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Examining the Callaway model for lattice thermal conductivity
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The Callaway model [J. Callaway, Phys. Rev. 113, 1046 (1959)], regarded as an improvement over the
relaxation time approximation (RTA) for the phonon Boltzmann transport equation (BTE), is widely used in
studying lattice thermal conductivity (κ). However, its accuracy needs to be systematically examined. By solving
BTE accurately using an iterative method along with the first principles calculation of phonon scatterings, we
conduct such an examination of the Callaway model as well as a modified version proposed by Allen [Phys. Rev.
B 88, 144302 (2013)] for Si, diamond, and wurtzite AlN. At room temperature, the RTA underestimates κ by
5%, 32%, 11%, and 12% for Si, diamond, and in-plane and cross-plane AlN, respectively. The deviation of the
original Callaway model from the accurate κ is −1%, 25%, 1%, and −12%, respectively, while the deviation
of Allen’s modified model is 7%, 44%, 13%, and −8%, respectively. The room temperature anisotropy of AlN
is 5%, and the anisotropy predicted by RTA, the Callaway model, and Allen’s modified version is 7%, 19%,
and 29%, respectively. We conclude that neither the original Callaway model nor Allen’s modified version can
generally guarantee an improvement over RTA. In these three systems, we also find that the relaxation times for
umklapp processes scale as 1/ω3 at low frequencies for both transverse acoustic (TA) and longitudinal acoustic
(LA) modes, and those for normal processes scale as 1/ω and 1/ω2 for TA and LA modes, respectively.
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I. INTRODUCTION

The phonon Boltzmann transport equation [1,2] (BTE)
is a frequently used approach to study the lattice thermal
conductivity (κ). Its linearized version is simply a set of linear
equations. Since the linear-equation set has a large dimension,
the BTE is far from trivial to solve. On the other hand, the lack
of reliable linear coefficients determined by the interatomic
potential can also make the exact solution of BTE not so
necessary. Instead, the relaxation time approximation (RTA)
for BTE, along with the Debye approximation neglecting
phonon dispersion, was conventionally employed, and sev-
eral parameters were introduced to treat different scattering
mechanisms. The phonon wave-vector conservative normal
(N) processes alone should lead to zero resistance [1,2],
and thus the normal processes can play a different role
from the wave-vector nonconservative umklapp (U) processes.
However, they are treated equally in RTA. Callaway proposed
an intuitive model to treat N processes and U processes
differently [3]. Since then it has been widely used [4–31].
However, the accuracy of Callaway model was not known.
Very recently, a modified Callaway model has been proposed
by Allen, which uses a different constraint condition imposed
by the N processes [32].

In 1995 a practically feasible, iterative numerical method
was proposed [33–35] to accurately solve BTE. A first
principles determination of the interatomic force constants
(IFCs) has been developed recently, which enables the ab
initio calculations of κ . So far, this method has been ap-
plied to many systems such as Si and Ge [36–39], dia-
mond [40–43], MgO [44], SixGe1−x [45–47], half-Heusler
compounds [48,49], PbSe, PbTe, and PbSexTe1−x alloys [50],
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Ga-V compounds [51–53], Mg2Si, Mg2Sn, and Mg2SixSn1−x

alloys [54], In-V compounds [53], Al-V compounds [53,55],
SiC [53], BeO [55], MgSiO3 [56], UO2 [57], B-V com-
pounds [58], and skutterudites [59], showing good agreement
with available experimental data. Some of the authors and
their co-workers have recently published an open-source code
ShengBTE [60], which allows one to calculate the third-order
IFCs using a real-space finite-difference approach [54,60]
along with third-party ab initio packages and eventually
κ using a locally adaptive algorithm to treat the Gaussian
function approximation for the Dirac delta function [41,60].
The accurate solution scheme of BTE combined with the
first principles determination of the linear coefficients in BTE
makes it possible to examine the Callaway model based on
real systems. Ward et al. [37] made such an examination for
Si and they found that the Callaway model agrees well with
the precise solution. Despite that, a systematic examination is
still lacking.

In this paper, we conduct such an examination of the
accuracy of the original Callaway model and Allen’s modified
version with three systems, Si, diamond, and wurtzite AlN. We
find that neither of these two approximations has a guaranteed
accuracy and improvement over RTA. Though RTA generally
underestimates κ , the Callaway model and Allen’s modified
model can either underestimate or overestimate κ .

