snn1M

n2
n − Sn2nM

n
n1

)
︸ ︷︷ ︸

=:b
l2n2k2
l1n1k1

I.2

, (7d)

b
l2n2k2
l1n1k1

II = Jsd

∑
nn′l

Snn′Mn′
n nMn

(
sll1Q

l2n2k2
ln1k1

− sl2lQ
ln2k2
l1n1k1

)
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

II.1

+ Jsd

∑
nll′

sll′
1

V

∑
k

Cl′
lk

(
Snn1Q

l2n2k2
l1nk1

− Sn2nQ
l2nk2
l1n1k1

)
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

II.2

, (7e)
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b
l2n2k2
l1n1k1

III = Jsd

∑
nl

{
1

V

∑
k

[
Snn1 sll1Q

l2n2k2
lnk − Sn2nsl2lQ

lnk
l1n1k1

]}
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

III.1

−Jsd

∑
nll′

sll′

{
1

V

∑
k

Cl′
l1k1

[
Snn1Q

l2n2k2
lnk − Sn2nQ

l2nk2
ln1k

] + 1

V

∑
k

C
l2
lk2

[
Snn1Q

l′n2k
l1nk1

− Sn2nQ
l′nk
l1n1k1

]}
︸ ︷︷ ︸

b
l2n2k2
l1n1k1

III.2

, (7f)

where Sn1n2 and se
l1l2

are the Mn and electron spin matrices, V

is the volume of the DMS, and nMn = NMn
V

is the density of the
Mn ions. We have subdivided the sources on the right-hand
side of Eq. (7c) for later reference. The physical meaning of
these terms and their respective importance will be discussed
later.

In order to study the dynamics of the spin transfer we
consider initial conditions where the electrons are initially spin
polarized and the Mn magnetization corresponds to a thermal
distribution while the correlations Q

l2n2k2
l1n1k1

are assumed to be
zero. This is a situation typical for a system immediately after
an ultrafast optical excitation has induced a finite electron spin
polarization.

III. MARKOV LIMIT

It turns out to be instructive to derive the Markov limit
of our QKT, first of all, because this greatly simplifies the
theory as the higher-order correlation functions are formally
eliminated in favor of the variables of most interest, i.e., the
electronic densities and spins. Furthermore, the Markov limit
provides a relevant reference for our QKT. In particular for bulk
systems it has been found previously [16] that the memory of
the exchange interaction is short and therefore it is tempting to
think that the Markovian equations should yield valid results
in our case.

In order to be able to work out the Markov limit starting
from Eqs. (7), we follow the procedure that in Ref. [16] led to
rates in accordance with Fermi’s golden rule and neglect in a
first step the source terms of higher than leading order in the
exchange coupling Jsd . Due to the initial condition Q

l2n2k2
l1n1k1

= 0

the correlations Q
l2n2k2
l1n1k1

are of first order in Jsd and thus we see

from Eqs. (7) that b
l2n2k2
l1n1k1

II
and b

l2n2k2
l1n1k1

III
are of second order

in Jsd and yield third-order contributions to the electron spin
dynamics. Thus, we keep in Eq. (7c) only the first-order term

b
l2n2k2
l1n1k1

I
. This allows us to formally integrate the correlations:

Q
l2n2k2
l1n1k1

(t) = i

�

∫ t

0
dt ′ei(ωk2 −ωk1 )(t ′−t)b

l2n2k2
l1n1k1

I
(t ′), (8)

with frequency ωk = Ek
�

= �k2

2m∗ . Substituting Eq. (8) back

into the equations for C
l2
l1k1

and Mn2
n1

we have to perform a
k summation, which, due to interference resulting from the
k-dependent phases ei(ωk2 −ωk1 )(t ′−t), leads to a finite memory.
The Markov limit is established by assuming that the sources

b
l2n2k2
l1n1k1

I
change on a much slower time scale than the memory

and can therefore be drawn out of the integral. The memory has
been found to decay on a fs time scale while the spin dynamics
evolves on a ps time scale [16]. Therefore, the lower limit of
the integral can be extended to −∞ resulting in the following
approximation for the correlations:

