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We analyze charge order in hole-doped cuprates within the the spin-fermion model. We show that a magnetically
mediated interaction, which is known to give rise to d-wave superconductivity and charge order with momentum
along zone diagonal, also gives rise to charge order with momenta Qx = (2Q,0) and Qy = (0,2Q) consistent
with the experiments. We show that an instability towards �

Q

k = 〈c†k+Qck−Q〉 with Q = Qx or Qy is a threshold
phenomenon, but the dimensionless spin-fermion coupling is above the threshold, if the magnetic correlation
length ξ exceeds a certain critical value. At a critical ξ , the onset temperature for the charge order terminates at a
quantum-critical point distant from the magnetic one. We argue that the charge order with Qx or Qy changes sign
under k → k + (π,π ), but |�Q

k | �= |�Q

k+(π,π )|. In real space, such an order has both bond and site components; the

bond one is larger. We further argue that �
Q

k and �
Q

−k are not equivalent, and their symmetric and antisymmetric
combinations describe, in real space, incommensurate density modulations and incommensurate bond current,
respectively. We derive the Ginzburg-Landau functional for four-component U (1) order parameters �

Q

±k with
Q = Qx or Qy and analyze it first in mean-field theory and then beyond mean field. Within mean field we find
two types of charge-density-wave (CDW) states, I and II, depending on system parameters. In state I, density
and current modulations emerge with the same Q = Qx or Qy , breaking Z2 lattice rotational symmetry, and
differ in phase by ±π/2. The selection of π/2 or −π/2 additionally breaks Z2 time-reversal symmetry, such
that the total order parameter manifold is U (1) × Z2 × Z2. In state II, density and current modulations emerge
with different Q and the order parameter manifold is U (1) × U (1) × Z2, where in the two realizations of state
II, Z2 corresponds to either lattice rotational or time-reversal symmetry breaking. We extend the analysis beyond
mean field and argue that discrete symmetries get broken before long-range charge order sets in. For state I,
which, we argue, is related to hole-doped cuprates, we show that, upon lowering the temperature, the system
first breaks Z2 lattice rotational symmetry (C4 → C2) at T = Tn and develops a nematic order, then breaks Z2

time-reversal symmetry at Tt < Tn and locks the relative phase between density and current fluctuations, and
finally breaks U (1) symmetry of a common phase of even and odd components of �

Q

k at T = TCDW < Tt < Tn

and develops a true charge order. We argue that at a mean field, TCDW is smaller than superconducting TSC,
but preemptive composite order lifts TCDW and reduces TSC such that at large ξ charge order develops prior to
superconductivity. We obtain the full phase diagram and present quantitative comparison of our results with
ARPES data for hole-doped cuprates.
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I. INTRODUCTION

Intensive experimental studies of hole-doped cuprates over
the last few years have provided strong indications that
the pseudogap region is a state (or even a set of states)
with broken symmetry. First, x-ray and neutron scattering
data on La1.875Ba0.125CuO4 strongly indicate [1,2] that lattice
rotational symmetry is broken from C4 down to C2 below a
certain temperature T ∗(x). Evidence for rotational symmetry
breaking has been also found in neutron scattering data on
YBCO [3] and in STM data on Bi2Sr2CaCu2O8+δ , at energies
comparable to T ∗ [4,5]. Second, measurements of the Kerr
angle at optical frequencies detected a polar Kerr effect [6], and
polarized elastic neutron scattering measurements detected an
intra-unit-cell magnetic order [7,8]. The onset temperatures for
the Kerr effect and for intracell magnetic order are not equal,
but roughly follow the same doping dependence as T ∗(x).
The most natural interpretation of these two measurements
would be that time-reversal symmetry is broken, although
the absence of a sign change of a Kerr signal under the
change of the direction of the applied magnetic field raises

a possibility that the Kerr effect may be a reciprocal phe-
nomenon, associated with the breaking of mirror symmetries.
Recent optical experiments in the terahertz regime have
found [9] a nonzero linear birefringence, which was also
interpreted as the result of the breaking of mirror symmetries
and of C4 lattice rotational symmetry. The temperature
dependence of the onset of a linear birefringence in YBCO
closely follows the one for Kerr signal.

Third, x-ray measurements on YBCO [10,11],
Bi2Sr2−xLaxCuO6+δ [12], and Bi2Sr2CaCu2O8+δ [13]
detected a static incommensurate charge-density-wave (CDW)
order with momenta Qx = (2Q,0) and/or Qy = (0,2Q), and
2Q was determined to be equal to the distance between
neighboring hot spots, points where the Fermi surface (FS)
intersects with the magnetic Brillouin zone boundary [12,13].
The observed order is not long ranged, but this well may
be due to pinning by impurities [14,15]. Earlier NMR
measurements [16,17] and more recent sound velocity
measurements [18] in a magnetic field H found a true CDW
order at H � 20 T. Quantum oscillation measurements [19]
and measurements of Hall and Seebeck coefficients [20]
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were interpreted as feedback effects from the CDW
order on fermions. The onset temperature TCDW(x) of
the CDW order was found to be smaller than T ∗(x) but
follows a similar doping dependence. Fourth, ARPES
measurements deep under the superconducting dome have
found [21–23] a change of system behavior at a certain
doping, and were interpreted as evidence for the existence of
a quantum-critical point (QCP) at x = xcr, at which a new
order emerges. It is tempting to associate this emerging order
with CDW.

These and other experimental data [24,25] pose a challenge
to the theory. System behavior in the metallic region outside
the pseudogap can be reasonably well described within a
theoretical framework that fermions interact by exchanging
quanta of collective excitations. One proposal along these
lines [26] is that these excitations are charge fluctuations
enhanced by phonons (a similar set of ideas has been recently
displayed for Fe pnictides [27]). An incommensurate CDW
order with Q along x or y directions in the momentum
space is a natural part of this scenario, and studies of
a true and fluctuating CDW order within a microscopic
Hubbard-Holstein model and using a more general reasoning
of frustrated phase separation mechanism did indeed find [28] a
CDW QCP at around optimal doping, identified the pseudogap
temperature with the onset of CDW order [29], and obtained
a number of features in Raman scattering [30], STM [31], and
ARPES [32], consistent with the experimental data in hole-
doped cuprates [33]. Furthermore, the residual momentum-
dependent repulsive interaction mediated by charge critical
fluctuations was argued to give rise to d-wave superconducting
instability, although an additional interaction component, for
fermions in antinodal regions, had to be included to match
the experimental angular variation of the d-wave gap [34]. An
alternative proposal is that relevant collective excitations are
spin fluctuations, peaked at or near antiferromagnetic momenta
(π,π ). The corresponding spin-fluctuation approach [35–38]
naturally explains d-wave symmetry of the superconducting
state and yields a non-Fermi-liquid behavior of fermionic
self-energy and optical conductivity [39,40] in a rather wide
frequency range, even when magnetic correlation length is
only a few lattice spacings. This approach does describe
precursors to magnetism [41–43] and accounts reasonably
well for the phase diagram of electron-doped cuprates [44],
where pseudogap behavior is very likely a crossover behavior
due to magnetic precursors [45]. At the same time, until
recently, the spin-fluctuation approach was believed to be
incapable to describe charge order and symmetry break-
ing in the pseudogap phase of hole-doped cuprates. Other
explanations of charge order/symmetry breaking have been
proposed, including loop-current order [46] or d-density-wave
(current) order [47,48]. Other widely discussed scenarios
of the pseudogap associate pseudogap behavior with pre-
cursors to either Mott physics [49–53] or superconductivity
[54–56].

The spin-fluctuation scenario was revitalized by Metlitski
and Sachdev [57] who found that the spin-mediated interaction
is attractive not only in the d-wave superconducting channel
but also in the d-wave charge channel, at momenta Qd = 2khs,
where khs is the momentum of one of the hot spots on a FS and
2khs = (±2Q, ± 2Q) are directed along one of the Brillouin

zone diagonals. In real space, an instability in a d-wave charge
channel implies a charge bond order, for which 〈c†(r + a)c(r)〉
acquires an r-dependent component of different sign for a
along x and y directions, while 〈c†(r)c(r)〉 remains unper-
turbed. The analysis of CDW instability with Qd = 2khs within
the spin-fluctuation approach was extended by Efetov, Meier,
and Pépin [58], who argued that the pseudogap behavior may
be the consequence of the competition between bond order and
superconductivity (SC) (in their scenario, the modulus of the
combined SC/CDW “supervector” order parameter emerges
at T ∗ but its direction gets fixed along the SC “axis” only
at a smaller TSC). The “supervector” scenario is appealing
from theory perspective and allows one to explain some
experimental data [59,60]. However, it has three discrepancies
with the experiments. First, the momenta 2khs are directed
along one of the two Brillouin zone diagonals, while CDW
momentum detected by resonant x-ray scattering [12,13]
and in STM [4,5] is along horizontal or vertical axis in
momentum space [Q = Qx = (2Q,0) or Q = Qy = (0,2Q)].
Second, bond-order instability is close to superconducting
TSC, but is below Tsc (Refs. [57,58]), while experiments
see the development of charge order above superconducting
Tsc. Third, bond order with momentum Qd = 2khs does not
break time-reversal or mirror symmetries and therefore does
not explain Kerr, neutron scattering, and magnetoelectric
birefringence experiments [6–9].

In this paper, we present a different scenario for the
pseudogap due to spin-fluctuation exchange. We argue that
magnetically mediated interaction yields an attraction in the
CDW channel for incoming momenta Qx and Qy , and,
when magnetic correlation length is large enough, gives
rise to a CDW instability at a nonzero temperature TCDW.
That such critical temperature exists is not guaranteed a

priori, despite that, as we show below, there are logarithms
in the perturbation theory. The reason is that magnetically
mediated interaction is dynamical, and the gap equation is an
integral equation in frequency. For the latter, the summation
of the leading logarithms does not necessarily give rise to
an instability [37,61], and one one has to go beyond the
leading logarithmic approximation to verify whether or not
the interaction exceeds a certain finite threshold. We show
that for CDW with Q = Qx or Qy , the interaction is above
the threshold, and the linearized gap equation, or, more
accurately, the set of coupled equations for �

Q
k = 〈c†k+Qck−Q〉

and �
Q
k+(π,π), does have a solution at a finite T = TCDW. We

compute TCDW first in Eliashberg-type calculations and then
by treating the effects of thermal bosonic fluctuations beyond
Eliashberg theory, and compare TCDW with TSC obtained using
the same procedures. In Eliashberg calculation, we show that
TCDW and TSC are finite at ξ = ∞ at TSC > TCDW. With more
accurate treatment of thermal fluctuation (equivalently, the
contribution from zero bosonic Matsubara frequency), we
find that the ratio TSC/TCDW approaches one at infinite ξ ,
i.e., TSC and TCDW must be quite close at large ξ . We also
analyze nonladder diagrams and show that they are small
numerically.

The CDW order parameter �
Q
k changes sign under momen-

tum shift by (π,π ), as the bond order does, but it also has a
nonzero onsite (a true CDW) component 〈c†(r)c(r)〉 = f (r)
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because |�Q
k | �= |�Q

k+(π,π)|. This agrees with the structure of
the charge order extracted from STM and x-ray data [5,62].
Because the onsite component of �

Q
k is nonzero (albeit small),

we will be calling this order a CDW, primarily to distinguish it
from a true bond order with diagonal Qd = (2Q, ± 2Q), for
which, by symmetry, �

Qd

k = −�
Qd

k+(π,π).
We analyze the structure CDW order in detail, first in

mean-field approximation and then by going beyond mean
field. Within mean field, we first assume that �

Qx

k and �
Qy

k

are even functions in k and discuss the interplay between
CDW orders with Qx and Qy . The linearized equations for
both CDW orders have solution at the same T = TCDW. What
happens at a smaller T depends on how the two orders
�Qx and �Qy interact with each other. We show that the
interaction is repulsive, i.e., the two orders tend to repel
each other. If the repulsion is weak, the two orders appear
simultaneously and with the same amplitude, and the system
develops a checkerboard order. If the repulsion is strong
enough, it becomes energetically advantageous for a system
to spontaneously break lattice rotational symmetry from C4

down to C2 and develop CDW with only Qx or Qy . In the real
space, such an order has the form of stripes, e.g., 〈c†(r)c(r)〉 ∝
cos(2Qry) with Q = Qy = (0,2Q). To understand which type
of CDW order develops, we derive the Ginzburg-Landau
action to order (�Q

k )4 and analyze its form. We find that the
repulsion is strong enough such that the system prefers to
break C4 symmetry down to C2 and develop a stripe order.
This is consistent with STM data [5]. A different scenario for
CDW order with Q = (2Q,0) and (0,2Q) has been proposed
recently [63], in which CDW is induced by superconducting
fluctuations. In that scenario, CDW emerges as a checkerboard
order.

We next take a more careful look at the dependence of
�

Q
k on the center-of-mass momentum k. CDW order with,

say, Q = Qy can be constructed out of hot fermions with
k ≈ k0 = (π − Q,0) and −k0 = (−π + Q,0) (pairs 1-2 and
5-6 in Fig. 1). The CDW order parameters �

Q
k0

and �
Q
−k0

are
not identical because 2k0 is not a reciprocal lattice vector.
As a result, �

Q
k with k ≈ k0 generally has two components:

one is even in k and the other is odd (e.g., �
Qy

k ∝ cos kx and
�

Q
k ∝ sin kx , respectively). In contrast, for charge order with

diagonal Qd = 2khs, only the even in k solution is possible
because the center-of-mass momentum is at k0 = (π,0) or
(0,π ) and k0 and −k0 are equivalent points.

We show that the even component �
Qy

1,k = (�
Qy

k + �
Qy

−k )/2
represents a variation of site and bond charge densities [a
variation of the site density is δρ(r) ∝ cos 2Qry], while

the odd component �
Qy

2,k = (�
Qy

k − �
Qy

−k )/2 represents a
fermionic current jx(r) ∝ sin 2Qry This current gives rise
to a nonzero orbital magnetic field Hz ∝ cos 2Qry and,
by definition, breaks time-reversal symmetry (TRS). This,
however, does not lead to orbital ferromagnetism as

∫
HzdV

vanishes.
We compute TCDW for even and odd components and show

that TCDW for the even component is larger, in agreement
with Refs. [64,65], but the one for the odd component is a
close second. We derive the Ginzburg-Landau (GL) model
for four U (1) CDW fields �

Qx

1,k , �
Qx

2,k , �
Qy

1,k , and �
Qy

2,k . We

FIG. 1. (Color online) The Fermi surface, Brillouin zone, and
magnetic Brillouin zone (dashed line). Hot spots are defined as
intersections of the FS with magnetic Brillouin zone. The hot spot
pairs 1-2 and 3-4 denote the CDW pairing we consider. They are
coupled through the antiferromagnetic exchange interaction peaked
at momentum (π,π ), as shown by the dashed arrows.

argue that at low T , both density and charge components are
generally nonzero, and the system develops a CDW order
of one of two types, depending on the interplay between
system parameters. We label the corresponding ordered states
as states I and II. In the state I, density and current modulations
emerge with the same Q (either Qx or Qy) via a continuous
second-order transition. Such an order spontaneously breaks
C4 lattice rotational symmetry down to C2, like in the case
when only �

Q
1,k was set to be nonzero. The density and the

current component with a given Q are both nonzero at low
enough T and the phase difference between them is locked
at ±π/2. The order parameter in this state breaks Z2 lattice
rotational symmetry and U (1) symmetry of the common phase
of the two order parameters, and breaks an additional Z2

symmetry by selecting the relative phase to be either π/2
or −π/2. It is natural to associate this additional Z2 symmetry
with time reversal (TR), which is then explicitly broken in
state I.

In state II, incommensurate density and current modulations
emerge with different Q via first-order transition. There
are two realizations of state II: in the first, all four CDW
components are nonzero and have equal magnitudes, while
relative phases between �

Qx

1,k and �
Qx

2,k and between �
Qy

1,k

and �
Qy

2,k are, simultaneously, either π/2 or −π/2. This
is a C4-symmetric checkerboard state with order parameter
manifold U (1) × U (1) × Z2, where Z2 is associated with
TR. In the second realization, only one density and one
current components are nonzero, e.g., �

Qx

1,k and �
Qy

2,k . Such
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an order breaks C4 lattice symmetry down to C2, but does
not additionally break TR symmetry because the phases
of �

Qx

1,k and �
Qy

2,k are uncorrelated. The order parameter is
again U (1) × U (1) × Z2, with Z2 now associated with lattice
rotational symmetry.

We extend the analysis of the Ginzburg-Landau action
beyond mean field by applying the Hubbard-Stratonovich
transformation to collective variables and analyzing the
resulting action within the saddle-point approximation, in
close similarity to the analysis of the nematic order in Fe
pnictides [66]. We specifically focus on state I, which in
mean field emerges via a continuous transition. We show that
discrete symmetries get broken before long-range charge order
sets in. We show that, upon lowering the temperature, the
system first breaks Z2 lattice rotational symmetry (C4 → C2)
at T = Tn and develops a nematic order. Below Tn, 〈|�Qy

i,k |2〉
becomes nonequal to 〈|�Qx

i,k |2〉 (i = 1,2), while 〈�Qx,y

i,k 〉 = 0,
i.e., density and current modulations do not develop, 〈δρ(r)〉 =
〈jx(r)〉 = 0. Such a nematic order has been discussed in a
series of recent publications on the cuprates [67] and Fe
pnictides [66]. Then, at a smaller Tt � Tn, another composite
order parameter ϒ ∝ 〈�Qy

1 (�
Qy

2 )∗〉〉 becomes nonzero (for

the order with Q = Qy), while still 〈�Qx,y

i,k 〉 = 0. Under time
reversal, ϒ transforms into −ϒ , hence this composite order
breaks TRS. This order can be understood as the locking of
a relative phase ψ of �

Qy

1,k and �
Qy

2,k at ψ = π/2 or −π/2

without the locking of the common phase of �
Qy

1,k and �
Qy

2,k.
The emergence of a preemptive composite order which breaks
time-reversal symmetry has been verified in Ref. [68] using a
different computational technique. Finally, below TCDW < Tt ,
the system breaks U (1) symmetry of the common phase and
the system develops a true CDW order (a quasi-long-range
order in two dimensions). Within our theory, we identify
the temperatures Tn and Tt as the experimental pseudogap
temperature T ∗.