II. PHONON BOLTZMANN TRANSPORT EQUATION

A. Linearized phonon BTE

In the presence of a temperature gradient ∇T , the phonon
distribution function fλ in crystals deviates from the equilib-
rium Bose-Einstein distribution f 0

λ , and this deviation can be
obtained from the phonon BTE [54,60],

− vλ · ∇T
∂fλ

∂T
+ ∂fλ

∂t

∣∣∣∣
scatt

= 0, (1)
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where λ denotes a phonon mode comprising a wave vector
q and a phonon branch p. vλ is the phonon group velocity.
The first term in the equation is the diffusion term due to the
temperature gradient, and the second term is the scattering term
determined by the scattering events occurring in the system.
For a small temperature gradient, the phonon BTE can be
linearized with fλ = f 0

λ + f 0
λ (1 + f 0

λ )�λ, where �λ is a small
perturbation. If only three-phonon processes are considered in
the scattering term, the linearized phonon BTE can be written
as [61,62]

−vλ · ∇T
∂f 0

λ

∂T
= f 0

λ

(
1 + f 0

λ

)
N

×
∑
λ′λ′′

[
(�λ + �λ′ − �λ′′ )�+

λλ′λ′′

+ 1

2
(�λ − �λ′ − �λ′′)�−

λλ′λ′′

]
, (2)

where we introduce a discretization of the Brillouin zone (BZ)
into a Gamma-point-centered regular grid of N = N1 × N2 ×
N3 q points. �±

λλ′λ′′ are related to transition rates for three-
phonon absorption (+) and emission (−) processes, which can
be computed successfully by first principles [36,40,42,51,54].
In absorption processes a phonon λ is scattered by absorbing
a phonon λ′ to yield a third phonon λ′′, while in emission
processes a phonon λ decays into two phonons λ′ and λ′′.
All the allowed three-phonon processes must conserve both
energy (ωλ ± ω′

λ = ω′′
λ) and momentum (qλ ± q′

λ = q′′
λ + G),

where + and − are for absorption and emission processes,
respectively, and G is a reciprocal lattice vector such that q,
q′, and q′′ are in the same image of the BZ. If G = 0, the
processes are N processes, and if not, they are U processes.
The distinction between the N processes and U processes is
not rigorous, since it depends on the choice of the BZ image.
Some U processes in one BZ image might be described as N
processes in another BZ image. Conventionally all q points
are restricted to the first BZ, that is, the Wigner-Seitz cell,
since the direction of the phonon group velocity is closer to
the direction of q in this case.

Since �λ is linear with ∇T , we write �λ = − �ωλ

kBT 2 Fλ ·
∇T , where Fλ can be regarded as mean free displacement, a
generalization of mean free path [60], and ωλ is the angular
frequency. To simplify Eq. (2), we further define Eλ ≡ ωλFλ,
and we can obtain{

−ωλvλ + 1

N

∑
λ′λ′′

[
(Eλ + Eλ′ − Eλ′′)�+

λλ′λ′′

+ 1

2
(Eλ − Eλ′ − Eλ′′ )�−

λλ′λ′′

]}
· ∇T = 0. (3)

Equating the contents of the curly brackets to zero, one can
see that the phonon BTE can be viewed as a set of linear
equations in terms of Eλ in the form of

∑
λ′ Aλλ′Eλ′ = Bλ,

where A is the coefficient square matrix and Bλ = ωλvλ. When
only N processes exist, it is obvious that the

∑
λ′ Aλλ′Eλ′ =

0 is valid not only for Eλ′ = 0 but also for Eλ′ = qλ′ . This
indicates that a nonzero current can be present in the case of
vanishing ∇T . Therefore, N processes alone lead to an infinite
κ . Mathematically it corresponds to a case where A is a singular

matrix and the solution of
∑

λ′ Aλλ′Eλ′ = Bλ is principally
infinite. Even though κ is infinite in this case, it is too rude
to say that N processes are nonresistive and U processes are
resistive. As was mentioned above, the distinction between N
processes and U processes depends on the BZ scheme that is
referred to. Additionally, the fact that N processes alone result
in an infinite κ is not restricted to any particular choice of BZ.