Q
l2n2k2
l1n1k1

(t) ≈ i

�
b

l2n2k2
l1n1k1

I
(t)

∫ 0

−∞
dt ′′ei(ωk2 −ωk1 )t ′′

= i

�
b

l2n2k2
l1n1k1

I
(t)

(
πδ

(
ωk2 − ωk1

) − P i

ωk2 − ωk1

)
,

(9)

where P denotes the Cauchy principal value.
Starting from Eq. (7b) for the electron density C

l2
l1k1

we
can set up an equation of motion for the average electron spin
〈sk1〉 = ∑

l1l2
se
l1l2

C
l2
l1k1

in the state with k vector k1. Feeding

back the correlations Q
l2n2k2
l1n1k1

from Eq. (9) into these equations
we finally obtain:

∂

∂t

〈
sk1

〉 = JsdnMn

�

(〈S〉 × 〈
sk1

〉)
+ J 2

sdnMn

�2V

∑
k

{
1

2
P nk − 1

ωk1 − ωk

(〈S〉 × 〈
sk1

〉)

+πδ
(
ωk1 − ωk

)[〈S〉4
〈
sk1

〉2 − n2
k1

+ 2nk1

4

+ (〈sk〉 × (〈
sk1

〉 × 〈S〉))
+ 〈S × (S × 〈sk〉)〉 + 〈(〈sk〉 × S) × S〉

2

]}
. (10)

Applying the same procedure to the electron occupations nk1 =∑
l C

l
lk1

at a given k vector k1 we find that on this level of theory
nk1 is time independent. It should be noted, that in the full QKT
this is not the case. Instead it was shown in Refs. [15–17] that
redistributions in k space take place, which are responsible for
a number of features of the magnetization dynamics that are
not expected in the Markovian theory.

The different terms in equation (10) can easily be inter-
preted. The first term describes the precession of the electron
spin in an effective magnetic field due to the Mn magnetization
〈S〉, which is also the result of a mean-field calculation [15].
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The second term represents a renormalization of the precession
frequency that depends on the density of states and therefore
on the dimensionality of the system as well as the k

vector, which can possibly lead to dephasing of the electron
spin.

The magnitude of the renormalization for a bulk semicon-
ductor can be estimated in the continuum limit by approximat-
ing the Brillouin zone (BZ) as a sphere with radius kBZ and
assuming a parabolic band structure as follows:

�ωM = ω0
M

Jsd

�(2π )2

2m∗

�

∫ kBZ

0
dk

k2

k2 − k2
1

(1 − nk)︸ ︷︷ ︸
≈kBZ

, (11)

where ω0
M = JsdnMn

�
|〈S〉| is the mean-field precession fre-

quency. The order of magnitude of the integral on the right-
hand side of Eq. (11) can be determined by noting that the
optically excited carriers occupy only very few states near
the center of the BZ and therefore for the most part of the
BZ nk ≈ 0 holds, which also implies k1

k
� 1 for the occupied

states. Approximating nk ≈ 0 and k1
k

≈ 0 the integral yields
the value kBZ. For the parameters used in our study (see below)
the renormalization is estimated in this way to be of the order of
≈1% of the mean-field precession frequency.1 The third term
in Eq. (10), which is proportional to the Mn spin, describes
a transfer of spin from the Mn to the electron system. The

prefactor
4〈sk1 〉2−n2

k1
+2nk1

4 is zero for nk1 ∈ {0,2}. For nk1 = 0
no transfer can occur because there are no electrons that can
exchange their spins with the Mn atoms; for nk1 = 2 the
transfer vanishes due to Pauli blocking.