The existence of the preemptive order is the crucial
element in our scenario. Without it, CDW instability would
be subleading to d-wave superconductivity and to bond
order with diagonal Qd = (2Q, ± 2Q) as in the mean-field
approximation both have larger onset temperatures than TCDW.
However, the superconducting order parameter and order
parameter for bond charge order have only one, even in k,
component, and for these two there is no preemptive instability
which would break time-reversal symmetry. Moreover, neither
superconductivity nor bond order break C4 symmetry. For
bond order, this is the consequence of the fact that bond orders
with (2Q,2Q) and (2Q, − 2Q) only weakly interact with
each other because in a fourth-order square diagram for the
interaction term some fermions are necessarily far away from
the FS. As a result, the two orders appear simultaneously and
form a checkerboard-type structure. If the system parameters
are such that Tn gets larger than the onset temperature
for superconductivity/bond order, the first instability upon
lowering of T is into a state with a composite CDW order
with Qx(Qy). Once composite order forms, it reconstructs
fermionic excitations and tends to reduce the onset temper-
atures for superconductivity/bond order because composite

charge order and superconductivity/bond order compete for
the FS. At the same time, a composite CDW order increases
the susceptibility for the primary CDW fields and hence
increases TCDW, much like a spin-nematic order in Fe pnictides
increases the Néel temperature of spin-density-wave (SDW)
order [66]. An increase of TCDW compared to the onset of
superconductivity/bond order becomes even stronger once we
include into consideration two-dimensional (2D) fluctuation
effects because composite order only breaks discrete Ising
symmetry, while near-degenerate d-wave superconductivity
and bond order form the weakly anisotropic O(4) model, in
which TSC is strongly reduced by fluctuations from the O(4)
manifold.

The two transitions at Tn and TCDW have been also
found in the scenario [63] that CDW order is due to strong
superconducting fluctuations, but in that case CDW order has
only an even in k component and there is no intermediate T

range where C4 symmetry and/or TRS are broken.
We next consider doping evolution of TCDW and the

interplay between charge order and superconductivity at
various dopings. We argue that TCDW decreases when magnetic
correlation length ξ decreases and vanishes at some finite ξ ,
setting up a charge QCP at some distance away from the
magnetic instability [see Figs. 17(a) and 17(b)]. A similar
doping dependence holds for the onset temperature for bond
order with diagonal Q, as we also demonstrate. The ideas
about a nonmagnetic QCP at around optical doping have
been presented in earlier publications [46,69,70], and in our
theory we found such QCP in microscopic calculations. The
onset temperatures of nematic and TRS-breaking composite
orders follow the same doping dependence as TCDW. Within
the saddle-point Hubbard-Stratonovich theory, Tn and Tt

merge with TCDW at some small T below which the system
undergoes a single first-order CDW transition [71]. Whether
this holds beyond the saddle-point approximation remains to
be seen, but in any case near the critical ξ , TSC is higher than
both TCDW and Tn, and at larger dopings (smaller ξ ) only
superconducting order develops. The precise location of the
CDW QCP will likely by affected by superconductivity, as it
generally happens when one order develops under the umbrella
of another [72–74].

We assume that charge QCP exists and combine the doping
dependencies of TSC, TCDW, Tn, and Tt into the full phase
diagram, which we show in Fig. 17(c). We conjecture that the
reduction of TSC in the underdoped regime is primarily the
result of a direct competition between superconductivity and
composite CDW order, while a reduction due to fluctuations
between superconductivity and bond order [58] plays a
secondary role. We emphasize that in our model, superconduc-
tivity and CDW order are produced by the same underlying
spin-fluctuation exchange interaction, and in this respect they
are, in the terminology of Refs. [75,76], intertwined rather
than competing orders. The situation is again similar to the
one for underdoped pnictides where superconductivity and
SDW orders are also intertwined orders as they originate from
the same four-fermion pair-hopping interaction [73,74].

We compare our theoretical phase diagram with the one
for hole-doped cuprates and present quantitative comparison
of our theory with ARPES data, including Fermi arcs in the
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normal state [77] and the doping evolution of the spectral
function at low T , when the systems moves from a pure
superconducting state into a state where superconductivity
and charge order coexist. We argue that the agreement with
the data is quite good, but to describe the evolution of the
ARPES dispersion along the cuts closer to zone diagonals one
needs to go beyond what we did so far and solve for the CDW
order parameter �

Q
k for k rather far away from the midpoint

between hot spots.
The structure of the paper is the following. In the next

section, we consider the model. In Sec. III, we analyze the
onset of CDW order with momentum Qx = (2Q,0) and Qy =
(0,2Q) at near-infinite magnetic correlation length, when spin-
fluctuation-mediated interaction is the strongest and fermionic
self-energy is large and cannot be neglected. We present our
solution of the ladder set of equations for the CDW order
parameter first to logarithmical accuracy and then beyond
the logarithmical approximation. We show that the CDW
problem belongs to a class of threshold problems, however,
the value of the coupling in our case is above the threshold. We
compute TCDW first in Eliashberg-type calculations and then
by treating the effects of thermal bosonic fluctuations beyond
Eliashberg theory, and compare TCDW with TSC obtained using
the same procedures. We also analyze nonladder diagrams and
present a nonlinear equation for the CDW order parameter.
In Sec. IV, we expand near the ladder solution, show that the
solution corresponds to the minimum of the effective action
within the CDW subset, and discuss the interplay between
CDW and superconducting and bond-order instabilities. In
Sec. V, we discuss the structure of the CDW solution within
the mean-field approximation. We first approximate CDW
order parameters �

Q
k = 〈c†k+Qck−Q〉 by �Qx and �Qy in

hot regions and analyze the interplay between CDW orders
with Qx and Qy . We show that CDW order breaks lattice
rotational C4 symmetry down to C2 and develops in the form
of stripes. We then show that CDW order �

Q
k actually has two

components, one is even under k → −k and the other is odd
(�Q

1,k and �
Q
2,k , respectively). Both are U (1) fields, and the

odd component changes sign under time reversal. We derive
the GL functional for four coupled CDW order parameters
�

Qx

1,k , �
Qx

2,k , �
Qy

1,k , and �
Qy

2,k and argue that either state I or state
II is realized at low T , depending on the interplay between
the two input parameters. We show that in state I, CDW order
still breaks C4 lattice symmetry down to C2, and, in addition,
the phases of �

Qy

1,k = |�1|eiϕ1 and �
Qy

2,k = |�2|eiϕ2 differ by
ϕ1 − ϕ2 = ±π/2. The selection π/2 or −π/2 breaks TRS. In
Sec. VI, we analyze GL action for state I beyond mean field
by introducing collective variables (by-products of �1,2) and
search for nonzero expectation values of these variables within
the saddle-point approximation. We argue that CDW order
develops in three stages, via two intermediate phases, one with
pure nematic order and another with additional breaking of
TRS. In Sec. VII, we consider the interplay between composite
CDW orders, a true CDW order, and superconductivity, and
obtain the phase diagram of hole-doped cuprates as a function
of hole doping whose increase we identify with the decrease of
a magnetic correlation length ξ . Here, we show that TCDW, Tn,
and Tt decrease with decreasing ξ and vanish at (the same)

finite ξ setting up a CDW quantum-critical point at some
distance from a quantum-critical point associated with the
onset of a magnetic order. In Sec. VIII, we compare our results
with the ARPES data both above and below TSC. We present
our conclusions in Sec. IX. The discussion on several technical
issues is moved into the Appendices. For completeness, in
Appendix F we also discuss the doping dependence of the
onset temperature for bond order and the corresponding phase
diagram.

In our consideration, we approximate the electronic struc-
ture and collective spin excitations as two dimensional,
i.e., neglect fermionic and bosonic dispersions along the kz

direction. We believe that the essential physics is captured
within 2D treatment, although a coherent interlayer tunneling
may be important for the stabilization of the stripe phase [78].
We also assume that near CDW instability, the system remains
a metal, albeit with strong incoherence caused by quantum
criticality. A development of stripe CDW order from a
quantum antiferromagnet in the strong coupling regime has
been recently considered in Ref. [79].

II. MODEL

We use the same spin-fermion model as in earlier studies
of magnetically mediated d-wave superconductivity [35,37]
and non-Fermi-liquid physics outside of the pseudogap re-
gion [38,57]. The model describes low-energy fermions with
the FS shown in Fig. 1 and with four-fermion interaction
mediated by soft spin collective excitations peaked at or
near (π,π ). We focus on hot regions on the FS, for which
shifting kF by kF + (π,π ) keeps a fermion near the FS, and
expand fermionic dispersion near a hot spot as εk = vF,k(k⊥ +
κk2

‖/kF ), where vF,k is a Fermi velocity at a hot spot, k‖ is a
deviation from a hot spot along the FS, and dimensionless κ

specifies the curvature of the FS. The Fermi velocities at hot
spots k1, k2 and k3 = k1 + (π,π ), k4 = k2 + (π,π ) in Fig. 1
are vF,k1 = (vx,vy), vF,k2 = (vx, − vy), vF,k3 = (−vy, − vx),
and vF,k4 = (−vy,vx). The amplitude of the Fermi velocity

vF,k =
√

v2
x + v2

y and the value of κ are the same at all hot

spots. The effective four-fermion interaction mediated by soft
spin excitations is

Hint = ḡχ (q)c†k+q,ασαβck,βc
†
p−q,γ σγ δcp,δ, (1)

where k = (k,ωm), q = (q,�m), ωm(�m) are fermionic
(bosonic) Matsubara frequencies, and

χ (q) = χ (q,�m) = 1

q2 + ξ−2 + γ |�m| , (2)

where the last term in the denominator is the Landau damping
with the coefficient γ = 4ḡ/(π |v2

y − v2
x |) [38]. The Landau

damping contains the same ḡ as in (1) because Landau
damping of collective spin excitations also originates from
the spin-fermion interaction.

Following earlier works [38,57,58], we assume that the
coupling ḡ is small compared to the Fermi energy EF =
vF kF /2 and focus on instabilities which occur at energies
well below EF and at ξ−1 � 0, before the system becomes
magnetically ordered. One such instability is towards a
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d-wave superconductivity [35–37,61]. It involves fermions
from hot and lukewarm regions on the FS [with the self-energy
�(k‖,ωm) ∝ √

ωm and �(k‖,ωm) ∝ ωm/|k‖|, respectively],
and taken alone (i.e., without competition with CDW order) oc-
curs at TSC = TSC(ξ ), which is nonzero at all ξ and interpolates
between TSC(ξ ) ≈ 0.04ḡ at large ξ , with weak dependence
on vx/vy [61,80], and BCS-type result TSC(ξ ) ∼ (ḡ/λ2)e−1/λ,
at smaller ξ � EF /ḡ, when dimensionless coupling λ =
3ḡ/(4πvF ξ−1) is small [see Fig. 17(b)]. Another instability,
considered in [57,58], is towards a d-wave charge bond
order with diagonal momentum 2khs = (2Q, ± 2Q), where
khs = (Q,π ± Q). This instability develops at TBO(ξ ), which
is smaller than TSC(ξ ) at any nonzero κ , although rather close
to it at ξ → ∞ [57,58]. We analyze the form of TBO(ξ ) in
Appendix F where we show that TBO(ξ ) vanishes at a certain
ξ , when λ ln [EF /(ḡκ)] = O(1).

Our goal is to analyze another CDW channel, the one
with momentum Qx = (2Q,0) or Qy = (0,2Q). This pairing
involves fermions from hot/lukewarm regions 1-2, 3-4, etc., in
Fig. 1. The analysis of a potential CDW instability involving
these fermions is a bit tricky because fermions in the two
regions connected by (π,π ) (e.g., regions 1-2 and 3-4 in Fig. 1)
are different in the sense that parallel (antiparallel) velocities
are vx (vy) in the first set and −vy (−vx) in the second.
Accordingly, the CDW order parameter �

Q
k = 〈c†k+Q,αck−Q,α〉

does not obey a particular symmetry relation under k →
k + (π,π ), and one has to solve the 2 × 2 coupled set of
equations for �

Q
k and �

Q
k+(π,π).

In the next two sections, we consider CDW instability with
momentum Q along either x or y axis near the onset of SDW
order, when the magnetic correlation length ξ is near infinite.
We consider what happens at smaller ξ later in Sec. VII. We
perform our analysis in two stages. In the next section (Sec. III),
we solve the set of linearized gap equations for �

Q
k and �

Q
k+π

within the ladder approximation and show that this set has non-
trivial solution at a nonzero TCDW. In Sec. IV, we rederive the
same set by performing Hubbard-Stratonovich transformation
from original fermions to bosonic CDW variables and show
that the diagrammatic ladder approximation is equivalent to the
saddle-point approximation in the Hubbard-Stratonovich ap-
proach. We expand around the Hubbard-Stratonovich solution
within the CDW subset and show that the saddle-point solution
is the minimum of the effective action, i.e., fluctuations around
the saddle-point solution do not diverge. We then discuss the
interplay between our CDW and superconductivity/bond order.
We argue that our CDW order and the other orders can be
treated within a generic Ginzburg-Landau functional. Taken
alone, each order is stable and is not destroyed by fluctuations.
This internal stability implies that the system develops the
order which sets up at the highest T . At a mean-field level,
TSC � TBO > TCDW, hence superconductivity develops first.
However, we show in Sec. VI that composite CDW order
develops at Tn > TCDW and this temperature well may exceed
TSC. Once this happens, composite charge order provides
negative feedback on superconducting/bond order, reducing
the corresponding mean-field onset temperatures, and gives
positive feedback on TCDW which in some parameter ranges
becomes larger than TSC.

FIG. 2. The set of linearized equations for CDW vertices con-
structed out of fermions near hot spots. The momenta k0 and kπ =
k0 + (π,π ) are in-between the two neighboring hot spots either along
the x or along the y direction, chosen such that k0 ± Q and kπ ± Q

are right at the hot spots. The solid lines are full fermionic prop-
agators, the wavy lines represent spin-mediated interaction peaked
at (π,π ).

III. ONSET OF CDW ORDER WITH MOMENTUM (2 Q,0)
AND (0,2 Q) AT ξ = ∞

Borrowing notations from superconductivity, we will be
calling the equations for �

Q
k and �

Q
k+(π,π) as “gap” equations.

We will first solve for the onset of CDW instability in the
ladder approximation without discussing its validity and later
show that nonladder contributions to the gap equation are small
numerically. We start with hot regions 1-2 and 3-4 in Fig. 1.
These two pairs forms a closed set for the CDW gap equations,
and pairing in other hot regions should simply follow due to
symmetry.

The gap equations in the ladder approximation are shown in
Fig. 2. The CDW order parameters �

Q
k and �

Q
k+π ≡ �

Q
k+(π,π)

are expressed via each other, and one needs to solve a set of
two coupled gap equations to find an instability. Each equation
is, in general, an integral equation in both frequency and
momentum. Besides, fermionic propagators in the right-hand
side of the gap equations contain the self-energy �(k,�m)
which is large and depends on frequency �m and on the
deviation of an internal fermion from a corresponding hot
spot in the direction along the FS [38,57]. We present the
calculation of TCDW in which we keep only frequency depen-
dence in the fermionic self-energy and in the gap functions,
i.e., approximate �(k,�m) ≈ �(khs,�m) ≡ ��m

, �
Q
k (�m) ≈

�
Q
k0

(�m) when k is near k0, and �
Q
k (�m) ≈ �

Q
kπ

(�m) when k

is near kπ . Such an approximation has been verified [61] to
be a valid one in the calculation of a superconducting TSC

and we expect it to be valid also for a CDW instability.
The full gap equations, with momentum-dependent CDW
order parameters and momentum-dependent self-energy, are
presented in Appendix A.
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In analytical form, the set of the two linearized integral equations in frequency for �
Q
k0

(�m) and �
Q
kπ

(�m) is

�
Q
k0

(�m) = 3ḡTCDW

4π2

∑
m′

∫
dx dy[

i�̃(�m′) − vxy + vyx
][

i�̃(�m′ ) + vxy + vyx
] �

Q
kπ

(�m′)

x2 + y2 + γ |�m − �m′ | , (3)

�
Q
kπ

(�m) = 3ḡTCDW

4π2

∑
m′

∫
dx dy[

i�̃(�m′) − vxx + vyy
][

i�̃(�m′) − vxx − vyy
] �

Q
k0

(�m′)

x2 + y2 + γ |�m − �m′ | , (4)

where γ = 4ḡ/[π (v2
y − v2

x)], x and y are momentum deviations from the corresponding hot spots, �̃(�m) = �m + �(�m), and
the fermionic self-energy �(�m) is the solution of the self-consistent equation

�(�m) = 3ḡT

4π

∑
�m′

∫
dy

sgn(�m′)√
y2 + γ |�m − �m′ |

1√
y2 + γ |�m − �m′ | + |�̃(�′

m)|/vF

. (5)

The fermionic Green’s function G(k,�m) is related to �̃(�m) as

G−1(k,�m) = i�̃(�m) − εk, (6)

where εk is the fermionic dispersion which in Eqs. (3) and (4) we expanded around hot spots. For hot fermions in regions 1 and
2 in Fig. 1, k0 is near (0,π ), in which case vx < vy .