The heat current J generated from the small temperature
gradient can be expressed in terms of the distribution func-
tion [32,62],

J = 1

NV

∑
λ

�ωλvλfλ

= − 1

kBT 2NV

∑
λ

�
2ωλf

0
λ

(
1 + f 0

λ

)
vλ(Eλ · ∇T ), (4)

where V is the volume of the unit cell and we have used the
fact the heat current is vanishing at the equilibrium state. From
Fourier’s law J α = −∑

β καβ(∇T )β , it follows

καβ = 1

kBT 2NV

∑
λ

�
2ωλf

0
λ

(
1 + f 0

λ

)
vα

λE
β

λ . (5)

B. Callaway model

It is far from trivial to solve the linear equations∑
λ′ Aλλ′Eλ′ = Bλ, since a large dimension is involved. On

the other hand, the lack of reliable linear coefficients Aλλ′

determined by the interatomic potential can also make the
exact solution of BTE not so necessary. Instead RTA is often
used,

−vλ · ∇T
∂f 0

λ

∂T
= fλ − f 0

λ

τ c
λ

, (6)

where the relaxation time τ c
λ is usually parametrized. RTA

always underestimates κ , since not all scattering processes are
completely resistive. For instance, it gives a finite κ in the
case of N processes alone. Thus, Callaway treated N processes
and U processes separately, 1/τ c

λ = 1/τN
λ + 1/τU

λ , where τN
λ

and τU
λ are relaxation times for N processes and U processes,

respectively, and replaced Eq. (6) with [3,32]

−vλ · ∇T
∂f 0

λ

∂T
= fλ − f 0

λ

τU
λ

+ fλ − f ∗
λ

τN
λ

. (7)

While the U processes tend to relax the phonon distribution
to equilibrium distribution f 0

λ , the N processes drag it to a
displaced distribution f ∗

λ depending on qλ as well as ωλ. The
displaced distribution function can be written as [3,32]

f ∗
λ = 1

e�ωλ/kBT +�·qλ − 1

≈ f 0
λ − f 0

λ

(
1 + f 0

λ

)
� · qλ, (8)

where � is a Lagrange multiplier. Substituting Eq. (8) into
Eq. (7), we can obtain

fλ − f 0
λ = −τ c

λvλ · ∇T
∂f 0

λ

∂T
− τ c

λ

τN
λ

kBT 2

�ωλ

� · qλ

∂f 0
λ

∂T
. (9)

To solve �, Callaway utilized the fact that the N processes
conserve phonon momentum. The rate of change of the total
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phonon momentum due to N processes is set equal to zero [3],
∑

λ

fλ − f ∗
λ

τN
λ

· qλ = 0. (10)

Inserting Eqs. (8) and (9) into Eq. (10), one can obtain

∑
λ

τ c
λ

τN
λ

(vλ · ∇T )qλ

∂f 0
λ

∂T
=

∑
λ

τ c
λ

τN
λ τU

λ

kBT 2

�ωλ

(� · qλ)qλ

∂f 0
λ

∂T
.

(11)
Though � is linear with ∇T , it does not necessarily orient
along the same direction. Lattice symmetry imposes a con-
straint on the relation of its directions. For instance, in the
case of a cubic lattice or ∇T in the plane or perpendicular to
the plane of a wurtzite lattice, as considered in this paper, �

as well as J are parallel to ∇T . The solution of � simplifies
in these cases. Assuming the thermal gradient is along the α

direction, only �α is not vanishing, and can be obtained as

�α

∇αT
= 1

kBT 2

∑
λ �ωλτ

c
λ

(
τN
λ

)−1
vα

λqα
λ f 0

λ

(
1 + f 0

λ

)
∑

λ τ c
λ

(
τN
λ τU

λ

)−1
qα

λ qα
λ f 0

λ

(
1 + f 0

λ

) . (12)

Then combining the solution of �α [Eq. (12)] and the
distribution fλ [Eq. (9)], the heat current can be obtained with
Eq. (4), thus the κ calculated from Callaway’s approximated
phonon BTE can be expressed as

καα = καα
RTA + Iα

1 Iα
2

Iα
3

, (13)

where

καα
RTA = 1

kBT 2NV

∑
λ

(�ωλ)2vα
λvα

λ τ c
λf 0

λ

(
1 + f 0

λ

)
, (14)

corresponding to the κ obtained from the ordinary RTA
[Eq. (6)], and the correction terms can be expressed as