The term proportional to 〈sk〉 × (〈sk1〉 × 〈S〉) has the form
of the relaxation term of a Landau-Lifshitz-Gilbert (LLG)
equation and describes the tendency of a spin in a given
effective magnetic field to align along the direction of the field.
Unlike in the LLG equation, here, the prefactor is determined
by the parameters of the microscopic model and is not a
phenomenological fitting parameter.

The last term in Eq. (10) resembles a relaxation term
that would be expected in the LLG equation for the Mn
magnetization 〈S〉. Here, it arises in the equation for the
electron spin reflecting the conservation of total spin which
is a feature also of the full QKT [15]. However, there is a
crucial difference between the last term in Eq. (10) and the
LLG relaxation term for the Mn magnetization: while the cross
products in the LLG equation involve classical vectors, we
are dealing here with vector operators. Here, the expectation
value has to be taken after constructing the cross product
in a symmetrized form. The physical consequences of this
difference become most obvious by rewriting the last term in

1For lower-dimensional systems this crude approximation leads
to a divergence of the frequency renormalization at k → k1. This
fact supports the findings of Refs. [16,17] that the Markov limit
is not a good approximation in systems with dimensions lower
than 3.

Eq. (10) as follows:

〈S × (S × 〈sk〉)〉 + 〈(〈sk〉 × S) × S〉
2

= −(〈S2〉 − 〈S‖2〉)〈s‖
k〉 − 1

2
(〈S2〉 + 〈S‖2〉)〈s⊥

k 〉, (12)

where 〈s‖
k〉 and 〈s⊥

k 〉 describe the electron spin of the states
with k vector k in the direction parallel and perpendicular to
the Mn spin vector 〈S〉 and S‖ = S · 〈S〉

|〈S〉| .
It is seen from Eq. (12) that even when the electron spin

is aligned parallel to the Mn spin, a spin transfer can occur,
and it was already noted in Ref. [16] that the corresponding
parallel spin transfer rate coincides with the result of Fermi’s
golden rule. In contrast, the corresponding term in the standard
LLG equation would be zero. This transfer is enabled because
the factor 〈S2〉 − 〈S‖2〉 is nonzero as quantum mechanically
the maximal value of 〈S‖2〉 is �

2S2, while 〈S2〉 = �
2S(S + 1),

which reflects the uncertainty between the respective spin com-
ponents. For classical vectors, as considered in the standard
LLG equation, this factor would always be zero. Furthermore,
in general the contribution in Eq. (12) is different for the
parallel and perpendicular components of the electron spin.
It is noteworthy that if the Mn spin had been represented by a
pseudospin 1

2 , this feature would be lost as then independent

of the Mn spin configuration we find 〈S2〉 = 3
4 and 〈S‖2〉 = 1

4

resulting in the same prefactors for 〈s‖
k1

〉 and 〈s⊥
k1

〉 in Eq. (12).
In order to use Eq. (10) in practical calculations we have

to know the values of the average Mn spin 〈S〉 and according
to Eq. (12) the second moment 〈S‖2〉, which appear on the
right-hand side of Eq. (10). The average Mn spin can be
calculated from the knowledge of the electron spin and the
initial total spin by using the total spin conservation [15].
Setting up an equation of motion for the second moment is
cumbersome and not necessary for the cases that we shall
discuss in this paper where it is assumed that the number of
Mn ions by far exceeds the number of photo induced electrons
(NMn  Ne). In this case, the change of the average Mn spin
as well as its second moment can be neglected and thus the
second moment essentially coincides with its initial thermal
value. Furthermore, for nearly constant Mn magnetization, the
equations of motion for electron states with different energies
�ωk are decoupled in the Markov limit due to the δ distribution
in Eq. (10) and the fact that nk remains constant which allows
using the initial occupation for the evaluation of the frequency
renormalization.