At T = 0, the summation over frequency in (5) can be replaced by the integration. The equation for the fermionic self-energy
becomes

�(�m) = 3ḡ

8π2

∫
d�m′

∫
dy

sgn(�m′)√
y2 + γ |�m − �m′ |

1√
y2 + γ |�m − �m′ | + |�̃(�′

m)|/vF

. (7)

One can easily make sure that �(�m) ∝ sgn(�m′)
√|�m′ |

at small enough frequencies. Earlier calculations [38,57] of
�(�m) neglected self-energy in the right-hand side of (7).
In this approximation, the equation for �(�m) is no longer
of self-consistent form, and integration over y and over �m′

yields

�(�m) = sgn(�m′)
√

ω0|�m′ |, (8)

where ω0 = 9ḡ/(16π ) × [(v2
y − v2

x)/v2
F ]. By order of magni-

tude, ω0 coincides with the spin-fermion coupling constant ḡ.
For consistency with previous works, following we will use
ω0 as the overall scale for the self-energy.

When the self-energy is kept in the right-hand side of (7),
the self-energy at frequencies |�m| < ω0 retains the same
functional form as in (8), but with the extra prefactor

�(�m) = A sgn(�m′ )
√

ω0|�m′ |, (9)

where, to a good numerical accuracy, A = 2
3 .

To get an insight as to where the instability comes from,
consider momentarily the case vx = 0, vy = vF . Then, Fermi
velocities at the two hot spots near (π,0) (points 1 and 2 in
Fig. 1) are antiparallel to each other, while the ones at the two
hot spots near (0,π ) (points 3 and 4 in Fig. 1) are parallel. In
this limit, Eqs. (3) and (4) reduce to

�
Q
k0

(�m) = 3ḡTCDW

4π2

∑
m′

∫
dx dy[

i�̃(�m′) + vF x
]2

× �
Q
kπ

(�m′ )

x2 + y2 + γ |�m − �m′ | , (10)

�
Q
kπ

(�m) = −3ḡTCDW

4π2

∑
m′

∫
dx dy[

�̃2(�m′ ) + (vF y)2
]

× �
Q
k0

(�m′)

x2 + y2 + γ |�m − �m′ | . (11)

In earlier large-N calculations of TSC (Refs. [37,38,57]),
the dependence of the bosonic propagator on the momentum
transverse to the FS [i.e., the x dependence in the last
term in Eq. (10) and the y dependence in Eq. (11)] was
neglected. If we used the same approximation here, we would
obtain no CDW instability because the integral over x in
Eq. (10) would vanish. However, in our case the bosonic
propagator does depend on x and its poles are in both upper
and lower half-planes of complex x. As a consequence,
the momentum integration over x in the right-hand side
of (10) gives a nonzero result even if we assume that
Fermi velocities at points 3 and 4 in Fig. 1 are parallel.
Furthermore, because at �m < ω0, |�̃(�m)|/vF ≈ �(�m) ∼
(ḡ|�m|/v2

F )1/2 ∼ (γ |�m|)1/2, the poles in the bosonic propa-
gator are located at x comparable to that of the double pole.
As a result, the result of the integration over x is comparable
to what one would get from integrating over x in the two
fermionic Green’s functions, if the poles there were in different
half-planes of x. In other words, the fact that the velocities at
the hot spots at points 3 and 4 in Fig. 1 are parallel does not
make the right-hand side of Eq. (10) parametrically smaller
compared to the case in Eq. (11), where the velocities at
the two hot spots are antiparallel and the momentum integral
over the product of the two Green’s function already gives a
nonzero result. In Eq. (11), the contributions from the poles in
the Green’s function and in the bosonic propagator are of the
same order and just add up in the overall prefactor.
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We now return back to Eqs. (3) and (4) for �
Q
k0

(�m) and �
Q
kπ

(�m). We first integrate over x in Eq. (3) and obtain

�
Q
k0

(�m) = −3ḡTCDW

8π

∑
m′

∫ ∞

0

dy√
y2 + γ |�m − �m′ |

�
Q
kπ

(�m′)

v2
xy

2 + [vy

√
y2 + γ |�m − �m′ | + �̃(�m′)

]2 . (12)

Introducing then z = y/
√

γ |�m′ | and ϕ = arctan(vx/vy) and using zero-temperature form of �(�m) ≈ (2/3)sgn(�m′)
√

ω0|�m′ |,
we rewrite (12) as

�
Q
k0

(�m) = − 3 cos 2ϕ

8
TCDW

∑
m′

�
Q
kπ

(�m′)

|�m′ |
∫ ∞

0

dz√
z2 + |1 − �m/�m′ |

× 1

z2 sin2 ϕ + [
√

z2 + |1 − �m/�m′ | cos ϕ + (1/4) cos 2ϕ(1 + √
�m′/ω0)]2

. (13)

Integrating over x in Eq. (4) and rewriting the result in the same variables z and ϕ we obtain

�
Q
kπ

(�m) = − 3 cos 2ϕ

8
TCDW

∑
m′

�
Q
k0

(�m′)

|�m′ |
∫ ∞

0

dz√
z2 + |1 − �m/�m′ |

× 1

z2 cos2 ϕ + [
√

z2 + |1 − �m/�m′ | sin ϕ + (1/4) cos 2ϕ(1 + √
�m′/ω0)]2

. (14)

The value of ϕ depends on the geometry of the FS. When Fermi
velocities at hot spots 1 and 2 in Fig. 1 are nearly antiparallel,
and the ones at hot spots 3 and 4 are nearly parallel, we have
ϕ ≈ 0. When Fermi velocities at hot spots 1 and 2 are nearly
perpendicular to each other, we have ϕ ≈ π/4. For the FS as
in hole-doped cuprates, ϕ is nonzero, but small numerically.

The negative signs in the right-hand sides of (13) and (14)
imply that the solution is only possible when �

Q
k0

(�m) and

�
Q
kπ

(�m) have opposite signs, i.e., CDW order parameter

�
Q
k (�m) changes sign under k → k + (π,π ). This does not

imply, however, that the order has only a bond component
〈c†(r + a)c(r)〉 [57]. In our case, �Q

k0
(�m) and �

Q
kπ

(�m) differ
in magnitude, and both onsite and bond components are
present. For the onsite charge density we have

〈c†(r)c(r)〉 =
∑
k,Q

�
Q
k eiQr =

∑
Q

(
�

Q
k0

+ �
Q
kπ

)
eiQr. (15)

A. Gap equations to logarithmic accuracy

1. Neglecting frequency dependencies of �
Q
k0

(�m) and �
Q
kπ

(�m)

As a first pass on Eqs. (13) and (14), we approximate
gap functions as frequency-independent constants �

Q
k0

and

�
Q
kπ

, set the lower limit of integration over internal fermionic
frequency to πTCDW, and neglect the dependence on external
frequency in (13) and (14). Evaluating the integrals with two
fermionic and one bosonic propagators, we find that they are
logarithmically singular, no matter what ϕ is. To logarithmical
accuracy, we obtain

�
Q
k0

= − S1(ϕ) ln
ω0

TCDW
�

Q
kπ

,

(16)

�
Q
kπ

= − S2(ϕ) ln
ω0

TCDW
�

Q
k0

,

where

S1(ϕ) =3 cos 2ϕ

8π

∫ ∞

0

dz√
z2 + 1

1

z2 sin2 ϕ + [
√

z2 + 1 cos ϕ + (1/4) cos 2ϕ]2
,

(17)

S2(ϕ) =3 cos 2ϕ

8π

∫ ∞

0

dz√
z2 + 1

1

z2 cos2 ϕ + [
√

z2 + 1 sin ϕ + (1/4) cos 2ϕ]2
.

We emphasize that these two functions remain finite even if
we set ϕ = 0 (i.e., set the velocities at hot spots 3 and 4 in
Fig. 1 to be parallel to each other). Note also that S1 and
S2 depend on the ratio of vx/vy but not on ḡ, which cancels
out between the overall factor in the spin-fermion interaction
and in the Landau damping. This cancellation is typical for
an instability mediated by a massless Landau-overdamped
collective mode [80].

Evaluating S1 and S2 numerically, we found (see Fig. 3) that
S2 > S1 > 0 as long as ϕ < π/4. In the limit when ϕ = 0 (i.e.,
when the velocities at hot spots 1 and 2 are antiparallel, and
the ones at hot spots 3 and 4 are parallel), we have S1 = 0.084
and S2 = 0.650 (

√
S1S2 = 0.234). At nonzero ϕ, the values of

S1 and S2 are closer to each other. That S2 > S1 implies that
the CDW order parameter in the region with nearly antiparallel
Fermi velocities (region 1-2 in our case) is smaller than in the

035149-8



CHARGE-DENSITY-WAVE ORDER WITH MOMENTUM . . . PHYSICAL REVIEW B 90, 035149 (2014)

S1

S2

0.05 0.10 0.15 0.20 0.25
φ/π

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 3. (Color online) The integrals S1 and S2 as functions of
the angle ϕ. Both integrals vanish at ϕ = π/4 because at this ϕ the
Landau damping coefficient diverges.

region with nearly parallel velocities (region 3-4 in our case).
Solving the set (16) we immediately obtain that the linearized
gap equation has a nonzero solution at

1 = S1S2

(
ln

ω0

TCDW

)2

, (18)

i.e., at TCDW ∼ ω0e
−1/

√
S1S2 . This TCDW is of the same order

of magnitude as superconducting TSC, which at the onset of
SDW order is also of order ω0 [37,61]. Right at T = TCDW we
have from (16)

�
Q
k0

= −�
Q
kπ

√
S2

S1
. (19)

2. Keeping frequency dependencies of �
Q
k0

(�m) and �
Q
kπ

(�m)

Equation (18) has been obtained within the approximations
that (i) CDW order parameters �k0 and �kπ

do not depend on
frequency, and (ii) one can neglect the dependence on external
� in the right-hand side of Eqs. (13) and (14). For a more
accurate treatment, we need to keep the frequency dependence
in �

Q
k0

(�m) and in �
Q
kπ

(�m).

Plugging Eq. (14) into (13), we get rid of �
Q
kπ

(�m) and

obtain the integral equation for �
Q
k0

(�) in the form

�
Q
k0

(�m) = T
∑
m′

I (�m,�m′ )�Q
k0

(�m′), (20)

where the kernel I (�m,�m′ ) depends on both external and
internal frequencies.

We first analyze the pairing susceptibility. For this we add
the source term �0 to the right-hand side of Eq. (20) and search
for the divergence of �

Q
k0

/�0 at T = TCDW. At first order

of iterations we replace �
Q
k0

(�m′) by �0 in the integral part

and obtain �
Q
k0

(�m = πT ) = �0(1 + 1
2S1S2 log2 ω0

T
). This is

the same result as we had before, except for the additional 1
2

factor which is due to the requirement that, when we compute∑
m′ I (�m,�m′ ), the internal frequency must be much larger

than the external one in order to obtain the log2 correction.
If subsequent iterations would transform 1 + 0.5S1S2 log2 ω0

T

into 1/(1 − 0.5S1S2 log2 ω0
T

), as it happens in BCS theory,

we would obtain TCDW similar to Eq. (18). However, we
found that in our case the series of log2 terms actually sum
up into a power-law form �

Q
k0

= �0 cosh(
√

S1S2 log ω0
T

) ∼
�0(ω0

T
)
√

S1S2 . The implication is that, within the logarithmic

approximation, the ratio �
Q
k0

/�0 does not diverge at any finite
T , i.e., Eq. (18) is an artifact of neglecting frequency depen-
dence of �Q. A similar situation holds in the superconducting
channel. There, previous works have found [37,61,81] that
the instability does develop, but to detect it one has to go
beyond logarithmic accuracy, solve the full integral equation
in frequency, and search whether or not there is an instability
at T > 0. This is what we do next.

B. Beyond logarithmic approximation

1. Pairing susceptibility at T = 0

The first step in the analysis is to consider T = 0, when
the summation over Matsubara frequencies can be replaced by
integration. At T = 0, the lower cutoff of the logarithm is set
by frequency rather than by T , hence within the logarithmic
approximation

�
Q
k0

(�m),�Q
kπ

(�m) ∝ �0

(
ω0

|�m|
)√

S1S2

. (21)

We now verify whether the actual pairing susceptibility at T =
0 behaves similarly to (21) or changes sign, at least in some
frequency ranges. The latter would indicate that the normal
state is unstable, hence TCDW is nonzero.

A similar strategy has been applied to the superconducting
problem at the onset of SDW order, when magnetic ξ =
∞ [37,61]. We briefly discuss how it worked there and then ap-
ply it to our case. Like in our case, the summation of the leading
logarithms for the superconducting problem does not lead to
the instability and instead yields for the superconducting order
parameter �SC(�m) ∝ �0( ω0

|�m| )
α0 , where �0 is again a source

term and α0 is some positive number of order one [82]. The
solution of the full integral equation for �SC(�m) at T = 0 also
yields a power-law form �SC(�m) ∝ �0( ω0

|�m| )
α at �m < ω0,

like in (21), however, α turns out to be a complex number.
In this situation, there are two solutions, one with α, another
with α∗. The linear combination of these two solutions yields
oscillating

�
Q
k0

∝ �0 cos[Im(α) ln ω + θ ]/|�m|Reα (22)

with a “free” phase variable θ . The presence of θ plays the
crucial role when the analysis is extended to finite T and
the source term �0 is set to zero. The power-law behavior
at a finite T exists in the frequency range between ω0 and
T and has to satisfy boundary conditions at the two edges.
This requires two adjustable parameters. The temperature is
one of them and the phase θ is the other one. Solving for the
two boundary conditions requires care, but the result is that,
very likely, they can be satisfied at a nonzero T , i.e., at this
T the linearized gap equation has a solution. Whether this is
the actual TSC is a more subtle issue as there may exist some
other solution of the linearized gap equation, with different
behavior at small frequencies. In any case, however, the fact
that Eq. (22) is the solution of the linearized gap equation at a
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finite T implies that TSC must be finite. From this perspective,
the fact that the exponent α is complex is a sufficient condition
for the existence of the pairing instability at a finite TSC in the
quantum-critical regime.

We follow the same strategy for the CDW case. We keep the
frequency dependencies of �

Q
k0

and �
Q
kπ

in Eqs. (13) and (14),

solve these two equations as integral equations in frequency,
search for a power-law solution, and analyze whether or not
the exponent is complex. To shorten the presentation, we only
consider the limiting case ϕ = 0, and replace the soft upper
cutoff at ω0 with a hard one. With this simplification, we obtain,
replacing the sums by integrals,

�
Q
k0

(�m) = −3

16π

∫ ω0

−ω0

d�m′�
Q
kπ

(�m′)

|�m′ |
∫ ∞

0

dz√
z2 + |1 − �m′/�m|(

√
z2 + |1 − �m′/�m| + 1/4)2

, (23)

�
Q
kπ

(�m) = −3

16π

∫ ω0

−ω0

d�m′�
Q
k0

(�m′)

|�m′ |
∫ ∞

0

dz√
z2 + |1 − �m′/�m|

1

z2 + 1/16
. (24)

We search for the solution in the form �
Q
k0

,�
Q
kπ

∼ |�m|−α . One can easily verify that convergence of integrals requires 0 <

Re α < 0.5. Substituting this trial solution into (23) and (24), we find after simple algebra a self-consistency condition

geffF (α)G(α) = 1, (25)

where geff = 9
64 is the universal dimensionless coupling constant for our quantum-critical problem and

F (α) = 1

2π

∫ ∞

−∞

dω

|ω|1+α

∫ ∞

0

dz√
z2 + |1 − 1/ω|(

√
z2 + |1 − 1/ω| + 1/4)2

,

(26)

G(α) = 1

2π

∫ ∞

−∞

dω

|ω|1+α

∫ ∞

0

dz√
z2 + |1 − 1/ω|

1

z2 + 1/16
.

We solved Eq. (25) for α and found that the
solution is a complex number: α = 0.288 ± 0.185i.
The corresponding eigenfunction has the form
�

Q
k0

,�
Q
kπ

∼ cos[0.185 ln |�m| + θ ]/|�m|−0.288, where θ

is a free phase factor. Like we said, this is the sufficient
condition for a CDW instability at a nonzero TCDW.

2. Computation of TCDW

Because the effective coupling geff is of order one, the only
relevant energy scale in the quantum-critical regime is ω0,
hence, TCDW must be of order ω0. From this perspective, the
estimate of TCDW in Eq. (18) is actually not far off as it also
gives TCDW of order ω0. To get the right ratio of TCDW/ω0,
one needs to solve the set of the two linearized gap equations
numerically.

There is one caveat, however, associated with the special
role of zero bosonic Matsubara frequency term in the gap
equation. Indeed, the frequency sum in each of Eqs. (23)
and (24) contains the term with �m′ = �m. For this particular
Matsubara frequency, the integral over z diverges logarithmi-
cally, as ln ξ , and, if there was no counterterm, TCDW would
vanish at ξ = ∞.