Iα
1 = Iα

2 = 1

kBT 2NV

∑
λ

τ c
λ

τN
λ

�ωλv
α
λqα

λ f 0
λ

(
1 + f 0

λ

)
, (15a)

Iα
3 = 1

kBT 2NV

∑
λ

τ c
λ

τN
λ τU

λ

qα
λ qα

λ f 0
λ

(
1 + f 0

λ

)
. (15b)

Very recently, Allen [32] proposed a different constraint
equation for �, which claims the total phonon momentum
should be the same for both the actual distribution and the
displaced equilibrium distribution:∑

λ

(fλ − f ∗
λ ) · qλ = 0. (16)

This avoids the extra use of the RTA, and consequently the
factor 1/τN

λ is removed from the sums in the linear equation
for � [Eq. (11)] as well as I1 [Eq. (15a)] and I3 [Eq. (15b)] for
the correction to καα

RTA. I2 [Eq. (15a)] for the correction remains
the same. Allen [32] showed his modified Callaway model
can lead to higher κ by using simple parametrization for τN

λ

and τU
λ .

C. Iterative BTE

Owing to the recent development of techniques calculating
the IFCs from first principles, the transition rates �±

λλ′λ′′ can
be obtained accurately. Then the direct solution of linear

equations
∑

λ′ Aλλ′Eλ′ = Bλ involved in Eq. (3) enables
accurate determination of κ . It is efficient to employ an
iteration solution. Pulling Eλ out of summation term in Eq. (3),
one obtains its iterative form as

Ei+1
λ = E0

λ + τ 0
λ

N

∑
λ′λ′′

[(
Ei

λ′′ − Ei
λ′
)
�+

λλ′λ′′

+ 1

2

(
Ei

λ′′ + Ei
λ′
)
�−

λλ′λ′′
]
, i = 1,2,3, . . . . (17)

The iterative process is started with

E0
λ = ωλvλτ

0
λ , (18)

with 1
τ 0
λ

= 1
N

∑
λ′λ′′[�+

λλ′λ′′ + 1
2�−

λλ′λ′′ ]. τ c
λ used in Eq. (6) is

equal to τ 0
λ principally. In fact, setting Eλ equal to E0

λ is
equivalent to RTA [60]. τN

λ and τU
λ used in last section can

also be obtained accurately, as long as N processes and U
processes are separated.

Once the difference between the values of Eλ in two
consecutive steps is below a specified accuracy level, the
iteration scheme is terminated. Strictly speaking, the Eλ

should converge for all phonon modes in the iterative process.
However, the convergency of Eλ is too slow numerically.
Instead, a natural choice of the convergence criterion for κ is
implemented [60]. A test of this choice using a relatively small
24 × 24 × 24 mesh for Si shows that this iterative solution of
phonon BTE gives exactly the same κ as that obtained by using
LU decomposition algorithm to solve the linear equations∑

λ′ Aλλ′Eλ′ = Bλ.

III. RESULTS AND DISCUSSION

In this section we calculate the transition rates and relax-
ation times from IFCs determined from first principles [41,55]
and examine the accuracy of the Callaway model and Allen’s
modified model for Si, diamond, and wurtzite AlN. Previous
calculations [37,40,53] show that at room temperature the full
solution of BTE corrects RTA only by 6% for Si, and by 33%
for diamond, which is the largest among all the bulk systems
that have been studied in the literature. The correction for
wurtzite AlN [55] is somewhere in between Si and diamond.
κ of cubic systems such as Si and diamond reduces to a scalar,
and the anisotropy of κ of AlN, characterized by the difference
between the in-plane and cross-plane values, provides another
degree of freedom to check the accuracy.