The decoupling of the equations of motion in the Markov
limit enables us to find analytical solutions for Eq. (10). To
this end we split the electron spin into its components parallel
and perpendicular to the Mn spin according to:

〈
sk1

〉 = s
‖
k1

〈S〉
S

+ s⊥
k1

(
sin(ωMt)

〈S〉 × 〈
sk1 (0)

〉∣∣〈S〉 × 〈
sk1 (0)

〉∣∣
+ cos(ωMt)

(〈S〉 × 〈
sk1 (0)

〉) × 〈S〉∣∣(〈S〉 × 〈
sk1 (0)

〉) × 〈S〉∣∣
)

, (13)

where ωM accounts for the precession of the perpendicular
component that results from Eq. (10). With this decomposition,
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FIG. 1. (Color online) Time evolution of the total electron spin polarization (a) and its components parallel (b) and perpendicular (c) to the
Mn spin assuming the electrons to be initially spin polarized along a direction at an angle of 45◦ relative to the Mn magnetization. The solid red
line describes the spin dynamics according to the full quantum kinetic theory, the dashed green line shows its Markov limit (analytic solutions,
cf. Appendix). Blue circles and purple squares correspond to approximate quantum kinetic calculations where only a subset of source terms
for the correlations (as indicated in the key of the figure) has been accounted for.

Eq. (10) can be rewritten as:

∂

∂t
s
‖
k1

= γk1S
(
s‖

k1

)2 + γk1S
nk1

(
2 − nk1

)
4

− γk1 (〈S2〉 − 〈S‖2〉)s‖
k1

, (14a)

∂

∂t
s⊥

k1
= γk1s

‖
k1

s⊥
k1

S − 1

2
γk1 (〈S2〉 + 〈S‖2〉)s⊥

k1
, (14b)

with

γk1 = J 2
sdnMn

�2V
π

∑
k

δ
(
ωk1 − ωk

)
, (15a)

ωM = JsdnMn

�
S

(
1 + 1

2

Jsd

�V

∑
k

P nk − 1

ωk1 − ωk

)
, (15b)

and S = |〈S〉|. Equation (14a) is a Riccati differential equation
with constant coefficients, which can be solved analytically.
Its solutions can then be fed back into Eq. (14b) for the
perpendicular electron spin. The explicit solutions are listed in
Appendix.

It is noteworthy that by a rescaling of the time axis according
to τ := γk1 t all material parameters can be eliminated from
Eqs. (14) for the moduli s‖

k1
and s⊥

k1
. Therefore, with this choice

of time units and given initial conditions we obtain the same
universal solution for all material parameters. Reinserting the
solutions for s

‖
k1

and s⊥
k1

into Eq. (13) and choosing again
1/γk1 as the unit of time, we conclude that for given initial
conditions the time trace of the electron spin 〈sk1〉 is affected
by the material parameters only via the ratio ωM/γk1 .

IV. NUMERICAL RESULTS

The quantum kinetic equations of motion (7) have been
solved numerically and compared with their Markov limit
(10) for different initial conditions in a three-dimensional bulk
DMS. The initial electron distribution over the single-particle

energies Ek is taken to be Gaussian with its center at Ek=0 and
a standard deviation of σ = 3 meV while the initial magnitude
of the Mn spin is set to 1

2 � (i.e., 20% of its maximal value).
The material parameters used were the same as in Ref. [16] for
Zn0.93Mn0.07Se with Jsd = 12 meVnm3 and me = 0.21m0.

First, we shall discuss results where at the beginning of
the simulation the electron spins are assumed to be totally
polarized in a direction with an angle of 45◦ with respect
to the Mn magnetization vector. Displayed in Fig. 1 is the
corresponding time evolution of the electron spin; (a) shows
the total electron spin, while in (b) and (c) the components
parallel and perpendicular to the Mn magnetization are plotted,
respectively. The full quantum kinetic results are plotted as
solid red lines whereas curves derived from the analytical
solutions of the Markov limit equations are depicted as dashed
green lines.