This issue is known in the superconducting prob-
lem [37,80,83]. The term with zero Matsubara frequency
represents scattering with zero frequency transfer and a finite
momentum transfer and from this perspective acts like an
“impurity.” The logarithmical divergence of the integral over
dz in (23) and (24) implies that “impurity” has an infinite
strength at ξ = ∞. Still, for an s-wave superconductor,
the contribution to TSC from impurities must vanish by
Anderson theorem. To see this vanishing in our formalism,

one needs to do calculations more accurately than we did so
far and reevaluate fermionic self-energy at a finite T , as it
also contains a ln ξ contribution coming from zero bosonic
Matsubara frequency. For an s-wave superconductor, the two
contributions cancel each other. For other cases, the situation is
less obvious. For p-wave pairing, the divergent terms coming
from zero bosonic Matsubara frequency do not cancel out
within the Eliashberg approximation and this eventually gives
rise to first-order superconducting transition [37]. For d-wave
pairing, earlier calculations within the spin-fermion model
used the Eliashberg approximation, in which the momentum
integration is factorized; the one transverse to the FS is
performed over the two fermionic propagators, while the one
along the FS is performed over the bosonic propagator. Within
this approximation, the contributions from zero Matsubara
frequency to the pairing vertex and to the fermionic self-energy
either completely cancel out in the gap equation [37,83], when
fermionic self-energy is approximated by its value at a hot
spot, or the divergent terms cancel out and the remaining
nondivergent terms give rise to a modest reduction of TSC,
when the momentum dependence of the fermionic self-energy
on k along the FS is kept [80]. On the other hand, in our
solution of the CDW problem, it was crucial to go beyond
Eliashberg approximation and include the contributions from
the poles in the bosonic propagator in the integration along
and transverse to the FS. (We recall that, for interactions
mediated by collective modes of fermions, there is no small
parameter to justify Eliashberg approximation, except for
special cases near three dimensions [84,85]). To see whether
or not the cancellation of the divergent contributions from
zero Matsubara frequency holds in our case we have to keep
the summation over Matsubara frequencies not only in the
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equations for �
Q
k , but also in the self-energy. For definiteness,

we consider the case ϕ = 0, when Fermi velocities at one pair
of hot spots are antiparallel to each other and at the other are

parallel. Like before, we neglect momentum dependencies of
�

Q
k0

, �Q
kπ

and the fermionic self-energy, i.e., approximate these
quantities by their values at hot spots. The inclusion of the T

dependence of the self-energy modifies Eqs. (23) and (24) to

�
Q
k0

(�∗
m) = −3T ∗

CDW

8

∑
|�∗

m′ |<1

�
Q
kπ

(�∗
m′)
∫ ∞

0

dy∗√
(y∗)2 + |�∗

m − �∗
m′ |

1[√
(y∗)2 + |�∗

m − �∗
m′ | + 3

8

∣∣�̃∗(�∗
m′)
∣∣]2 , (27)

�
Q
kπ

(�∗
m) = −3T ∗

CDW

8

∑
|�8

m′ |<1

�
Q
k0

(�∗
m′)
∫ ∞

0

dy∗√
(y∗)2 + |�∗

m − �∗
m′ |

1

(y∗)2 + 9
64

∣∣�̃∗(�m′)
∣∣2 , (28)

where �̃∗(�∗
m) = �∗

m + �∗(�∗
m), and

�∗(�∗
m) = T ∗

CDW

∑
|�∗

m′ |<ω0

∫ ∞

0
dy∗ sgn(�∗

m′ )√
(y∗)2 + |�m − �m′ |

1√
(y∗)2 + |�m − �m′ | + 3

8

∣∣�̃∗(�m′)
∣∣ . (29)

In (27)–(29) we used rescaled variables �∗
m = �m/ω0,

�∗ = �/ω0, T ∗
CDW = TCDW/ω0, and y∗ = y/(γω0)1/2 =

2πvF y/(3ḡ). Let us first analyze the equation for the self-
energy �∗. We recall that at T = 0 we have �∗(�∗) = �∗ +
(2/3)

√|�∗|sgn(�∗). At a finite T , the leading contribution
to the sum in the right-hand side of (29) is ln ξ from the term
with �∗

m′ = �∗
m. Restricting with only this term and neglecting

bare �∗ (i.e., neglecting the difference between �̃∗ and �∗),
we obtain from (29)

�∗(�∗
m) ≈ 8T ∗

CDWL sgn(�∗
m)

3
∣∣�∗(�∗

m)
∣∣ , (30)

where L = ln ξ . Solving (30) we obtain

�∗(�∗
m) ≈

(
8T ∗

CDWL

3

)1/2

sgn(�∗
m) + . . . , (31)

where the ellipsis stands for terms of order one. This formula
is valid when T ∗

CDWL is a large number.
Substituting this �∗(�∗

m) into the first two equations and
assuming that relevant �∗

m − �∗
m′ and y are of order one (we

later verify this), we pull out �∗(�∗
m) and after integration over

y obtain

�
Q
k0

(�∗
m) ≈ −8T ∗

CDW

3

∑
|�∗

m′ |<1

�
Q
kπ

(�∗
m′)

(�∗)2
ln

(�∗)2

|�∗
m − �∗

m′ | + . . . ,

�
Q
kπ

(�∗
m) ≈ −8T ∗

CDW

3

∑
|�∗

m′ |<1

�
Q
k0

(�∗
m′ )

(�∗)2
ln

(�∗)2

|�∗
m − �∗

m′ | + . . . ,

(32)

where (�∗)2 = [�∗(�∗
m)]2 = 8T ∗

CDWL/3. We see that, as long
as we neglect nonlogarithmic terms, �Q

k0
= −�

Q
kπ

. As a result,
in this approximation CDW with Qx/Qy has pure d-wave
form factor and in real space represents a bond order, just
like CDW with diagonal Q. A site component (a true CDW)
appears once we include corrections to (32) [labeled as ellipses
in (32)], and is small in 1/L. Such a structure of the charge
order parameter is consistent with Refs. [64,65,86] and with
the form of �

Q
k extracted from recent measurements [5,62].

The reason why �
Q
k0

and �
Q
kπ

become almost equal by
magnitude in spite of the difference in the arrangements of
Fermi velocities in regions 1-2 and 3-4 in Fig. 1 is that at large
T ∗L, the �̃ term in the fermionic propagator G−1(k,ω) =
i�̃(�) − v · k becomes larger than the v · k term. Then, the
difference between nesting and antinesting becomes almost
irrelevant as each fermionic propagator can be approximated
by G−1(k,ω) = i�̃(�).

The right-hand side of each of the two equations (32)
contains 1/L coming from (�∗)2 in the denominator and the
logarithmical term in the numerator due to the presence of zero
bosonic Matsubara frequency term in the summation over �∗

m′ .
The logarithmical terms in the numerator and denominator
exactly cancel each other, i.e., at this level there is no
information as to what TCDW is. To obtain TCDW one has to keep
terms with �m �= �m′ in the formulas for �

Q
k0

(�∗
m),�Q

kπ
(�∗

m)
and for �(�∗

m). We follow the strategy used in Eliashberg-type
theories and introduce �̄

Q
k0

(�∗
m) = �∗

m�
Q
k0

(�∗
m)/�̃∗(�∗

m) and

�̄
Q
kπ

(�∗
m) = �∗

m�
Q
kπ

(�∗
m)/�̃∗(�∗

m). Substituting this into any

of the two equations in (32) and using �
Q
k0

= −�
Q
kπ

we obtain

[�̄(�∗
m) ≡ �̄

Q
k0

(�∗
m)]

�̄(�∗
m) = λT ∗

CDW

∑
|�∗

m′ |<1

ln
(�∗)2

|�∗
m − �∗

m′ |

×
(

�̄(�∗
m′ )

|�∗
m′ | − �̄(�∗

m)

�∗
m

�∗
m′

|�∗
m′ |
)

, (33)

where we defined λ = 8/(3|�∗|) = √8/(3T ∗
CDWL). The sec-

ond term in the last bracket in the right-hand side of this
equation [the one with �̄(�∗

m)] comes from the self-energy,
once we express �

Q
k0

and �
Q
kπ

in the left-hand side of the
two equations in (32) via �̄. We see that the term with zero
Matsubara frequency vanishes, in agreement with what we
found a few lines above [the term inside the parentheses in
the right-hand side of (33) vanishes when �m′ = �m), and
the value of TCDW is determined by the contributions from
nonzero bosonic Matsubara frequencies. The vanishing of
the �m′ = �m term is similar to what happens in an s-wave
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superconductor. However, contrary to an s-wave case, here the
effective coupling λ in (33) does depend on L.

Equation (33) has been studied in the context of color su-
perconductivity [87] and of the pairing mediated by collective
excitations in D = 3 [42,69,81,84,85] and we just borrow the
result: at weak coupling (small λ), TCDW is determined by

ln
(�∗)2

T ∗
CDW

∼ 1

λ1/2
. (34)

Solving this equation, we obtain, in actual units,

TCDW ∼ ω0
(ln L)4

L
. (35)

We see that thermal fluctuations reduce the CDW instability
temperature by a factor (ln L)4/L compared to what we would
obtain by using the zero-temperature gap equation and just
setting T as the lower cutoff.

C. Interplay between TCDW and TSC

There is another consequence of strong effect of thermal
fluctuations: the onset temperature for CDW order with
Qx/Qy becomes almost indistinguishable from the onset
temperatures for superconductivity and for bond order with
diagonal Q. Indeed, the equation for superconducting TSC is
the same as Eq. (28) if we replace �

Q
k0

→ �SC and �
Q
kπ

→
−�SC. To logarithmic accuracy, this leads to the same gap
equation for �̄SC(�m) = �SC(�∗

m)(�m)/�∗(ωm) as Eq. (33).
This is an expected result as the superconducting problem and
CDW problem with Qx/Qy differ in the interplay between
the directions of Fermi velocities in the two hot regions
connected by (π,π ). For the superconducting problem, the
velocities at hot spots at k and −k are strictly antiparallel,
while for CDW they are almost antiparallel in one hot
region and almost parallel in the other. In a situation when
the frequency-dependent term in the fermionic propagator
becomes parametrically larger than v · k, the difference in
the directions of Fermi velocities becomes irrelevant and
superconducting and CDW onset temperatures are both given
by Eq. (35) to leading order in L = ln ξ , and differ only in the
subleading terms, which are small in 1/L, i.e.,

TSC = TCDW [1 + f (1/L)] , f (0) = 0. (36)

In real quasi-three-dimensional (quasi-3D) systems, the log-
arithm remains finite even when magnetic ξ = ∞. In this
situation, both TCDW and TSC remain finite at the onset of
CDW order (i.e., on a phase diagram they both cross TSDW line
at finite T ) and both are of order ω0. Still, if L is large enough,
TCDW is close to TSC, and the relative difference between the
two temperatures is parametrically small in 1/L.

D. Role of nonladder diagrams for TCDW

So far, in our consideration of the onset temperature
for CDW instability, we analyzed the set of gap equations
within ladder approximation, i.e., used the same type of
diagrams as in BSC/Eliashberg theory of superconductivity,
only in the particle-hole channel. The ladder approximation
is justified either at weak coupling, when the kernel in the
gap equation is logarithmically singular and ladder diagrams

FIG. 4. The one-loop ladder diagram and the two-loop nonladder
diagram for the renormalization of the CDW vertex. Both diagrams
are logarithmical and, parameter-wise, of the same order, however,
the numerical prefactor for the two-loop diagram is much smaller.

contain higher powers of logarithms than nonladder diagrams,
or in the Eliashberg theory, when the coupling is not small
but bosons, which mediate pairing, are slow modes compared
to electrons. In this last case, nonladder diagrams for the
pairing vertex are small in the Eliashberg parameter. Neither of
these approximations can be justified in our case: the effective
coupling is of order one and the Eliashberg parameter is also
of order one because the interaction in the CDW channel is
mediated by collective modes of electrons, which have the
same Fermi velocity as fermions themselves. The Eliashberg
parameter can be artificially made small by extending theory
to large N [38,57,84], but we do not use this extension in our
analysis.

In the absence of any small parameter, nonladder diagrams
for the CDW order parameter �

Q
k are of the same order

as the ladder ones, and one has to check whether they can
significantly affect the result for TCDW. We do a simple check
to verify this. Namely, we return back to the logarithmical
approximation and check how much the prefactor of the
logarithm obtained from the one-loop ladder diagram changes
when we include two-loop nonladder diagrams. Specifically,
we compare the prefactors from the two diagrams shown in
Fig. 4. The one-loop diagram has been analyzed above [see
Eqs. (16)]. To logarithmical accuracy it yields

√
S1S2�

Q
k0

ln
ω0

T
, (37)

where we used the fact that �
Q
kπ

= −�
Q
k0

√
S2/S1. For the

case when Fermi velocities at hot spots 1 and 2 in Fig. 1
are antiparallel,

√
S1S2 = 0.234. For the same geometry, the

two-loop diagram in Fig. 4 yields, to logarithmic accuracy,

0.024�
Q
k0

ln
ω0

T
. (38)

We see that the prefactor in Eq. (38) is 10 times smaller than
in Eq. (37), i.e., at least at this level of consideration, the
two-loop nonladder diagram in Fig. 4 only contributes a small
correction to the one-loop ladder diagram. We take this result
as an indication that the ladder approximation for the CDW
order, while not justified parametrically, is reasonably well
justified numerically.
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IV. STABILITY OF THE CDW SOLUTION

The existence of the solution of the gap equation for CDW
order parameter by itself does not guarantee that there is an
instability towards a CDW state. To prove that the system is
truly unstable, one has to verify that the solution with a nonzero
CDW order parameter corresponds to a minimum of the free
energy, rather than a maximum. For a single order parameter
�, bilinear in fermionic operators, a way to verify the stability
is to use Hubbard-Stratonovich (HS) transformation, introduce
� as a real HS field, integrate out fermions, and expand
the effective action Seff(�) in powers of �. The expansion
generally has the form

Seff(�) = α�2 + β�4, (39)

where α = a(T − T0) and β > 0 must be positive for a con-
tinuous transition. The saddle-point solution ∂Seff/∂� yields
a conventional result �2 = −α/(2β). Expanding around the
saddle point to quadratic order in fluctuations and evaluating
fluctuating contribution to the free energy, one finds that fluctu-
ations increase Seff and the Gaussian integral over fluctuations
of � nicely converges, i.e., the saddle-point solution is a
stable minimum. This simple reasoning, however, implies that
a > 0. If a was negative, saddle-point solutions with 〈�〉 = 0
at T > T0 and 〈�〉 �= 0 at T < T0 would correspond to a
maximum rather than a minimum of the effective action. One
can formally convert these states into minima, but for this one
has to transform the integration contour over � from a real to
imaginary axis.

In our case, there are two CDW orders �
Q
k0

and �
Q
kπ

, hence,
one has to introduce two HS fields. We show in the following
that the saddle-point solution for �

Q
k0

− �
Q
kπ

is along the real

axis, while the saddle-point solution for �
Q
k0

+ �
Q
kπ

is along
the imaginary axis. Given that solutions along the real and
imaginary axes have very different physical meaning in the
case of a single field, one has to perform a more detailed
analysis of fluctuations around the saddle-point solution to
verify whether in our case a disordered state is stable at T >

TCDW and the ordered state is stable at T < TCDW.
Another complication in our case is associated with

the fact that there are several directions of fluctuations
around the CDW solution. The system can fluctuate in

the CDW subset (i.e., within the plane set by �
Q
k0

and

�
Q
kπ

), but it also can fluctuate in the directions of different
orders, including superconductivity and bond order. All these
fluctuations must be included in the full analysis of stability
of CDW order [88].

We perform the stability analysis in several stages. First,
we analyze the solution of the set of nonlinear ladder
equations and show that the mean-field solution with a nonzero
�

Q
k appears continuously below TCDW. Then, we analyze

fluctuations around the mean-field solution in the �
Q
k0

and

�
Q
kπ

planes. Finally, we discuss the interplay with bond order
and superconductivity.

To simplify the analysis, following we neglect the compli-
cations associated with the frequency dependence of �

Q
k (�)

and with pair-breaking effects of thermal fluctuations, i.e.,
approximate �

Q
k (�) by �

Q
k as set T as the lower cutoff

of T = 0 formulas. Within this approximation, TCDW =
ω0e

−1/
√

S1(0)S2(0). The inclusion of the frequency dependence
of �

Q
k and thermal fluctuations will complicate the analysis

but not change the conclusions.

A. Nonlinear gap equations at T < TCDW

The set of nonlinear gap equations for CDW order with
Qx/Qy has been obtained in Ref. [89] and we reproduced
their formula. For completeness, we briefly outline the details
of our derivation. We again assume that Fermi velocities at hot
spots 1 and 2 in Fig. 1 are antiparallel, while the velocities of
hot spots 3 and 4 are parallel. In regions 1 and 2, a nonzero �

Q
k0

acts in the same way as the superconducting order parameter,
i.e., (vF y)2 is replaced by (vF y)2 + (�Q

k0
)2. In regions 3 and

4, a nonzero �
Q
kπ

just shifts quasiparticle dispersions by

±�
Q
kπ

, and the new fermionic operators which diagonalize

the quadratic form are (c3 + c4)/
√

2 and (c3 − c4)/
√

2. In both
regions, we have normal Green’s functions of original fermions
〈T cic

†
i 〉 (i = 1,2,3,4) and “anomalous” Green’s functions

〈T c1c
†
2〉 and 〈T c3c

†
4〉. Combining the contributions to the

ladder renormalizations of �
Q
k0

and �
Q
kπ

from diagrams with
two normal and two anomalous Green’s functions, we obtain,
restoring momentarily the frequency dependence of �

Q
k ,

�
Q
k0

(�m) = 3ḡT

4π2

∑
m′

∫
dx dy

x2 + y2 + γ |�m − �m′ |
�

Q
kπ

(�m′)[
i�̃(�m′) + vF x + �

Q
kπ

(�m)
][

i�̃(�m′) + vF x − �
Q
kπ

(�m)
] , (40)

�
Q
kπ

(�m) = −3ḡT

4π2

∑
m′

∫
dx dy

x2 + y2 + γ |�m − �m′ |
�

Q
k0

(�m′ )

�̃2(�m′) + (vF y)2 + [�Q
k0

(�m′ )
]2 . (41)

For definiteness, we set both �
Q
k0

(�m) and �
Q
kπ

(�m) to be real.

At T slightly below TCDW, one can expand the right-hand side of (40) and (41) in powers �
Q
k0

and �
Q
kπ

. Approximating now

�
Q
k (�) by frequency-independent values and restricting with the logarithmic approximation, we obtain to order �3

�
Q
k0

= − S1(0)�Q
kπ

[
ln

ω0

T
+ πC1

4T

(
�

Q
kπ

)2]
,

(42)

�
Q
kπ

= − S2(0)�Q
k0

[
ln

ω0

T
+ πC2

4T

(
�

Q
k0

)2]
,
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where C1 = 0.43 and C2 = 9.03. Eliminating �
Q
kπ

from these
equations we obtain (

�
Q
k0

)2 = −α

β
, (43)

where

α = 1 − S1(0)S2(0) log2 ω0/T = a(T − TCDW);

a = 2
√

S1(0)S2(0)/TCDW > 0, (44)

TCDW = ω0e
−1/

√
S1(0)S2(0),

and

β =
[
C2 + C1

S2(0)

S1(0)

]
πS1(0)S2(0)

4TCDW
ln

ω0

TCDW
. (45)

We see that β > 0, hence, the CDW transition is continuous.