A. Si

The intrinsic κ calculated using different methods to solving
phonon BTE for Si between 50 and 500 K are shown in
Fig. 1. The calculated room temperature κ of RTA and exactly
iterative solution are respectively 146 and 153 W m−1 K−1,
which agree with previous works [37,41,53]. Above 100 K,
comparing the RTA κ and its accurate values, we find that the
underestimation of RTA is very small, only about 5%. Inserting
the calculated ab initio intrinsic relaxation times into the
original Callaway model, it shows satisfactory agreement with
the exact ab initio results, with the largest deviation below 2%.
At room temperature, the underestimation is only 1%. When
using Allen’s modified model to conduct the correction, it gives
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FIG. 1. (Color online) Thermal conductivity of Si calculated
with different methods for solving phonon BTE, as a function of
temperature. The square line (RTA) is the result of RTA solution,
the circle line (iterative BTE) is the result of iterative solution, the
triangle line (Callaway) is the result of the Callaway model, and the
star line (Allen) is the result of Allen’s modified model.

a larger κ than the original Callaway model and overestimates
κ obviously. For instance, it overestimates κ by about 7% at
300 K. At 50 K, the RTA gives about 24% underestimation,
and both the original Callaway model and Allen’s modified
model underestimate κ by 19% and 11%, respectively. This
demonstrates that neither the original Callaway model nor
Allen’s modified model has guaranteed accuracy, though the
original Callaway model performs better than the ordinary
RTA in the case of Si.

It is interesting to compare the relaxation times with
previous work. Ward and Broido [37] reported that for
the longitudinal acoustic (LA) branch τU exhibits a 1/ω4

frequency dependence, which is different from the often
assumed 1/ω2 frequency dependence. τN of the LA branch
is found to follow well 1/ω2 [37]. Later, Esfarjani et al. [38]
showed although τN scales as 1/ω2, τU scales as 1/ω3 at low
frequencies. However, there is no distinction between LA and
transverse acoustic (TA) and only a 18 × 18 × 18 mesh was
used in their work, leading to an insufficient number of data
points at low frequencies [38]. Actually, Herring [63] predicted
different behavior for the LA and TA branches. According to
his work, for Si, τ of the LA and TA branches should scale
as 1/ω2 and 1/ω, respectively. We use a 105 × 105 × 105
mesh of grid q sampling to calculate the relaxation time
for ω < 10 THz, and a 60 × 60 × 60 mesh for 10–30 THz.
The results are converged for ω > 2 THz and plotted in
Fig. 2 for the two TA branches and the LA branch. In order
to analyze the data more easily, we average the relaxation
times by using τ̄ (ω) = ∑

λ τλδ(ω − ωλ)/
∑

λ δ(ω − ωλ). The
δ function is approximated with Gaussian function δ(ω −
ωλ) ≈ 1√

2πσ
e−(ω−ωλ)2/2σ 2

, where σ is the adaptive broadening
parameter depending on the mode group velocity [41,60]. As
can be seen in Fig. 2, τU scales as 1/ω3 at low frequencies for
all three acoustic branches, which can agree with the work by
Esfarjani et al. [38]. τN apparently has a 1/ω2 dependence

FIG. 2. (Color online) Relaxation time of N processes and U
processes in Si at 300 K, as a function of frequency. The top panel is
for the LA branch and the bottom panel is for the lowest TA (TA1)
and second lowest TA (TA2) branches. The discrete data are ab initio
results, the dashed lines are the averaged relaxation times, and the
solid lines are fitting lines.

for the LA branch. For TA branches τN scales as 1/ω at
low frequencies, and it tends to have a stronger frequency
dependence such as 1/ω2 at higher frequencies. Therefore,
the 1/ω2 behavior established by Esfarjani et al. [38] is likely
because the frequencies are not low enough. The different
frequency dependence for the LA and TA branches revealed
in our calculation agrees with Herring’s prediction [63]. The
dominant 1/ω dependence for the TA branches is independent
of the lattice symmetry, and results from the three-phonon
processes TA + LA → LA, where the two LA modes are not
in the neighborhood of any degeneracy points. The frequency
dependence of τ for the LA branch is determined by the
degeneracy of the phonon frequencies due to the point group
symmetries of the lattice [63]. The relaxation time for the LA
branch scales as 1/ω2 for high symmetry crystals, while it
is 1/ω3 and perhaps sometimes 1/ω4 for those with lower
symmetry. To be specific, in cubic crystals, the relaxation time
for the LA branch scales as 1/ω2 if the point group is Oh, which
Si belongs to, or the Td point group. However, it follows 1/ω3

in the case of Th while 1/ω4 for the O and T point groups.
Additionally, the relaxation times show the same power-law
frequency dependence at 100 K, which is not shown here.