As seen from Fig. 1(a), the dynamics predicted by the full
theory is qualitatively different from the Markovian result.
On a short time scale (for our parameters t < 5 ps), the
electron spin decays much faster for the full solution than
in the Markov limit. Subsequently, the quantum kinetic curve
exhibits a nonmonotonic time dependence and the electron
spin eventually approaches a finite value. In contrast, in the
Markov limit, we find a monotonic, almost exponential decay
for all times. From the explicit analytical expression (cf.
Appendix) it is seen that the long time limit of the electron
spin in the Markov limit is zero.

The origin of the nonmonotonic behavior can be understood
by splitting the total electron spin into its components parallel
[Fig. 1(b)] and perpendicular [Fig. 1(c)] to the Mn spin. Both
spin components decrease almost exponentially in the ML as
well as in the full QKT. The time evolution of the perpendicular
spin component essentially yields the same results for the full
quantum kinetic calculation and the Markov limit. In the full
QKT, however, the parallel spin component changes its sign
and converges to a finite negative value, whereas both spin
components in the ML and the perpendicular spin component
of the QKT drop to zero. When the parallel spin component in
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FIG. 2. (Color online) Dynamics of the electron spin polarization
for initially unpolarized electron spins. Line styles and symbols have
the same meaning as in Fig. 1.

the full QKT crosses the zero line, its modulus has a minimum,
which leads to a minimum in the total spin.

The obvious discrepancy between the different levels of
theory with regard to the dynamics of the parallel spin
component does not arise due to the assumption of a short
memory in the ML. This can be seen from calculations, where

only the source terms b
l2n2k2
l1n1k1

I
, i.e., the terms used to derive the

ML in the first place, have been taken into account but the finite
memory expressed by the retardations in Eq. (8) are still kept
[blue circles in Fig. 1]. The resulting curves almost coincide
with the Markovian calculation. The main difference between
the full QKT and the ML is due to the source term b

l2n2k2
l1n1k1

II.1
,

which is demonstrated by simulations that incorporate only

b
l2n2k2
l1n1k1

I.1
and b

l2n2k2
l1n1k1

II.1
[purple squares in Fig. 1]. The results

of these calculations agree very well with the predictions
of the full theory, suggesting that all other source terms
are of minor importance, at least for the parameters used here.

It should be noted, that especially the term b
l2n2k2
l1n1k1

II.1
, like

b
l2n2k2
l1n1k1

II.2
and b

l2n2k2
l1n1k1

III
, gives contributions to the reduced

electron density matrices in the order of O(J 3
sd ) while the

leading-order contributions of the correlations are of O(J 2
sd ).

Thus, our results imply that a proper description of the coupled
electron and Mn spin dynamics requires a treatment beyond
perturbation theory.

The effect of these higher-order contributions on the
dynamics is particularly dramatic in the case of initially unpo-
larized electron spins. Corresponding results are displayed in
Fig. 2. Here, even the sign of the spin polarization is opposite
for the QKT and ML calculations. Furthermore, also the
predictions concerning the magnitude of the spin polarization
deviate significantly.

V. INTERPRETATION OF THE SOURCE TERMS

By the numerical analysis in the last section, we were able
to trace back the difference between the full quantum kinetic
theory and its Markov limit to a few selected source terms
for the correlations in Eqs. (7). In this section, we shall give
a physical interpretation to the individual source terms which

will enable us to understand what determines their relative
importance.

First of all, b
l2n2k2
l1n1k1

I.1
is the most important source term,

because it starts the correlation dynamics, i.e., without these
sources the correlations would stay zero for all times. In the

Markov limit, b
l2n2k2
l1n1k1

I.1
yields a Landau-Lifshitz-Gilbert-like

damping term described in Eq. (12) and a spin transfer term

proportional to the Mn spin 〈S〉. b
l2n2k2
l1n1k1

I.2
provides corrections

for Pauli blocking to the transfer term and yields another LLG-
like damping term, where the electron spin appears twice in
the double cross product [cf. Eq. (10)]. As seen above, the

quantum kinetic b
l2n2k2
l1n1k1

I
contributions act similarly to their

Markov limit counterparts. The dominant role of these terms
is further emphasized by the fact that they are the leading
terms in a perturbative treatment with respect to the exchange
coupling constant Jsd .