B. Fluctuations within the CDW subset

To analyze fluctuations within the CDW subset, we derive
the effective action in terms of fields �

Q
k0

and �
Q
kπ

, show that the
saddle-point solution is equivalent to the solution that we found
by summing up ladder diagrams, and then expand �

Q
k0

and �
Q
kπ

around the saddle-point solution and analyze the stability of
the effective action.

To make the presentation easier to follow, we temporarily
replace the actual momentum and frequency-dependent spin-
mediated interaction 3ḡχ (q,�) by a constant χ̄ . We restore the
actual momentum and frequency dependence of the interaction
in the final formulas for the effective action.

Consider for definiteness the ordering with Q = Qy ,
between regions 1-2 and 3-4. The four-fermion interaction,
which provides the glue for CDW, is

H ′ = χ̄c
†
k0−Qck0+Qc

†
kπ +Qckπ−Q + H.c. (46)

We define ρk0 = c
†
k0+Qck0−Q, and ρkπ

= c
†
kπ +Qckπ −Q, and

rewrite the four-fermion interaction as

H ′ = χ̄
(
ρ̄k0ρkπ

+ ρ̄kπ
ρk0

)
= χ̄

2

(
ρ̄k0 + ρ̄kπ

)(
ρk0 + ρkπ

)− χ̄

2

(
ρ̄k0 − ρ̄kπ

)(
ρk0 − ρkπ

)
.

(47)

The free energy F = −T ln Z and the partition function is
Z =∏k

∫
dc

†
kdcke

−(H0+H ′)/T .
We use the HS identities [71,90]

exp

(
χ̄

2
z̄+z−

)

=
∫

d�+d�̄+
2πχ̄

exp

[
−|�+|2

2χ̄
+ i

2
(�+z+ + �̄+z̄+)

]
,

(48)

exp

(
χ̄

2
z̄−z−

)

=
∫

d�−d�̄−
2πχ̄

exp

[
−|�−|2

2χ̄
+ 1

2
(�−z− + �̄−z̄−)

]
,

where �’s are in general complex fields, and apply these
identities to z+ = ρk0 + ρkπ

= c
†
k0+Qck0−Q + c

†
kπ +Qckπ−Q and

z− = ρk0 − ρkπ
= c

†
k0+Qck0−Q − c

†
kπ +Qckπ −Q to decouple bi-

linear terms in ρ in (47). The partition function is now Z =∏
k

∫
dc

†
kdckd�−d�̄−d�+d�̄+e−S(c†,c,�−,�+) and the action

is now quadratic in fermionic fields. Integration over fermionic
variables can be carried out explicitly and we obtain

Z =
∫

d�−d�̄−d�+d�̄+e−Seff (�−,�̄−,�+,�̄+). (49)

We analyze the action in the saddle-point approximation and
consider fluctuations around saddle-point solutions. Because
�+ and �− couple linearly to z+ and z−, nonzero saddle-point
solutions for �+ and/or �− imply that the corresponding z+
and z− are also nonzero: z+ = i�+/χ̄ and z− = �−/χ̄ . In our
notations then, �

Q
k0

= 〈χ̄c
†
k0+Qck0−Q〉 = (i�+ + �−)/2 and

�
Q
kπ

= 〈c†kπ +Qckπ −Q〉 = (i�+ − �−)/2. (this does not mean

that �
Q
k0

and �
Q
kπ

are related by complex conjugation since
�+ and �− are in general complex). For our CDW solution
�

Q
k0

�= ±�
Q
kπ

, hence, we expect nonzero saddle-point values
of both �+ and �−.

1. Fluctuations at T > TCDW

We first consider the situation at T > TCDW, when we
expect that the minimum of the effective action corresponds
to �− = �+ = 0. Integrating out fermions and expanding the
result to quadratic order in �+ and �−, we obtain the effective
action in the form

Seff = 1
2 [A|�+|2 − B|�−|2 − iC(�+�̄− + �̄+�−)], (50)

where

A = 1

χ̄
+ A1 + A2

2
,

B = − 1

χ̄
+ A1 + A2

2
, (51)

C =A1 − A2

2
,

and

A1 = −
∑
k,ω

1

G−1
k0+QG−1

k0−Q

,

(52)

A2 = −
∑
k,ω

1

G−1
kπ +QG−1

kπ −Q

,

where the Green’s functions were introduced in (6). We show
diagrammatic expressions for A1 and A2 in Fig. 5. The overall
negative signs in Eq. (52) are due to the presence of fermion
loops. Evaluating A1 and A2, we find that they are both
positive.

The action in (50) contains two terms with real prefactors
of different sign (A and B terms) and one term with imaginary
prefactor. This apparently leads to some uncertainty as for a
single field η fluctuations described by Seff = D|η|2 converge
if D > 0 and diverge if D < 0. In our case, the prefactor
for the |�+|2 term is positive and the one for |�−|2 is
negative, i.e., without the coupling provided by the C term
in (50) fluctuations of �− field would diverge. We will show,
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FIG. 5. The diagrams for the coefficients A1 and A2 in the
effective action, Eq. (52).

however that the C term makes fluctuations of both �+ and
�− convergent at T > TCDW.

To prove this, we first notice that the effective action in (50)
can be written in the form

Seff = 1

2

[
A

(
�̄+ − i

C

A
�̄−

)(
�+ − i

C

A
�−

)

+
(

C2 − AB

A

)
|�−|2

]
. (53)

Expressing complex �+ and �− as �+ = x + iy, �− = z +
iw, where x,y,z,w are all real, we rewrite(

�̄+ − i
C

A
�̄−

)(
�+ − i

C

A
�−

)
(54)

as (x + izC/A)2 + (y + iwC/A)2. Introducing then x +
izC/A = x̄ and y + iwC/A = ȳ as new variables, we find
that integration over �+ reduces to

∫
dx̄ dȳ e−(A/2)(x̄2+ȳ2). (55)

This integral obviously converges. Integrating then over x̄ and
ȳ before integrating over z and w we obtain that fluctuating
part of the effective action reduces to

Seff =
(

C2 − AB

2A

)
|�−|2. (56)

The prefactor (C2 − AB)/(2A) is

C2 − AB

2A
= 1

χ̄

1 − (χ̄A1)(χ̄A2)

2 + χ̄ (A1 + A2)
. (57)

The combinations χ̄A1 and χ̄A2 in the numerator have the
same forms as the kernels in the gap equations for �

Q
k0

and �
Q
kπ

. To see this, we note that χ̄A1,2 is the product of
magnetically mediated interaction and two fermionic propa-
gators with momentum difference 2Q. Restoring frequency
and momentum dependence of χ̄ = 3ḡχ (q,�) and evaluating
χ̄A1,2 with logarithmic accuracy, we obtain

χ̄A1 = 3ḡ

8π3

∫
dx dy d�m′[

i�̃(�m′) − vxy + vyx
][

i�̃(�m′) + vxy + vyx
] 1

x2 + y2 + γ |�m − �m′ | = −S1(ϕ) ln
ω0

T
, (58)

χ̄A2 = 3ḡ

8π3

∫
dx dy d�m′[

i�̃(�m′) − vxx + vyy
][

i�̃(�m′) − vxx − vyy
] 1

x2 + y2 + γ |�m − �m′ | = −S2(ϕ) ln
ω0

T
. (59)

Hence,

C2 − AB

2A
∝ (1 − χ̄2A1A2) = 1 − S1(ϕ)S2(ϕ)

(
ln

ω0

T

)2
.

(60)

Comparing this with Eq. (18), we immediately find that (C2 −
AB)/(2A) = a(T − TCDW), and the prefactor a is positive.
This obviously implies that the disordered state is stable at
T > TCDW.

Another variable, whose fluctuations are convergent, is
�+ − i C

A
�−. The prefactor of the corresponding term in

the effective action equals A/2 and remains positive at
TCDW. Hence, the combination �+ − i C

A
�− does not acquire

a nonzero value even when C2 − AB becomes negative
and the field �− condenses. Because �

Q
k0

/�
Q
kπ

= (�− +
i�+)/(�− − i�+), the condition �+ − i C

A
�− = 0 together

with χ̄2A1A2 = 1 yields

�
Q
k0

= −�
Q
kπ

√
S2

S1
. (61)

This is exactly the same as Eq. (19), which we obtained by
summing up ladder diagrams.

We now pause momentarily and summarize what we just
did. We reexpressed the effective action (50) as in (53), shifted
variables Re�+ and Im�+ into the complex plane by adding
to them i(C/A)Re�− and i(C/A)Im�−, respectively, and
then integrated first over Re�+ and Im�+ along the direction
parallel to the real axis, and then over Re�− and Im�−. We
found that all Gaussian integrals are convergent at T > TCDW,
i.e., the disordered state appears as stable at T > TCDW.

We could, however, combine the three terms in (50)
differently by keeping �+ as one variable and shifting �−
by a term proportional to �+. This way, we rewrite (50) as

Seff = 1

2

[
−B

(
�̄− + i

C

B
�̄+

)(
�− + i

C

B
�+

)

−
(

C2 − AB

A

)
|�+|2

]
. (62)

Shifting now real and imaginary parts of �− by
−i(C/B)Re�+ and −i(C/B)Im�+, respectively, and inte-
grating first over Re�− and Im�− parallel to the real axis
and then over Re�+ and Im�+ we obtain two divergent
Gaussian integrals. Taken at face value, this would imply
that fluctuations of �− and �+ diverge at T > TCDW, when
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FIG. 6. (Color online) The scaling function f (�/A,

C2/AB,A/B) from Eq. (64) is plotted as a function of �

for fixed A = B = 1, C = 2. The function has a �-dependent
oscillating component, but clearly converges to f = 1 at large �.

C2 − AB > 0. In reality, however, fluctuations do not diverge
even if we integrate this way. To see this, one has to
keep the limits of integration finite and set them to infinity
only at the end of the calculation. One can then explicitly
verify that in this computational scheme, the Gaussian in-
tegral

∫
d�+d�−e−Seff with Seff as in (62) yields the same

result as we found before. Specifically, the integral W =∫
d�̄+d�̄−d(�̄+)∗d(�̄−)∗exp−Seff , obtained by integrating

over d�̄+d(�̄+)∗ first, yields

W = 4π2

C2 − AB
. (63)

If, instead, we integrate first over d�̄−d(�̄−)∗ and then over
d�̄+d(�̄+)∗, but each time will keep the limits of integration
finite, from −� to �, we obtain

W = 4π2

C2 − AB
f (�/A,C2/AB,A/B). (64)

In Fig. 6, we plot f as a function of � for a fixed set of A,B,C.
We see that f has an oscillating component, but clearly tends
to one when � gets larger. The conclusion here is that, no
matter in which the integration is done, the disordered state is
stable at T > TCDW and becomes unstable at T < TCDW when
C2 − AB changes sign.

We discuss additional technical aspects of the evaluation
of the partition function for the complex effective action in
Appendix C.

2. Fluctuations at T < TCDW

The HS analysis can be straightforwardly extended to T <

TCDW, however, to perform it we need to expand the effective
action Seff[�−,�̄−,�+,�̄+] up to quartic terms. Applying the
HS transformation and expanding to fourth order in � we
obtain

Seff = 1
2 [A|�+|2 − B|�−|2 − iC(�+�̄− + �̄+�−)]

− 1
16I1[(�̄− + i�̄+)(�− + i�+)]2

− 1
16I2[(�̄− − i�̄+)(�− − i�+)]2. (65)

FIG. 7. The diagrammatic representation of the prefactors I1 and
I2 in Eq. (65).

The coefficients I1 and I2 are given by square diagrams made
out fermions and are shown in Fig. 7. In analytical form,

I1 = − 1

2

∑
k,ω

1

G−2
k0+QG−2

k0−Q

,

(66)

I2 = − 1

2

∑
k,ω

1

G−2
kπ+QG−2

kπ−Q

.

The integrals I1 and I2 are evaluated in Appendix B using
linear dispersion around hot spots. In this approximation,
I1 is negative and finite and I2 = 0. Expanding further the
dispersion relation, we find that I2 is also nonzero, but is
smaller than I1. The discussion below does not rely on the
precise numerical values of I1 and I2, and we keep both I1 and
I2 as finite.

Differentiating (65) with respect to �+ we find from δS

δ�̄+
=

0 the relation �+ = iλ̃�−, with the prefactor renormalized
from λ = C/A by a nonzero �−:

λ̃ = C

A
+ 1

4A
[I1(1 − λ)3 − I2(1 + λ)3]|�−|2. (67)

Solving then the other saddle-point equation δS

δ�̄−
= 0 and

using �+/(i�−) = λ̃ = (�Q
k0

+ �
Q
kπ

)/(�Q
kπ

− �
Q
k0

), we obtain

1

χ̃
�

Q
k0

+ A1�
Q
kπ

+ 2I1

∣∣�Q
kπ

∣∣2�Q
kπ

= 0,

(68)
1

χ̃
�

Q
kπ

+ A2�
Q
k0

+ 2I2

∣∣�Q
k0

∣∣2�Q
k0

= 0.

Restoring the frequency and momentum dependence of χ̃ , like
we did before, we immediately find that this set is analogous
to Eq. (42), which we obtained by expanding in �

Q
k in the

set of ladder gap equations (it is important to keep I2 for this
comparison). The equivalence shows that the set of ladder
gap equations is equivalent to the saddle point of the effective
action.

We next replace �+ in Eq. (65) by its saddle-point value
and expand Seff[�−] in powers of �−. We obtain

Seff[�−] =
(

C2 − AB

2A

)
|�−|2 + β ′|�−|4, (69)

where, we remind, C2−AB
2A

∝ (T − TCDW) and

β ′ = − 1
16 [(1 − λ)4I1 + (1 + λ)4I2], (70)
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where, again, λ = C/A and hence (1 + λ)/(1 − λ) =√
A1/A2 when C2 − AB is close to zero. Because I1 is

negative, I2 is much smaller than |I1|, and λ is also small,
it follows from (70) that β ′ > 0, as expected. We verified that,
if we restore the frequency and momentum dependence of χ̃ ,
the order parameters �

Q
k0

and �
Q
k0

, obtained by minimizing (69)
with respect to �− and using (67) to obtain �+, are equivalent
to the solution of the nonlinear ladder equations (43). Gaussian
fluctuations around the HS solution can be obtained by usual
means and indeed show that the saddle-point solution is a
minimum with respect to variations of �−.

In Appendix D, we present an alternative derivation of
Eq. (69), using another HS formalism, in which the saddle
points for �+ and �− are both located along the real axis.

C. Interplay between CDW order and
superconductivity/diagonal bond order

So far, we considered only fluctuations within the CDW
subset. The discussion in the preceding section shows that
within this subset, the CDW solution is a local minimum and
fluctuations are convergent. The order parameters �

Q
k0

and �
Q
kπ

are proportional to each other and the effective action can be
expressed in terms of one of them, which we label �CDW:

Seff = αCDW|�CDW|2 + βCDW|�CDW|4 + . . . (71)

with αCDW = a(T − TCDW) and a > 0, βCDW > 0.
There are indeed also fluctuations in the other directions,

including the direction of d-wave superconductivity and diag-
onal bond order. There, fluctuations are longitudinal ones for
CDW order and describe the change of Seff when the magnitude
of �CDW decreases and the magnitude of superconducting
order of diagonal bond order increases. To describe these
fluctuations, we extend the GL expansion of the effective
action to include the competing channels. To avoid complex
formulas, we only consider the superconducting channel with
order parameter �SC.

A straightforward analysis shows that the full effective
action has the form

Seff = αCDW|�CDW|2 + βCDW|�CDW|4 + αSC|�SC|2
+βSC|�SC|4 + βm|�CDW|2|�SC|2 + . . . , (72)

where the ellipsis stands for higher-order terms, βi > 0, and
αSC = a(T − TSC). The effective action of this form has been
presented in Ref. [91]. The prefactor a does not have to be the
same as for CDW order but can be adjusted to match that of
αCDW by rescaling the magnitude of �SC.

We know from the analysis in Sec. III that the instability
temperature in the superconducting channel is close to TCDW,
but still larger than TCDW [see Eq. (36)]. Analyzing the effective
action (72) within mean-field theory, we find that immediately
below TSC only superconducting order emerges, while CDW
order emerges at a lower T = T̄CDW:

T̄CDW = TCDW

βSC − βm
TSC

TCDW

βSC − βm

, (73)

provided that two conditions are met [73,74,92]:

βSCβCDW > β2
m, βSC > βm

TSC

TCDW
. (74)

The first condition makes certain that the mixed state has lower
energy than either of the two pure states and the second one
guarantees that T̄CDW > 0. If either of these two conditions is
not met, the system remains in a pure superconducting state
down to T = 0 and CDW order does not develop.

We show in the following that beyond mean field the
situation is more involved and the first instability upon
lowering T can actually happen within the CDW subset,
before superconducting order or bond order with diagonal
Q develop. The reason is that the manifold for the CDW
order parameter includes one or two additional discrete Z2

symmetries, depending on the actual structure of the CDW
order. We demonstrate this in Sec. V. In Sec. VI, we show that
composite charge orders, associated with their Z2 symmetries,
develop at temperatures larger than TCDW. Given that TCDW

is close to TSC, the onset temperature for composite charge
order likely exceeds TSC. Once a Z2 composite orders sets in,
it gives a negative feedback on superconductivity and reduces
TSC, and, at the same time, increases the susceptibility for
the primary CDW order and hence enhances TCDW. It the
enhanced TCDW becomes larger than the reduced TSC, the same
GL analysis as we just did below shows that TSC is further
reduced and whether it develops in coexistence of CDW at a
lower T depends on the same conditions as in (74).