B. Diamond

Figure 3 shows the κ from different solutions for diamond
ranging from 100 to 500 K. It can be seen that the full
solution of phonon BTE gives a much higher κ than the
RTA, for instance, about 32% larger at room temperature. As
mentioned above, the underestimation of RTA is due to the
equally resistive treatment of the N processes, which become
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FIG. 3. (Color online) Thermal conductivity of diamond calcu-
lated with different methods for solving phonon BTE, as a function
of temperature.

stronger at lower temperature. Thus, the underestimation
becomes larger as the temperature decreases, varying from
27% at 500 K to 80% at 100 K. The corrections to RTA
decrease with increasing temperature, because the portion of
N processes becomes less. As a result, the difference between
the original Callaway model and Allen’s model decreases as
well. The original Callaway model agrees with the iterative
solution better at lower temperature where N processes are
more important, which is in contrast to the Si case. Allen’s
modified model predicts a larger κ than the original Callaway
model and overestimates the κ .

In the earlier study [16,20,21,24–27], the Callaway model
was always used along with Debye phonon dispersions and
some parametrized relaxation times fitted with experiment
data. Thus, we wonder whether the Callaway model and
Allen’s modified model can work better under similar approxi-
mated conditions. First, the linear phonon dispersions are used
instead of the ab initio phonon dispersions. Only isotropic
acoustic branches are considered in the actual BZ, and the
three speeds of sound for the TA1, TA2, and LA branches
are 12.0 × 103, 13.0 × 103, and 18.0 × 103 m/s, respectively,
which are based on the values of diamond. Then, for the
three-phonon transition rate determined by the correspond-
ing matrix element |Vλλ′λ′′ | [36,40,54], the long wavelength
approximation (LWA) for acoustic phonons is applied, i.e.,
|Vλλ′λ′′ | = C|qλ||qλ′ ||qλ′′ | [37], where C is a scaling parameter.
Although Ward and Broido [37] report the LWA holds for only
a small fraction of the phase space of three-phonon scattering
events, we apply it to the whole BZ. In order for the iteratively
calculated κ under these approximations to be comparable
with the accurate κ of diamond, we use C2 = 1.75 × 1024

J−1 THz6 nm6, such that a less than 3% difference exists at
room temperature. Figure 4 shows κ calculated from different
models under these approximations. It can be seen that the
original Callaway model and Allen’s modified model still
fail to predict κ correctly. For instance, the original Callaway
model overestimates κ by about 26%, while Allen’s modified
model even overestimates by 108% at room temperature.

FIG. 4. (Color online) Thermal conductivity of a diamond-based
system calculated with linear phonon dispersions and approximated
three-phonon relaxation times derived from a long wavelength
approximation, as a function of temperature.

C. AlN

Thermal conductivity of wurtzite AlN can be characterized
by its in-plane and cross-plane components. The anisotropy
between the two components provides another degree of
freedom to check the accuracy of the models. The calculated
κ as a function of temperature is plotted in Fig. 5 for wurtzite
AlN. For the in-plane κ of AlN, the accurate κ calculated
iteratively is higher than RTA by 11% at room temperature.
Above 150 K, while the original Callaway model has excellent
correction, Allen’s modified model overestimates κ by over
10%. However, at 100 K where the RTA underestimates
by about 26%, the original Callaway model corrects worse

FIG. 5. (Color online) Thermal conductivity of wurtzite AlN
calculated with different methods for solving phonon BTE, as a func-
tion of temperature. The top panel is for in-plane thermal conductivity
and the bottom panel is for cross-plane thermal conductivity.
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FIG. 6. (Color online) Frequency dependent contribution of the
correction terms of the original Callaway model for wurtzite AlN.
The top panel is for the I3 term while the bottom panel is for the
I1(=I2) term.

than Allen’s modified model, with deviations by 14% and
8%, respectively. The RTA, original Callaway model, and
Allen’s modified model underestimate the cross-plane κ . For
instance, the underestimation of room temperature κ is 12.3%,
11.6%, and 8%, respectively. The original Callaway model
only shows a 0.7% increase over RTA. Comparing the in-plane
κ (300 W m−1 K−1) and cross-plane κ (286 W m−1 K−1)
of AlN at room temperature, the anisotropy of wurtzite AlN
is only 5%. However, because the Callaway model does not
correctly predict the cross-plane κ , it gives a larger anisotropy
than the actual value, and even that obtained from RTA in the
temperature range considered here. To be specific, at room
temperature, the RTA, Callaway model, and Allen’s modified
model obtain an anisotropy of 7% (268 vs 251 W m−1 K−1),
19% (302 vs 253 m−1 K−1), and 29% (340 vs 263 W m−1 K−1),
respectively, compared with the actual anisotropy of 5%
(300 vs 286 W m−1 K−1).