In order to understand the meaning of the b
l2n2k2
l1n1k1

II
terms,

it is instructive to reformulate the equations of motion of the
QKT by introducing new correlation functions according to:

Q
αk2
βk1

:=
∑
l1 l2

n1n2

Sβ
n1n2

sα
l1l2

Q
l2n2k2
l1n1k1

, (16)

which are summed over the electron band and Mn state indices.
Here, we use the conventions α = 0,1,2,3 with s0

l1l2
= δl1l2 and

β = 1,2,3. From Eq. (7c), we obtain the following equations
of motion for the summed correlations:

∂

∂t
Q

0k2
βk1

= −i
(
ωk2 − ωk1

)
Q

0k2
βk1

+ b
0k2
βk1

Res
(17a)

∂

∂t
Q

αk2
βk1

= −i
(
ωk2 − ωk1

)
Q

αk2
βk1

+ b
αk2
βk1

Res

+
∑
κλ

εακλω
κ
MQ

λk2
βk1

+
∑
κλ

εβκλω
κ
EQ

αk2
λk1

, (17b)

where

ωα
M = Jsd

�
nMn〈Sα〉, (18a)

ωα
E = Jsd

�

1

V

∑
k

〈
sα

k

〉
, (18b)

b
αk2
βk1

Res =
∑
l1 l2

n1n2

Sβ
n1n2

sα
l1l2

[
b

l2n2k2
l1n1k1

I + b
l2n2k2
l1n1k1

III ]
(18c)

and εαβγ is the Levi-Civita symbol. We note in passing

that the residual sources b
αk2
βk1

Res
contain a term resulting

from b
l2n2k2
l1n1k1

III.1
, which cannot be expressed by the summed

correlations. Thus, Eqs. (17) are numerically advantageous

only if b
l2n2k2
l1n1k1

III.1
is disregarded. The point here is that the two

terms in Eq. (17b) originating from b
l2n2k2
l1n1k1

II.1
and b

l2n2k2
l1n1k1

II.2

both involve the Levi-Civita symbol and can therefore be
interpreted as describing precessions. This can be made more
explicit, e.g., by introducing a vector with components α

according to (
Q k2

βk1

)
α

= Q
αk2
βk1

. (19)
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Then, the first of these terms, which stems from b
l2n2k2
l1n1k1

II.1
, can

be written as a cross product:

ωM × Qk2
βk1

(20)

indicating a precession of the vector Qk2
βk1

around the direction
ωM of the Mn magnetization with the same frequency as the
mean-field precession of the electron spin. Likewise, the term

originating from b
l2n2k2
l1n1k1

II.2
has a similar structure. It can also

be written as a cross product

ωE × Qαk2
k1

, (21)

where now the index β is associated with the components of a
vector Qαk2

k1
formed from the correlations according to(

Qαk2
k1

)
β

= Q
αk2
βk1

, (22)

i.e., now we are dealing with a precession around the direction
ωE of the electron spin. Thus, not only the average spins of
the electrons and Mn atoms exhibit a precession dynamics, but
also their correlations, which is represented in the equations

of motion by the b
l2n2k2
l1n1k1

II
terms.

Finally, the physical meaning of the b
l2n2k2
l1n1k1

III
source terms

becomes clear by noting that their structure is analogous

to the structure of the b
l2n2k2
l1n1k1

I
terms, where the products

of electron and Mn density matrices are replaced by the
corresponding unfactorized correlation functions. Thus, the

b
l2n2k2
l1n1k1

III
sources provide the correlated parts of the b

l2n2k2
l1n1k1

I

sources, which represented a Landau-Lifshitz-Gilbert-like
dynamics including Pauli blocking.