V. STRUCTURE OF CHARGE ORDER:
MEAN-FIELD ANALYSIS

In previous sections we considered CDW order with
momentum either Qx = (2Q,0) or Qy = (0,2Q) and assumed
that �

Q
k with a given Q is a single U (1) field, i.e., that

�
Q
k0

= �
Q
−k0

. In reality, the CDW order can emerge with either

only Qx or Qy , or with both momenta, and also �
Q
k0

and �
Q
−k0

are in general not identical because k0 is not a high-symmetry
point in the Brillouin zone. Indeed, by construction, the order
parameter satisfies (�Q

k )∗ = �
−Q
k . This condition implies that

an incommensurate charge order parameter has an overall
phase factor associated with the breaking of U (1) symmetry,
but does not specify how �

Q
k changes under k → −k. For

sets 1-2 and 3-4 in Fig. 1, relevant k are near k0 = (π − Q,0)
and kπ = (−Q,π ). For the sets 5-6 and 7-8 in Fig. 1, relevant
k are near k̄0 = −k0 ≡ (π + Q,0) and k̄π = −kπ . As long
as typical |k − k0| are smaller than 2Q (i.e., as long as
TCDW is smaller than, roughly, EF |Q/π |), the two regions
are weakly connected and at zero-order approximation can
be considered independent of each other, in which case the
gap equation does not distinguish between the solutions for
�

Q
k , which are even and which are odd under k → −k. One

can easily check [64] that under time reversal �
Q
k → �

Q
−k ,

hence the odd in k solution changes sign under time reversal,
and its emergence therefore implies that CDW order breaks
time-reversal symmetry. We emphasize that the possibility to
have two types of solutions is specific to CDW order with Qy

(Qx). For a charge order with a diagonal Q, the center-of-mass
momentum is at k = 0, and only an even in k solution is
possible.

We label the even in k solution as �
Q
1 and the odd in k

solution as �
Q
2 ∝ sgn(k). We will show later in this section
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that in real space �
Q
1 describes an incommensurate cite

or bond charge density modulation, while �
Q
2 describes an

incommensurate bond current.
Combining two different Q with two components of �

Q
k for

a given Q, we find that the full order parameter for CDW order
has two components: �Qx

1 ,�
Qx

2 ,�
Qy

1 , and �
Qy

2 . In this section,
we obtain the effective action for four-component CDW order
parameter and analyze it in the mean-field approximation. In
Sec. VI, we perform the analysis beyond mean field and study
preemptive composite orders.

A. Truncated effective action: Stripe versus checkerboard order

As a first pass on the structure of �
Q
k , we assume that �

Q
k

has only an even in k component �
Q
1 (i.e., that �

Q
k0

= �
Q
−k0

)
and analyze the GL model for two-component order parameter
�x = �

Qx

k0
and �y = �

Qy

k0
, subject to �

Qx

kπ
= μ�x and �

Qx

kπ
=

μ�x . Our goal here is to address the issue whether CDW order
develops simultaneously with both Qx and Qy , in which case
it preserves the underlying lattice C4 symmetry and gives rise
to checkerboard charge order in the real space, or with either
Qx or Qy , in which case it spontaneously breaks C4 symmetry
down to C2 and gives rise to stripe order The order with Qx

corresponds to CDW between fermions in regions 1-2 and
3-4 in Fig. 1 and the order with Qy corresponds to CDW
between fermions in regions 1-5 and 3-8. We introduce �x

and �y as two HS fields, integrate over fermions, and obtain
the effective action Seff(�x,�y). The prefactors for |�y |2 and
|�x |2 are identical by symmetry, and the full action to order
�2 is

S
(2)
eff = α(|�x |2 + |�y |2). (75)

Extending the result to fourth order in �, we obtain

Seff(�x,�y) = α
(
�2

x + �2
y

)+ β
(
�4

x + �4
y

)+ 2βm�2
x�

2
y,

(76)

where, we remind, α = a(T − TCDW), a > 0. At a mean-field
level, the effective action (76) gives rise to a checkerboard
order when β > βm, and to a stripe order when βm > β. The
coefficients β and βm are expressed via the square diagrams
with four fermionic propagators as

β = −2(I1 + μ4I2), βm = −2μ2(2I3 + I4), (77)

where μ is the ratio �
Qy

kπ
/�

Qy

k0
, which, we remind, is −√

S1/S2

[see Eqs. (19) and (61)]. The terms Ii are the convolutions of
four fermionic propagators

I1 ≡ −1

2

∫
G2

1G
2
2,

I2 ≡ −1

2

∫
G2

1G
2
5,

(78)

I3 ≡ −
∫

G1G
2
5G6,

I4 ≡ −
∫

G1G2G5G6.

FIG. 8. (Color online) The two order parameters responsible for
stripe or checkerboard order.

We show Ii graphically in Fig. 9, using the notations from
Fig. 8. The overall minus sign in every line in (78) is due to the
presence of a fermionic loop. The abbreviations for the Green’s
function as G1 ≡ G[ωm,k1 + (kx,ky)], etc., and the integrals
are performed over running frequency ωm and momenta kx

and ky . The integrals I1 and I2 have been already introduced
in Sec. II.

We evaluate I1–I4 in Appendix B by expanding to linear
order in the deviations from hot spots, and here quote the

FIG. 9. The diagrammatic representation of the quartic terms in
the effective action.
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results. We obtain

I1 = − 1

16π2v2
xvy

1

�
,

I2 = 0,
(79)

I3 = − 1

16π2v2
xvy

1

�
ln

ω0

�
,

I4 = − 1

32vxvy

1

T
.

Using these results, we find that the prefactors β and βm in
Eq. (B3) are given by

β = −2(I1 + μ4I2) = 1

8πv2
xvy

1

�
,

(80)

βm = −2μ2(2I3 + I4) ≈ μ2

16vxvy

1

T
.

Because μ > 1, we have at low T � �vx , βm � β, i.e.,
the system chooses the stripe order in which only �x or
�y emerges. Such an order spontaneously breaks C4 lattice
rotational symmetry.

Phenomenological arguments for stripe charge order in
hole-underdoped cuprates have been displayed earlier [76],
and our microscopic analysis is consistent with earlier works.
We caution, however, that more accurate treatment is needed
when CDW order emerges either from a preexisting super-
conducting state or in an applied magnetic field. Both a
superconducting gap and a magnetic field cut the divergencies
in I3 and I4 at low T , and it may happen that in this situation β

becomes larger than βm, in which case the checkerboard CDW
order develops.

B. Full effective action

We next analyze the effective action for the full four-
component CDW order parameter. We split �

Q
k into even and

odd parts as

�
Q
k = �

Q
1,k + �

Q
2,ksgn(k) (81)

and, to shorten notations, define �
Qx

1 , �
Qx

2 , �
Qy

1 , and �
Qy

2 as
�x

1 , �x
2 , �

y

1 , and �
y

2 , respectively. The four order parameters
transform differently under translation along x and y directions
in real space, lattice rotation by π/2, and inversion of time.
We list the symmetry properties of the four �’s in Table I.

We again use the HS transformation from the action written
in terms of fermionic operators to the action in terms of
collective bosonic variables and obtain the prefactors for

TABLE I. The symmetry properties of the four order parameters
�x

1 , �x
2 , �

y

1 , and �
y

2 under translation, C4 lattice rotation, and time
reversal.

�x
1 �x

2 �
y

1 �
y

2

Translation along x �x
1e

2iQxx �x
2e

2iQxx �
y

1 �
y

2

Translation along y �x
1 �x

2 �
y

1e
2iQyy �

y

2e
2iQyy

C4 lattice rotation �
y

1 �
y

2 �x
1 �x

2

Time reversal �x
1 −�x

2 �
y

1 −�
y

2

quadratic and quartic terms in �
j

i by integrating over the
loops made out of two and four fermions, respectively. The
full analysis is somewhat involved and to give insights what
CDW configurations may emerge we first approximate the
CDW order parameters by their values at hot spots, which in
technical terms implies that we approximate c†c� vertices in
the square diagrams for the prefactors for �4 terms by their
values at hot spots. Following the same steps as in the previous
subsection, we obtain the effective action in the form

Seff = α
(∣∣�x

1

∣∣2 + ∣∣�y

1

∣∣2 + ∣∣�x
2

∣∣2 + ∣∣�y

2

∣∣2)
+β
{∣∣�x

1

∣∣4 + ∣∣�y

1

∣∣4 + ∣∣�x
2

∣∣4 + ∣∣�y

2

∣∣4
+ [(�x

1

)∗
�x

2

]2 + [(�x
2

)∗
�x

1

]2 + 4
∣∣�x

1

∣∣2∣∣�x
2

∣∣2
+ [(�y

1

)∗
�

y

2

]2 + [(�y

2

)∗
�

y

1

]2 + 4
∣∣�y

1

∣∣2∣∣�y

2

∣∣2}
+ 2β̄m

{[∣∣�x
1

∣∣2 − ∣∣�x
2

∣∣2][∣∣�y

1

∣∣2 − ∣∣�y

2

∣∣2]
+ [�x

1

(
�x

2

)∗ − (�x
1

)∗
�x

2

][
�

y

1

(
�

y

2

)∗ − (�y

1

)∗
�

y

2

]}
+ 2β̃m

(∣∣�x
1

∣∣2 + ∣∣�x
2

∣∣2)(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2), (82)

where β = −2(I1 + μ4I2), β̄m = −2μ2I4, and β̃m = −4μ2I3.
For �i

2 = 0, Eq. (82) reduces to (76) with βm = β̄m + β̃m. The
expressions for Ii are presented in (79). For these Ii , all β’s are
positive and β̄m and β̃m well exceed β because corresponding
Ii are larger and also because μ is larger than one. The ratio of
β̄m/β̃m does not depend on μ and is given by I4/I3. At low T ,
this ratio is large, but at T = TCDW it is generally of order one.
To account for all possible phases, we will treat β̄m and β̃m

as the two parameters of comparable strength, but will keep
β̃m,β̄m � β.

We parametrize the four fields �x
1 , �x

2 , �x
1 , and �

y

2 as

�x
1 =|�| cos θ cos ϕ1e

iψ1 ,

�x
2 =|�| sin θ cos ϕ2e

iψ2 ,
(83)

�
y

1 =|�| cos θ sin ϕ1e
iψ̄1 ,

�
y

2 =|�| sin θ sin ϕ2e
iψ̄2 ,

where all angles are taken between 0 and π/2. Plugging this
into Eq. (82) and varying over ψ we find that the action is
minimized when

ψ1 − ψ2 = π

2
, ψ̄1 − ψ̄2 = π

2
,

or ψ1 − ψ2 = −π

2
, ψ̄1 − ψ̄2 = −π

2
. (84)

This condition “locks” the phase difference between �1’s and
�2’s for CDW order parameters along the two directions of
Q to be simultaneously either π/2 or both −π/2. Plugging
Eqs. (83) and (84) back into Eq. (82), we obtain

Seff = α|�|2 + β|�|4[(cos2 θ cos2 ϕ1 + sin2 θ cos2 ϕ2)2

+ (cos2 θ sin2 ϕ1 + sin2 θ sin2 ϕ2)2]

+ β̄m + β̃m

2
|�|4(cos2 θ sin 2ϕ1 − sin2 θ sin 2ϕ2)2

− β̄m − β̃m

2
|�|4[sin2 2θ sin2(ϕ1 + ϕ2)]
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I

II

βm

β
~

m

FIG. 10. (Color online) States I and II in the parameter space of
β̃m and β̄m.

≈ α|�|2+ β̄m + β̃m

2
|�|4(cos2 θ sin 2ϕ1− sin2 θ sin 2ϕ2)2

− β̄m − β̃m

2
|�|4[sin2 2θ sin2(ϕ1 + ϕ2)], (85)

where in the last line we have used the approximation
β̃m,β̄m � β.

The structure of the CDW order is now obtained by varying
this action over ϕ1, ϕ2, and θ . We found two types of states,
I and II, depending on the interplay between β̃m and β̄m (see
Fig. 10).

For β̃m > β̄m, we find that the minimum of Seff corresponds
to ϕ1 = ϕ2 = 0 or ϕ1 = ϕ2 = π

2 , and arbitrary θ . The impli-
cation is that CDW order develops either with Qx or Qy , i.e.,
is in the stripe form, like we found before. We see, however,
that both �1 and �2 develop, in general, and the relative phase
between the two is ±π/2. We label this state as state I. The
relative magnitude of �1 and �2 is arbitrary at this level of
consideration, but we show in the next subsection that it gets
fixed when we include the k dependence of c†c�Q

k vertices.
For β̃m < β̄m, the action (85) is minimized when θ = π/4

and ϕ1 + ϕ2 = π/2. In terms of �’s, this implies |�x
1 | = |�y

2 |
and |�y

1 | = |�x
2 |. We label this state as state II. The relative

phases of �x
1 and �x

2 and of �
y

1 and �
y

2 are again fixed
at either π/2 or −π/2 (with the same value for x and y

components), but the relative phase of �x
1 and �

y

1 and the
relative magnitude of �x

1 and �x
2 remain arbitrary at this

level of consideration. We show in the next subsection that the
relative magnitude gets fixed once we include the k dependence
of vertices, but the relative phase of �x

1 and �
y

1 still remains
arbitrary.

In the next two sections, we present a more detailed study
on states I and II.

C. Properties of state I

Suppose for definiteness that the ordering is along Qy , i.e.,
�

y

1 and �
y

2 become nonzero below TCDW. The corresponding
Seff from (82) is

Seff = α
(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2)+ β
(∣∣�y

1

∣∣4 + ∣∣�y

2

∣∣4 + [(�y

1

)∗
�

y

2

]2
+ [(�y

2

)∗
�

y

1

]2 + 4
∣∣�y

1

∣∣2∣∣�y

2

∣∣2)
= α

(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2)+ β
(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2)2
+β
[(

�
y

1

)∗
�

y

2 + �
y

1

(
�

y

2

)∗]2
. (86)

As we already said, at this level, while the phase difference of
�

y

1 and �
y

2 is locked to be ±π/2, the relative magnitude of
�

y

1 and �
y

2 can be arbitrary, only |�y

1 |2 + |�y

2 |2 is specified
by minimizing Eq. (86). In fact, in this approximation one can
easily make sure that the fields �

y

k0
= �

y

1 + �
y

2 and �
y

−k0
=

�
y

1 − �
y

2 decouple: the first line in (86) exactly reduces to

Seff = 1
2

[
α
(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)+ β
(∣∣�y

k0

∣∣4 + ∣∣�y

−k0

∣∣4)].
(87)

One implication of this equivalence is that in the hot spot
approximation, the fact that the phases of �

y

1 and �
y

2 are locked
at ±π/2 does not have a physical consequence in the sense that
the parameter manifold is U (1) × U (1) × Z2, where the two
U (1)’s are the two completely decoupled order parameters at
k and −k, and Z2 symmetry is for the choice between Qx and
Qy , and there is no additional Z2 component associated with
the two choices for the phase locking. However, as we will see
below, the decoupling between �

y

k0
and �

y

−k0
is the artifact of

the approximation of �
Qx

k by its value at k = k0 = (π − Q,0).
Once we go beyond this approximation, �

y

k and �
y

−k become
coupled and Z2 symmetry associated with the two choices of
phase locking becomes a physically relevant part of the order
parameter manifold.

To account for the effects due to momentum dependence of
�

y

k , we adopt a simple “toy model” approach and assume that
odd and even components of �

y

k behave near k0 as

�
y

1,k = �
y

1

cos k

cos k0
, �

y

2,ksgn(k) = �
y

2

sin k

sin k0
, (88)

where k is along the x direction. The correspondent momentum
dependence then appears in the vertices in two-fermion and
four-fermion loop diagrams for α and β terms. Reevaluating
the GL action with these vertices we obtain

Seff = α1

∣∣�y

1

∣∣2 + α2

∣∣�y

2

∣∣2 + β1

∣∣�y

1

∣∣4 + β2

∣∣�y

2

∣∣4
+ 2β3

∣∣�y

1

∣∣2∣∣�y

2

∣∣2 + β3
[(

�
y

1

)∗
�

y

2 + �
y

1

(
�

y

2

)∗]2
,

(89)

where

α1,2 = α − Jα1,2 , β1,2,3 = β + Jβ1,2,3 . (90)

Here, α and β are GL coefficients in the approxima-
tion �

Qy

k = �
Qy

k0
and the corrections Jα1,2 and Jβ1,2,3 are
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given by

Jα1 =
∫ �

−�

dk

(
cos2 k

cos2 k0
− 1

)
, Jα2 =

∫
dk

(
sin2 k

sin2 k0
− 1

)
,

Jβ1 =
∫ �

−�

dk

(
cos4 k

cos4 k0
− 1

)
, Jβ2 =

∫
dk

(
sin4 k

sin4 k0
− 1

)
,

Jβ3 =
∫ �

−�

dk

(
sin2 k cos2 k

sin2 k0 cos2 k0
− 1

)
, (91)

where the integration extends to a finite range � around hot
spots. Expanding in (91) in k − k0 we obtain

Jα1 = −2ε
cos 2k0

cos2 k0
, Jα2 = 2ε

cos 2k0

sin2 k0
, (92)

Jβ1 = 2ε(3 cot2 k0 − 1), Jβ2 = 2ε(3 tan2 k0 − 1),
(93)

Jβ3 = ε(cot2 k0 + tan2 k0 − 6),

where ε = ∫ �

−�
(k − k0)2dk > 0. In Bi2Sr2−xLaxCuO6+y , π −

k0 ≈ 0.255π (Ref. [12]) hence | tan k0| ≈ 1.03 and cos 2k0 ≈
−0.03. From Eq. (92) we then find that α2 > α1, i.e., the
renormalized mean-field CDW transition temperature for the
even component TCDW,e = Te is larger than that for the odd
component TCDW,o = To. This agrees with Refs. [64,65]. We
note, however, that the two are still very close to the original
TCDW because Jα1 and Jα2 are very small numerically. A
complementary approach as to how to go beyond hot spot
treatment is presented in Appendix E. It also leads to α2 � α1.
We also have

β1 − β3 = ε(4 − (tan k0)2 + 5(cot k0)2),
(94)

β2 − β3 = ε(4 − (cot k0)2 + 5(tan k0)2).