In order to figure out why the Callaway model gives a
smaller correction to RTA for the cross-plane direction than for
the in-plane direction, we plot the contribution from different
frequencies to the correction terms I1, I2, and I3 in the original
Callaway model in Fig. 6. The top panel is for I3 calculated
with Iω

3 = 1
kBT 2NV

f 0
λ (1 + f 0

λ )
∑

λ

τc
λ

τN
λ τU

λ

qα
λ qα

λ δ(ω − ωλ). It is

evident that Iω
3 is positive as it is related to the square of

the wave vector. Iω
3 for the cross plane is smaller than that

for the in plane, since the wave vectors have a shorter cross-
plane component. Back to the correction terms of Eq. (13)
(κ = κRTA + I1I2

I3
), even with smaller I3 = ∫

Iω
3 dω for the

cross-plane direction, the cross-plane correction value is still
smaller. This reveals that I1 and I2 should be responsible
for the smaller correction value obtained for the cross-
plane direction. The contribution for I1(=I2) calculated with
Iω

1(2) = �ω
kBT 2NV

f 0
λ (1 + f 0

λ )
∑

λ

τc
λ

τN
λ

vα
λ qα

λ δ(ω − ωλ) is plotted in

the bottom panel of Fig. 6. It shows that Iω
1(2) has a large

FIG. 7. (Color online) Relaxation time of N processes and U
processes in wurtzite AlN at 300 K, as a function of frequency. The
top panel is for the LA branch and the bottom panel is for the TA1
and TA2 branches. The discrete data are ab initio results, the dashed
lines are the averaged relaxation times, and the solid lines are fitting
lines.

range of negative values between 50 and 80 THz for the
cross-plane direction while it is almost always positive for
the in-plane direction, resulting in a much smaller I1(2) =∫

Iω
1(2)dω for the cross-plane direction. The negative value

comes from vα
λqα

λ , which suggests there are many modes
with negative vα

λqα
λ for the cross-plane direction between 50

and 80 THz.
Additionally, the frequency dependence of the relaxation

time of wurtzite AlN is also discussed, as shown in Fig. 7. We
calculate for ω < 10 THz and use a 105 × 105 × 105 mesh,
where the results are converged for ω > 2 THz. It can be
seen that τ of the U processes for both LA and TA scales as
1/ω3. τN scales as 1/ω for TA, which is independent of lattice
symmetry [63]. τN scales as 1/ω2 for LA, in agreement with
Herring’s prediction about the hexagonal lattice structure [63].
To be specific, for the C6v point group symmetry, which
wurtzite AlN belongs to, as well as the D6h and C6h point
groups, the LA branch obeys 1/ω2 frequency dependence. For
systems with D6 and C6 point group symmetries, these LA
phonons exhibit 1/ω4 dependence.

IV. CONCLUSIONS

In this paper, based on first principles calculation of phonon
scatterings for Si, diamond, and wurtzite AlN, we examine
the accuracy of the original Callaway model and Allen’s
modified version by comparing with an exact iterative solution
of phonon BTE. Neither the original Callaway model nor
Allen’s modified model has guaranteed accuracy. In terms of
relative error with respect to the accurate solution, the original
Callaway model performs better than the ordinary RTA, while
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Allen’s modified version sometimes performs better than the
original Callaway model or the ordinary RTA and sometimes
worse. The anisotropy of AlN obtained from RTA is small, in
agreement with the exact solution. However, both the Callaway
model and Allen’s modified version predict larger anisotropy.
We have also studied the low frequency dependence of TA and
LA relaxation times for these three systems. τU scale as 1/ω3

for both TA and LA modes, and τN scales as 1/ω and 1/ω2

for TA and LA modes, respectively.
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