Now that all source terms have been physically interpreted,
let us come back to the question of their relative importance
in the case considered numerically in Sec. IV. As already

noted, the sources b
l2n2k2
l1n1k1

I
always play a pivotal role, since no

correlations would build up without these terms. The impor-
tance of the remaining terms depends on the physical situation.
Looking at the definition Eqs. (7d)–(7f) of the sources, it is

seen that the terms b
l2n2k2
l1n1k1

X.2
, with X ∈ {I,II,III }, comprise

similar factors as the corresponding contributions b
l2n2k2
l1n1k1

X.1
,

except that the former contain an additional factor proportional
to the electron density matrix C

l2
l1k1

. From this observation

we can conclude that the b
l2n2k2
l1n1k1

X.2
sources should be less

important than the b
l2n2k2
l1n1k1

X.1
terms, if the electron density

is moderate, as it is the case here. A criterion for being in
the low density limit is particularly easy to formulate for

the b
l2n2k2
l1n1k1

II
terms, since Eq. (7e) implies that b

l2n2k2
l1n1k1

II.2
is

negligible compared with b
l2n2k2
l1n1k1

II.1
if NMn  Ne, which is

fulfilled in our simulations. However, it is more challenging to

give a condition for the negligibility of the b
l2n2k2
l1n1k1

I.2
term, as it

strongly depends on the electron distribution in k space.

Finally, since the b
l2n2k2
l1n1k1

III
sources have the same structure

as the b
l2n2k2
l1n1k1

I
term, except that the correlations Q

l2n2k2
l1n1k1

take the

place of the product Cl2
l1k1

Mn2
n1

, they will be of minor importance

if the relation
Q

l2n2k2
l1n1k1

C
l2
l1k1

M
n2
n1

� 1 is satisfied. The latter relation is

expected to hold, when the conditions for the applicability
of the correlation expansion are fulfilled. The numerical

results shown in Fig. 1 indicate that the b
l2n2k2
l1n1k1

III
terms

provide insignificant quantitative corrections, which confirms
the consistency of the correlation expansion approach.

The fact that a source contains correlations is, however, not
sufficient for concluding that it can be neglected compared

with the b
l2n2k2
l1n1k1

I
terms, which do not involve correlations.

In particular, the b
l2n2k2
l1n1k1

II.1
term was shown to qualitatively

modify the spin dynamics (cf. Figs. 1 and 2). In view of our

interpretation of the b
l2n2k2
l1n1k1

II.1
term, this implies physically

that accounting for the precession of the correlations around
the Mn magnetization is essential for a correct description of
the spin dynamics. This also explains why previous studies
in Refs. [16,17] reported a negligible contribution from the

b
l2n2k2
l1n1k1

II.1
term, since there a situation was considered, where

the average Mn spin was initially set to zero which suppresses
the precession.

The features of the spin dynamics predicted in this
article manifest themselves in the time evolution of the spin
polarization which is a quantity accessible experimentally,
e.g., by time- and polarization-resolved photoluminescence or
Faraday-/Kerr-rotation measurements [20]. Favorable for the
observation of such effects should be experiments measuring
the time dependence of the spin polarization as well as
the its equilibrium value where the angle between the Mn
magnetization and the initial electron spin polarization induced
by a circularly polarized laser beam is varied. For our purposes
bulk materials are preferable compared with, e.g., quantum
wells, since for heterostructures the anisotropy with respect
to growth axis as well as structure inversion asymmetry can
play a role [21], which would make it hard to separate the
angular dependence predicted by our theory from anisotropy
effects. Furthermore, II-VI DMS should be better suited for
the proposed experiment than III-V DMS, since they have
the advantage of isoelectrical doping. In III-V materials, the
Bir-Aronov-Pikus interaction [22] between electron and hole
spins can dominate the spin dynamics [9], while for II-VI DMS
with sufficiently high Mn doping the s-d-exchange interaction
is typically the most important spin relaxation mechanism [23].