For | tan k0| ≈ | cot k0| ≈ 1, β1 ≈ β2 > β3.
Analyzing the effective action (89) in the mean-field

approximation, we observe that a relative phase between
�

y

1 = |�y

1 |eiψ1 and �
y

2 = |�y

2 |eiψ2 is locked at ±π/2, like
in the case of a constant �x

k . In other words, if �x
1 is real, �x

2
should be imaginary. From ∂Seff/∂�

y

1 = ∂Seff/∂�
y

2 = 0, we
obtain

�
y

1

(
α1 + 2β1

∣∣�y

1

∣∣2 + 2β3

∣∣�y

2

∣∣2) = 0,
(95)

�
y

2

(
α2 + 2β2

∣∣�y

2

∣∣2 + 2β3

∣∣�y

1

∣∣2) = 0.

Assuming that both orders are nonzero, we obtain from (95)

∣∣�y

1

∣∣2 =1

2

α2β3 − α1β2

β1β2 − β2
3

,

(96)∣∣�y

2

∣∣2 =1

2

α1β3 − α2β1

β1β2 − β2
3

.

An elementary analysis shows that this solution is a minimum
of the effective action when β1β2 > β2

3 . In our case,

β1β2 − β2
3 = 16βε

(sin 2k0)2
> 0, (97)

i.e., this condition is satisfied. The temperature at which �x
2

acquires a nonzero value is

Tco = To

β1 − β3

β1 − β3
To

Te

≈ To. (98)

Below this temperature, both order parameters acquire nonzero
values and the relative phase ψ1 − ψ2 is either π/2 or −π/2.
The broken symmetry in the phase when both �

y

1 and �
y

2 are
nonzero is U (1) × Z2, where continuous U (1) corresponds
to the common phase ϕ̄1 + ϕ̄2 of �

y

1 and �
y

2 and Ising Z2

corresponds to the choice π/2 or −π/2 for the relative phase.
What happens at lower T depends on the sign of β2 − β3 >

0, and the two orders coexist down to T = 0. Interestingly,
when β2 < β3, there is another temperature

T̄co = To

β3 − β2

β3 − β2
To

Te

< To (99)

at which �
y

1 disappears and at smaller T only �
y

2 is nonzero.
It is also instructive to rewrite the effective action (89) in

terms of the original CDW order parameters �
y

k0
and �

y

−k0

at the hot spots. From Eqs. (81) and (88), we have �
y

1 =
(�y

k0
+ �

y

−k0
)/2 and �

y

2 = (�y

k0
− �

y

−k0
)/2, which is the same

relation as in the hot spot approximation. Plugging them into
Eq. (89), we obtain

Seff =
(

α1 + α2

4

)(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)

+
(

α1 − α2

4

)[
�

y

k0

(
�

y

−k0

)∗ + �
y

−k0

(
�

y

k0

)∗]

+
(

3β3

8
+ β1 + β2

16

)(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)2
−
(

3β3

8
− β1 + β2

16

)[
�

y

k0

(
�

y

−k0

)∗ + �
y

−k0

(
�

y

k0

)∗]2
+ β1 − β2

8

(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)
× [�y

k0

(
�

y

−k0

)∗ + �
y

−k0

(
�

y

k0

)∗]
+ β3

4

[
�

y

k0

(
�

y

−k0

)∗ − �
y

−k0

(
�

y

k0

)∗]2
. (100)

For momentum-independent vertices, �
y

k0
and �

y

−k0
de-

couple in the effective action (87). However, we see that the
fields �

y

k and �
y

−k0
now interact with each other. To make this

more clearly visible, let us neglect small differences between
α and α1,2 and between β1 and β2, but keep a larger difference
between β1 and β3. In this approximation, the effective action
reduces to

Seff = α

2

(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)
+
(

3β3 + β1

8

)(∣∣�y

k0

∣∣4 + ∣∣�y

−k0

∣∣4)

+
(

β1 − β3

8

)(
6
∣∣�y

k0

∣∣2∣∣�y

−k0

∣∣2
+ [�y

k0

(
�

y

−k0

)∗ − �
y

−k0

(
�

y

k0

)∗]2)
. (101)
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This can be equivalently reexpressed as

Seff = α

2

(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)+ β1

4

(∣∣�y

k0

∣∣2 + ∣∣�y

−k0

∣∣2)2
+
(

3β3 − β1

8

)(∣∣�y

k0

∣∣2 − ∣∣�y

−k0

∣∣2)2 −
(

β1 − β3

8

)

× {i[�y

k0

(
�

y

−k0

)∗ − �
y

−k0

(
�

y

k0

)∗]}2
. (102)

The advantage of this last expression is that it clearly
shows that, for β1 > β3, Seff is reduced when �

y

k0
and

�
y

−k0
appear together, and �

y

k0
= �

y

1 ± i|�y

2 | and �
y

−k0
=

�
y

1 ∓ i|�y

2 | because then the last term in (102) becomes
−[(β1 − β3)/2]|�y

1 ||�y

2 |. At the same time, the prefactor for
the “nematic” term (|�y

k0
|2 − |�y

−k0
|2)2 is positive, which

implies that |�y

k0
| and |�y

−k0
| must be equal. This holds when

�
y

1 and �
y

2 are orthogonal to each other.

1. Physical properties of the coexistence state

We now consider physical properties of the coexistence
state, when both even and odd CDW order parameters are
nonzero. The generic condition (�Q

k )∗ = �
−Q
k imposes the

constraint that �
Q
1 must be even in Q and �

Q
2 must be odd in

Q. We then reexpress the �
Q
k at hot spots 1-2 and 3-4 as (for

Q = ±Qy)

�
Q
k = �1 ± i�2sgn(k)sgn(Q), (103)

where �1 and �2 are numbers. This �
Q
k breaks time-reversal

symmetry because under time reversal �
Q
k transforms into

(�−Q
−k )∗ = �

Q
−k . The choice of relative sign in (103) specifies

one of two nonequivalent solutions which transform into each
other under time inversion. On the other hand, the parity is not
broken as under parity operation �

Q
k transforms into �

−Q
−k =

�
Q
k . Note that the order parameter (103) is similar, but not

equivalent, to incommensurate complex d-density wave order
proposed in [93,94].

Converting to real space, we find that the term �1

corresponds to an incommensurate modulation of local charge
and bond density in the y direction:

δρ(r) = Re〈c†(r)c(r)〉
=
∑

k

〈c†(k+Qy)c(k − Qy)〉ei(k+Qy )re−i(k−Qy )r+H.c.

∝ �1 cos 2Qry,

δρ(r,ax) = Re[〈c†(r + ax/2)c(r − ax/2)〉]
∝ �1 cos 2Qry cos k0ax ≈ −�1 cos 2Qry,

δρ(r,ay) = Re[〈c†(r + ay/2)c(r − ay/2)〉]
∝ �1 cos 2Q(ry + ay/2) ≈ �1 cos 2Qry. (104)

The term �2 corresponds to an incommensurate bond current,
which flows along the x direction and has incommensurate
modulation in the y direction [see Fig. 11(a)]:

jx(r) = Re[i〈c†(r − ax/2)c(r + ax/2)〉]

= Re

[
i
∑

k

〈c†(k + Qy)c(k − Qy)〉ei(k+Qy )(r−ax/2)e−i(k−Qy )(r+ax/2) + (Qy → −Qy)

]

= Re

[
i
∑

k

(
�

Q
k e2iQry + �

−Q
k e−2iQry

)
e−ikax

]

= 2 Re

[
i�1 cos(2Qry)

∑
k

e−ikax − i|�2| sin(2Qry)
∑

k

sgn(k)e−ikax

]

∝ |�2| sin 2Qry sin k0ax = |�2| sin 2Qry sin Qax. (105)

Note that the bond current modulation is in antiphase with
the density modulation. An incommensurate bond current
in turn creates an incommensurate magnetic field Hz(r) ∝
|�2| cos 2Qry . This, however, does not lead to orbital fer-
romagnetism as the total magnetic field, integrated over the
volume of the system, vanishes: (1/V )

∫
HzdV = 0. To be

more precise, current lines have to close at the boundary of a
sample, and it is natural to expect that they close through the
regions of excess charge, as shown in Fig. 11(b). This gives
rise to a set of loop currents with circulation along the same
direction, which do create a uniform magnetic field. However,
a uniform field scales as the area of the sample rather than its

volume and vanishes in the thermodynamic limit. This is very
different from triangular loop currents proposed in Ref. [46].

D. Properties of state II

We recall that in the hot spot approximation, the minimum
of the effective action (85) for β̄m > β̃m (state II) is at θ =
π/4 and ϕ1 + ϕ2 = π/2, which in terms of �’s implies that
|�x

1 | = |�y

2 | and |�y

1 | = |�x
2 |. The relative phases between �x

1
and �x

2 and between �
y

1 and �
y

2 are either both π/2 or −π/2.
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FIG. 11. (Color online) (a) The structure of density and current modulations in state I. The regions of higher and lower fermionic density
are shown by darker and lighter color, respectively. The direction of the current is shown by arrows. The current vanishes when the density
fluctuation has either the highest or the lowest value. An oscillating current gives rise to an oscillating magnetic field, whose values are shown
by dots and crosses. (b) Current loops, formed by connecting oscillating currents in the bulk via the regions of higher local charge density on
the surface.

Substituting these relations into (85) and using �
y

1 and �
y

2 as
two variables, we obtain the same effective action (86) as for
state I, namely,

Seff = α
(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2)+ β
(∣∣�y

1

∣∣2 + ∣∣�y

2

∣∣2)2 (106)

Like for state I, the relative magnitude between �
y

1 and �
y

2
is not fixed in the hot spot approximation, and to find the
actual CDW ordering one has to include the k dependence of
c†c�Q

k vertices. This gives rise to an effective action similar
to Eq. (89), however, for state II the full effective action is
more involved as all four CDW components are different from
zero. We will not discuss the full form of the action because
we believe that the state II is less relevant to the cuprates than
the state I, and rather describe two potential realizations of the
freezing of the relative magnitude of |�y

1 | and |�y

2 |, i.e., the

breaking of the freedom associated with the realization of ϕ1 +
ϕ2 = π/2. One obvious choice is ϕ1 = ϕ2 = π/4, another is
ϕ1 = π/2, ϕ2 = 0 or ϕ1 = 0, ϕ2 = π/2.

1. θ = π/4, ϕ1 = π/4, ϕ2 = π/4

In this case, all four CDW components �x
1 , �x

2 , �
y

1 , �
y

2
develop with the same magnitude �. In real space, this order
corresponds to a checkerboard-type incommensurate charge-
density modulation and incommensurate current in both x and
y directions. We show this in Fig. 12(a). The order parameter
manifold is U (1) × U (1) × Z2, where two continuous U (1)
symmetries are associated with the phases of �x

1 and �
y

1 , and
the Ising Z2 is associated with the relative phase between �1

and �2, which is π/2 or −π/2, simultaneously for x and y

FIG. 12. (Color online) Two possible real-space structures of charge order in state II. (a) A checkerboard charge-density order together
with oscillating currents along both x and y directions. (b) A stripe charge-density order together with an oscillating current along orthogonal
direction.
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components. This CDW order preserves C4 lattice rotational
symmetry but breaks time-reversal symmetry.

Plugging θ = π/4, ϕ1 = π/4, ϕ2 = π/4 into Eq. (85) and
again neglecting β compared to β̄m and β̃m, we find the
effective action (82) in the form

Seff = α�2 − β̄m − β̃m

2
�4. (107)

Because β̄m − β̃m > 0, the transition is first order. It occurs at
some T larger than mean field TCDW at which α changes sign.

2. θ = π/4, ϕ1 = π/2, ϕ2 = 0

In this case, �
Q
1 develops along the y direction and �

Q
2

develops along the x direction, i.e., |�y

1 | = |�x
2 | �= 0 and

|�y

2 | = |�x
1 | = 0. In real space, this order corresponds to

incommensurate charge density modulations in the x direction
and incommensurate current in the y direction. We show
this in Fig. 12(b). Such an order breaks two U (1) phase
symmetries and breaks C4 lattice symmetry down to C2 such
that the order parameter manifold is U (1) × U (1) × Z2, where
Z2 corresponds to C4 → C2. However, the order parameter
manifold does not have an additional Z2 component, which one
would associate with time-reversal symmetry, because only
�1 or �2 appear along a particular direction of Q. Indeed, �2

changes sign under time reversal, but this change is absorbed
into U (1) phase symmetry.

The effective action for nonzero �
y

1 and �x
2 is obtained

from (82):

Seff = α
(∣∣�y

1

∣∣2 + ∣∣�x
2

∣∣2)− 2(β̄m − β̃m)
∣∣�y

1

∣∣2∣∣�x
2

∣∣2. (108)

Because β̄m − β̃m > 0, the transition is again first order, into
a state in which �x

1 and �
y

2 have equal magnitudes.

VI. PREEMPTIVE COMPOSITE CDW ORDER

We now go beyond mean-field theory and discuss potential
preemptive transitions, when a discrete Ising symmetry gets
broken at a higher T than a continuous phase symmetry. We
focus on the state I because in this state transitions are second
order and the analysis of preemptive instabilities can be carried
out within the GL expansion. This state is also more favorable
for applications to hole-doped cuprates as phase transitions
there are likely continuous ones. We will briefly discuss a
potential preemptive order in the state II at the end of this
section. We remind that the order parameter manifold in the
state I is U (1) × Z2 × Z2, where one Z2 is associated with
the breaking of C4 lattice rotational symmetry down to C2

and another Z2 is associated with Ising symmetry breaking
associated with the relative phase between even and odd in k

components of �
Q
k with a given Q. The lattice Z2 symmetry is

broken by strong interactions (β̃m and β̄m terms in the action),
while Z2 associated with the relative phase is broken by weaker
interactions, of order β � β̃m,β̄m.

Following, we discuss two preemptive composite orders
associated with the breaking of each of the two discrete Ising
Z2 symmetries without breaking of the U (1) phase symmetry.
We analyze composite orders within “stage II” HS formalism,

by which we mean that we introduce HS fields associated with
Z2 composite orders, apply HS transformation to effective
action written in terms of � fields to decouple �4 terms,
integrate over � fields, and analyze the effective action for
composite fields in the saddle-point approximation. A similar
procedure was applied in the study of a preemptive nematic
order in Fe pnictides [66] and of a preemptive translational
symmetry breaking in doped graphene [90].

The saddle-point approximation for the action in terms of
composite order parameters is valid when fluctuations around
the saddle-point solution are weak. This is the case when the
number of components of the primary field � field is large.
The HS approach assumes that the original model can be safely
extended to a large number of field components M � 1 in the
sense that the results obtained in the controlled analysis at
large M are at least qualitatively correct for the original model
with M ∼ 1. We will perform a large-M calculation below
and show that composite orders associated with the breaking
of each of Z2 symmetries in our case emerge at a higher T than
the one at which the primary field orders. A caveat here is that
in 2D a primary field with M � 3 does not order down to T = 0
(Ref. [95]), hence a breaking of a Z2 symmetry at any nonzero
T is a preemptive order. Whether the actual system shows
the same behavior depends on the type of the problem. For Fe
pnictides, the (magnetic) order parameter is a three-component
unit vector, and it indeed does not order down to T = 0 in 2D,
like in the large-M approximation. In quasi-2D systems, the
primary field does order, but at a very low T , which for weak
coupling along the third direction is certainly smaller than a
finite critical T at which Z2 symmetry gets broken. In our case,
however, the primary field is a two-component unit vector [a
U (1) field], and the temperature at which the primary field
orders in a quasi-2D system is finite and tends to Berezinskii-
Kosterlitz-Thouless temperature in the 2D limit. Whether this
temperature is still smaller than the one at which composite or-
der develops is a priori unclear and cannot be addressed within
HS-based, large-M analysis. Fortunately, the emergence of
preemptive composite orders has been verified within the
approach specifically designed for a U (1) primary field [68].
We use the result of [68] as a verification that for the issue of
a preemptive order, a model with a two-component primary
field is not qualitatively different from models with a larger
number of field components and proceed with the HS-based
analysis.

A. A nematic transition

We first discuss whether the breaking of C4 lattice rotational
symmetry down to C2 can occur before the continuous U (1)
phase symmetry gets broken. For this discussion, the presence
of the two components of �

Q
k with a given Q does not play a

role (the analysis of the truncated and full GL functional yield
the same results with regard to C4 breaking in the ordered state
I). To simplify presentation, we then analyze the truncated GL
functional with only the �1 component present. Our analysis of
a preemptive nematic order will closely follow that in Ref. [66],
but we also discuss the stability of the nematic phase.

The effective action for coupled order parameters �x =
�

Qx

1 and �y = �
Qy

1 is presented in Eq. (76). Adding gradient
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terms and rescaling, we reexpress (76) as

S(�x,�y) = α(|�x |2 + |�y |2) + |∂μ�x |2 + |∂μ�y |2 + 1

2
(|�x |2 + |�y |2)2 − β∗

2
(|�x |2 − |�y |2)2, (109)

where, in comparison with (76), α∗ = a∗(T − TCDW) with a∗ = a/(β + βm), and β∗ = (βm − β)/(βm + β). Because both βm

and β are positive and βm > β, we have 0 < β∗ < 1. In principle, one should also include frequency dependence of the � fields
and add the dynamical Landau damping γ |ωm| term to αq , but to analyze the transition at a finite T it is sufficient to consider
only thermal fluctuations, i.e., those coming from ωm = 0.