VI. SUMMARY

In this article, we have analyzed the spin dynamics of
conduction band electrons in Mn doped bulk DMS induced
by the s-d-exchange interaction. In contrast to our previous
studies [16,17], we now assume a nonzero Mn magnetization.
This naturally leads to a distinction between the electron spin
dynamics of the components parallel and perpendicular to the
Mn spin which introduces an anisotropy in the spin relaxation.
Starting from a microscopic quantum kinetic theory based
on correlation expansion we have derived the Markov limit
yielding equations similar to the widely used phenomenolog-
ical Landau-Lifshitz-Gilbert equations. Our derivation yields
microscopic expressions for the parameters in the Landau-
Lifshitz-Gilbert equations and allows us to identify some
quantum corrections. The resulting rate equations were solved
analytically.
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Numerical simulations within the quantum kinetic theory
revealed that, while the dynamics of the perpendicular electron
spin component can be well described by the Markovian
theory, the parallel component exhibits qualitative deviations
between the full quantum kinetic and the corresponding
Markovian results. The differences between both levels of
theory manifest themselves in a nonmonotonic temporal
behavior of the total spin in the quantum kinetic theory as
opposed to an almost exponential monotonic decay predicted
by the Markovian theory. Moreover, for certain excitation
conditions, even the sign of the spin polarization differs
between these levels of theory.

A detailed analysis allowed us to assign a physical
interpretation to all source terms for the correlations and to
understand their relative importance found in our numerical
studies. With the help of this analysis and our numerical
results, the deviations between the full quantum kinetic theory
and its Markov limit were traced back to the neglect of a
precession dynamics of the correlations in the Markov theory.
This precession is missing in the Markov limit not because of
the assumption of a short memory but due to the perturbative
treatment that is implicit in this approach.
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APPENDIX: ANALYTICAL SOLUTIONS OF THE
MARKOV EQUATIONS

Equation (14a) is a Riccati differential equation

∂

∂t
s
‖
k1

= f s
‖2
k1

− gs
‖
k1

+ h, (A1)

with f = γk1S, g = γk1 (〈S2〉 − 〈S‖2〉) and h = γk1S
nk1 (2−nk1 )

4 .
For f = 0, which is the case if S = 0, the solution of Eq. (A1)
is simply:

s
‖
k1

(t) =
(

s
‖
k1

(0) − h

g

)
e−gt + h

g
. (A2)

For f �= 0, the Riccati equation can be rewritten in terms of a
linear differential equation with eigenvalues:

λ1/2 = − g

2︸︷︷︸
=:μ

±
√

g2

4
− f h︸ ︷︷ ︸

=:ν

. (A3)

The solution of Eq. (A1) is then given by:

s
‖
k1

(t) = μ

f
− ν

f
tanh

(
ϕ

2
+ νt

)
(A4)

where ϕ is determined by the initial value of s
‖
k1

.
Eq. (14b) for the perpendicular spin component assumes

the form:
∂

∂t
s⊥

k1
= (−ξ + f s

‖
k1

)
s⊥

k1
, (A5)

where ξ = 1
2γk1 (〈S2〉 + 〈S‖2〉). Eq. (A5) is solved by

s⊥
k1

(t) = s⊥
k1

(0)e−ξ t e
f

∫ t

0 s
‖
k1

(t ′)dt ′︸ ︷︷ ︸
=:I

. (A6)

For f = 0, I = 1 and the perpendicular spin component
decreases exponentially. Inserting the solution for the parallel
spin component from Eq. (A4) for nonzero f yields:

I = eμt
cosh

(
ϕ

2

)
cosh

(
ϕ

2 + νt
) . (A7)
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