We extend each � field to M � 1 components and rewrite S(�x,�y) as

S(�x,�y) =
M∑
i=1

[α(|�x,i |2 + |�y,i |2) + |∂μ�x,i |2 + |∂μ�y,i |2]

+ 1

2M

(
M∑
i=1

(|�x,i |2 + ∣∣�2
y,i

∣∣2)2)− β∗

2M

(
M∑
i=1

(|�x,i |2 − ∣∣�2
y,i

∣∣))2

. (110)

We introduce two HS fields: ψ , conjugated to i(|�x,i |2 + |�y,i |2), and υ, conjugated to |�x,i |2 − |�y,i |2, as

exp

(
−

M∑
i=1

(|�x,i |2 + |�y,i |2)2/(2M)

)
=
√

M

2π

∫
dψ e

−Mψ2

2 exp

[
iψ

(
M∑
i=1

(|�x,i |2 + ∣∣�2
y,i

∣∣2))] ,

exp

(
M∑
i=1

(|�x,i |2 − |�y,i |2)2/(2M)

)
=
√

M

2πβ∗

∫
dυ e

− Mv2

2β∗ exp

[
υ

(
M∑
i=1

(|�x,i |2 − ∣∣�2
y,i

∣∣))] . (111)

Substituting these integrals into the partition function I =∫
d�xd�ye

−S(�x,�y ) and integrating over �x and �y , we
obtain I ∝ ∫ dψ dυ e−MSeff (ψ,υ), where

Seff[ψ,υ] = ψ2

2
+ υ2

2β∗ +
∫

d2q

4π2
ln[(α + q2 − iψ)2 − υ2].

(112)

The extremum of Seff is obtained from ∂Seff/∂ψ = 0 and
∂Seff/∂υ = 0. This gives two equations

∂Seff

∂ψ
= ψ − 2i

∫
d2q

4π2

α + q2 − iψ

(α + q2 − iψ)2 − υ2
= 0,

(113)

∂Seff

∂υ
= υ

β∗ − 2
∫

d2q

4π2

υ

(α + q2 − iψ)2 − υ2
= 0. (114)

The solution exists for an imaginary ψ = iψ0.
We follow Ref. [66] and introduce r ≡ α + ψ0 and x ≡

q2 + r . The primary fields get ordered when r changes sign
and becomes negative. This does not happen in 2D, as long as
T > 0. Replacing ψ0 by r − α, we obtain from Eq. (114)

r = α + 1

2π

∫ �

r

dx x

x2 − υ2
= α + 1

2π
ln

�√
r2 − υ2

,

υ = υ
β∗

2π

∫ ∞

r

dx

x2 − υ2
= υ

β∗

2π
coth−1 r

υ
. (115)

1. The solution υ = 0

The set of equations (115) obviously allows a “trivial”
solution υ = 0. We have then

r = α + 1

2π
ln

�

r
. (116)

One can easily check the stability of this solution by verifying
how the effective action changes when one moves along the
trajectory which passes through a saddle point. For υ this
implies shifting from υ = 0 along the real axis, for ψ this
implies shifting along the real axis from ψ = iψ0 = i(r − α),
where r is the solution of (116). Introducing ψ = iψ0 + δψ

and υ ≡ δυ, substituting into the action, and expanding to
second order in δψ and δυ, we obtain

Seff(ψ,υ) = Seff(iψ0,0) + (δψ)2

2

(
1 + 1

2πr

)

+ (δυ)2

2β∗

(
1 − β∗

2πr

)
. (117)

We see that the prefactor for (δψ)2 is definitely positive, i.e.,
Seff definitely increases along the trajectory on Fig. 1. The
prefactor for the (δυ)2 term is positive as long as r > β∗/2π .
Combining this with Eq. (116), one finds that this holds when
α > αcr, where

αcr = β∗

2π
− 1

2π
ln

2π�

β∗ . (118)

The condition α > αcr implies that T > Tcr, where Tcr =
TCDW + αcr/a.

2. The solution with υ �= 0

Solving the set of saddle-point equations for υ �= 0, we
obtain

r = β∗

2π

υ∗

tanh υ∗ , (119)
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FIG. 13. (Color online) The plot of F (υ∗) from Eq. (120) as a
function of υ∗ with β∗ = 0.3.

where υ∗ ≡ πυ/β∗. The equation on υ∗ takes the form

F (υ∗) = 2π

β∗ (αcr − α) ,

(120)

F (υ∗) = 1 − υ∗

tanh υ∗ + 1

β∗ ln
sinh υ∗

υ∗ ,

where, we remind, α = a(T − TCDW) Expanding the left-hand
side of (120) at small υ∗, we obtain

(υ∗)2

6

(
1

β∗ − 2

)
= 2π

β∗ (αcr − α) ∝ (Tcr − T ) . (121)

We see that, if 2β∗ < 1, υ∗ gradually increases when T

becomes smaller than Tcr. To put it simply, the solution of
the nonlinear saddle-point equation shows that the order in
υ emerges below Tcr, as it is expected for a continuous,
second-order transition. We see the same behavior from Fig. 13
where we plot F (υ∗) from (120) as a function of υ∗.

Let us now see what we get if we expand near the
saddle-point solution. Introducing ψ = iψ0 + δψ and υ =
(β∗/2π )υ∗ + δυ, where, for definiteness, υ∗ is the positive
solution of Eq. (120), and expanding to second order in δψ

and δυ, we obtain after a straightforward algebra

Seff(ψ,υ) = Seff(iψ0,β
∗υ∗/π ) + A (δψ)2 − B (δυ)2

− 2iC(δψ)(δυ), (122)

where

A = 1

4β∗υ∗ (2β∗υ∗ + sinh 2υ∗),

B = 1

4β∗υ∗ (sinh 2υ∗ − 2υ∗), (123)

C = 1

2β∗υ∗ sinh2 υ∗.

Obviously, A,B, and C are positive for υ∗ �= 0.
Equation (122) has the same form as Eq. (50) in the main

text and Eq. (C78) in Appendix C. Like we did there, we

reexpress Seff(ψ,υ) in (122) as

Seff(ψ,υ) = Seff(iψ0,β
∗υ∗/π ) + A

(
(δψ) − i

C

A
(δυ)

)2

+ C2 − AB

A
(δυ)2. (124)

The contour has to be chosen such that the variable (δψ) −
i C

A
(δυ) is real, i.e., we integrate over δψ parallel to the real

axis.
As we already know, the condition that the saddle point

is the minimum of the action along the integration contour
is C2 − AB > 0. Substituting the expressions from (123), we
find

C2 − AB = sinh2 υ∗

4β∗(υ∗)2
I (υ∗), (125)

where

I (υ∗) = 1

β∗

(
υ∗

tanh υ∗ − 1

)
−
[

υ∗

tanh υ∗ −
(

υ∗

sinh υ∗

)2]
.

(126)

The condition that the saddle point is the minimum of the action
along the integration contour is then I (υ∗) > 0. Expanding at
small υ∗ we obtain

I (υ∗) = (υ∗)2

3

(
1

β∗ − 2

)
. (127)

We see that I (υ∗) > 0 when 2β∗ < 1. This is the same
condition as in Eq. (121). One can easily verify that when
0 < 2β∗ < 1, I (υ∗) is positive for all values of υ∗.

3. First-order transition at 1
2 < β∗ < 1

For larger β∗, the prefactors in (127) and (121) are negative.
The analysis of the full saddle-point solution [Eq. (120)] shows
that, as α gets smaller, the saddle-point solution [i.e., the
solution of (120)] first emerges at a finite υ∗

cr, i.e., the transition
is first order [see Fig. 14, in which we plot F (υ∗) from (120)
versus υ∗ for 1

2 < β∗ < 1].
As α gets smaller, two saddle-point solutions appear, one at

υ∗ > υ∗
cr, another at υ∗ < υ∗

cr. By obvious reasons, the solution
with υ∗ > υ∗

cr is expected to be stable, while the one at υ∗ < υ∗
cr
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FIG. 14. (Color online) The plot of F (υ∗) from Eq. (120) as a
function of υ∗ with β∗ = 0.55.
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FIG. 15. Ladder equation for ϒ̄ = �
Q

1 (�Q

2 )∗. Of the two terms in the right-hand side, one contains ϒ̄ , another ϒ̄∗. For imaginary ϒ̄ , there
is a sign change between these two terms.

is expected to be unstable. We see from Fig. 14 that the solution
at υ∗ > υ∗

cr corresponds to dF (υ∗)/dυ∗ > 0, and the solution
at υ∗ < υ∗

cr corresponds to dF (υ∗)/dυ∗ < 0. Now, evaluate

dF (υ∗)

dυ∗ = β∗
1

β∗

(
υ∗

tanh υ∗ − 1

)
−
[

υ∗

tanh υ∗ −
(

υ∗

sinh υ∗

)2]
.

(128)

Comparing this with (126), we see that

dF (υ∗)

dυ∗ ≡ I (υ∗). (129)

Hence, the solution with a positive dF (υ∗)/dυ∗ corresponds
to I (υ∗) > 0 and is stable, as expected.

B. Preemptive time-reversal symmetry breaking

We now return to the full GL model for �1 and �2

and consider a possibility of a preemptive breaking of Z2

symmetry associated with the relative phase ψ1 − ψ2 = ±π/2
between complex �

Q
1 = |�Q

1 |eiψ1 and �
Q
2 = |�Q

2 |eiψ2 . We
recall that a nematic order is selected already within the
hot spot model, while the Z2 part of the order parameter
manifold associate with phase locking becomes relevant only
once we go beyond the hot spot approximation and include
the interaction between CDW order parameters �

Q
k and �

Q
−k .

Accordingly, the coupling constant associated with the nematic
Z2 symmetry is larger than the one associated with the phase
Z2 symmetry, and, hence Tn, at which a nematic order sets in,
is larger than a temperature Tt at which the other Z2 symmetry
gets broken. Still, it is essential to understand whether Tt is
larger than TCDW, i.e., whether Z2 symmetry associated with
ψ1 − ψ2 = π/2 or −π/2 gets broken at a temperature higher
than the one when U (1) symmetry of the common phase
ψ1 + ψ2 gets broken.

We assume that nematic order selects, say, Q = Qx and
consider GL model for �x

1 and �x
2 . A preemptive instability

with respect to the relative phase of �x
1 and �x

2 would imply
that at some T = Tt > TCDW�x

1 and �x
2 form a bound state

with zero total momentum. In-between Tt and TCDW, δρ(r) =
jy(r) = 0, but ϒ ∝ 〈δρ(r)jy(r)〉 becomes nonzero. Under time
reversal, ϒ transforms into −ϒ , hence this order breaks Z2

time-reversal symmetry.

1. Direct computation

One way to see that a preemptive transition is possible
is to follow the same strategy as in the analysis of a spin-
current order in anisotropic triangular antiferromagnets [96]
and in the Heisenberg-Kitaev model on a hyperhoneycomb
lattice [97,98], introduce a “two-particle” collective variable
ϒ̄ = �x

1(�x
2)∗, and solve for the emergence of a two-particle

bound state instability in the same way as it is done for
superconductivity. For illustrative purposes, we consider the
effective action (86), although the actual calculation has to be
performed for the more generic action (89) as we will do below
using the HS approach. We rewrite (86) as

Seff = α
(∣∣�x

1

∣∣2 + ∣∣�x
2

∣∣2)+ β
(∣∣�x

1

∣∣4 + ∣∣�x
2

∣∣4)
+β
[
�x

1

(
�x

2

)∗][
�x

1

(
�x

2

)∗]+ β
[(

�x
1

)∗
�x

2

][(
�x

1

)∗
�x

2

]
+ 4β

[
�x

1

(
�x

2

)∗][
�

Q
2

(
�x

1

)∗]
. (130)

The ladder equation for ϒ̄ is presented in Fig. 15. There are
two terms in the right-hand side of this graphic equation: the
first contains a “direct” ϒ̄ϒ̄ interaction from the first term
in the second line of (130), and the second one contains the
interaction between ϒ̄ and ϒ̄∗. Both interactions are repulsive,
hence, no solution is possible if ϒ̄ is real. However, if we search
for a solution with a complex ϒ̄ , we obtain for infinitesimally
small ϒ̄

ϒ̄ = −βP (ϒ̄ + 4ϒ̄∗), (131)

where P > 0 stand for convolution of the propagators of
�

Q
1 and �

Q
2 fields. The only information about P relevant

to us at this stage is that it diverges at TCDW when both
propagators become massless. Hence, if Eq. (131) has a
nontrivial solution, the corresponding T is larger than TCDW. A
simple analysis of Eq. (131) shows that the solution does exist
if we set ϒ̄ to be purely imaginary, ϒ̄ = iϒ , because then the
combination ϒ̄ + 4ϒ̄∗ becomes equal to −3ϒ̄ , and the minus
sign compensates the overall minus sign in the right-hand
side of (131). We emphasize that this is possible because the
prefactor for ϒ̄ϒ̄∗ interaction term [the last term in (130)] is
four times larger than the direct ϒ̄ϒ̄ interaction term. That ϒ̄

is purely imaginary is entirely consistent with the fact that in
the mean-field approximation �

Q
1 is real and �

Q
2 is imaginary,

hence in below TCDW, ϒ̄ = �x
1(�x

2)∗ is also purely imaginary.
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2. Hubbard-Stratonovich approach

Another way to see the emergence of a preemptive transition
is to follow the same strategy as in the analysis of a preemptic
nematic order and apply HS transformation to the effective
action (89) by introducing collective variables conjugated to
quartic terms in Seff . For this purpose, it is convenient to rescale
�x

2 as �x
2 → �x

2(β1/β2)1/4, add the gradient terms, and rewrite
Eq. (89) as

Seff ∝ (α1 + q2)
∣∣�x

1

∣∣2+(ᾱ2+q2)
∣∣�x

2

∣∣2+γ1

2

(∣∣�x
1

∣∣2 + ∣∣�x
2

∣∣2)2
− γ2

2

(∣∣�x
1

∣∣2−∣∣�x
2

∣∣2)2−γ3

2

{
i
[(

�x
1

)∗
�x

2−�x
1

(
�x

2

)∗]}2
,

(132)

where α1 = a(T − Te), ᾱ2 = α2(β1/β2)1/2 = a(T − To),
where, we remind, Te and To are (near identical) mean-field
transition temperatures for even and odd in k components of
�x . Also,

γ1 = 1

2
β1 + 3

2
β3

(
β1

β2

)1/2

, γ2 = 3

2
β3

(
β1

β2

)1/2

− 1

2
β1,

γ3 = β3

(
β1

β2

)1/2

. (133)

The prefactors for the two q2 terms in (132) as well as the
prefactors a for α1 and ᾱ2 do not have to be equal, but this
complication does not lead to new physics and we neglect it.

There are three quartic terms in (132). Accordingly,
we introduce three HS bosonic fields ϒ , conjugated to
i[�x

1(�x
2)∗ − (�x

1)∗�x
2], �, conjugated to (|�x

1 |2 + |�x
2 |2),

and �1, conjugated to (|�x
1 |2 − |�x

2 |2). The expectation
value of each HS field is proportional to the corresponding
bilinear combination of �x

1 and �x
2 . The field � describes

Gaussian fluctuations of the modulus of a two-component
order parameter and its expectation value is obviously nonzero
at any T . The field �1 describes fluctuations of a relative
magnitude of |�x

1 |2 and |�x
2 |2. For α1 �= ᾱ2, order parameters

�x
1 and �x

2 are nonequal and 〈|�x
1 |2 − |�x

2 |2〉 is nonzero at
any T , hence the expectation value of �1 is also nonzero for
all T . The field ϒ is different from the other two because the
expectation value of 〈(�x

1)∗�x
2 − �x

1(�x
2)∗〉 and hence of ϒ

becomes nonzero only due to spontaneous symmetry breaking.
We assume, without going into details, that the model is

extended to large M , as in the case of a nematic transition, and
analyze the effective action for composite HS fields within the
saddle-point approximation. A similar HS approach has been
recently used to study TRS breaking in Fe pnictides [99–101].
We use, as before,

exp

[
−γ1

(∣∣�x
1

∣∣2 + ∣∣�x
2

∣∣2)2
2

]

=
∫

d�√
2πγ1

exp

(−�2

2γ1

)
exp
[
i�
(∣∣�x

1

∣∣2 + ∣∣�x
2

∣∣2)],
exp

[
−γ2

(∣∣�x
1

∣∣2 − ∣∣�x
2

∣∣2)2
2

]

=
∫

d�1√
2πγ2

exp

(
− �2

1

2γ2

)
exp
[
�1
(∣∣�x

1

∣∣2 − ∣∣�x
2

∣∣2)],
exp

{
γ3
{
i
[
�x

1

(
�x

2

)∗ − (�x
1

)∗
�x

2

]}2

2

}

=
∫

dϒ√
2πγ3

exp

(
− ϒ2

2γ3

)

× exp
{
iϒ
[
�x

1

(
�x

2

)∗ − (�x
1

)∗
�x

2

]}
. (134)

Substituting this transformation into (132) and performing
Gaussian integration over the fields �x

1 and �x
2 we obtain

the effective action in terms of collective variables ϒ , �, and
�1 in the form

Seff(ϒ,�,�1) = T

∫
q

{
ϒ2

2γ3
+ �2

2γ1
+ �2

1

2γ2

+ ln
[
(α1+q2−i�)2−�2

1−ϒ2
]}

, (135)

where
∫
q

= ∫ d2q

4π2 .
We analyze Seff(ϒ,�,�1) in the saddle-point approxima-

tion by solving the coupled set of saddle-point equations

ϒ = 2γ3

∫
q

ϒ

(α+ − i� + q2)2 − (α− + �1)2 − ϒ2
,

� = 2γ1

∫
q

(α+ − i� + q2)

(α+ − i� + q2)2 − (α− + �1)2 − ϒ2
, (136)

�1 = 2γ2

∫
q

(α− + �1)

(α+ − i� + q2)2 − (α− + �1)2 − ϒ2
,

where α+ = (α1 + ᾱ2)/2 = a[T − (Te + To)/2] ≈
a(T − TCDW), and α− = (ᾱ2 − α1)/2 = (a/2)(Te − To) > 0.

Our goal is to verify whether a solution with ϒ �= 0 emerges
before the primary CDW order sets in. In our 2D case, the
primary order sets in when α+ → −∞, hence, the emergence
of ϒ �= 0 at any finite α+ will be a preemptive instability.

Introducing � = i�0, r0 = α+ + �0, and r1 = α− + �1,
we rewrite the last two equations in (136) as

r0 = α+ + 2γ1

∫
q

r0

r2
0 − r2

1

,

(137)

r1 = α− + 2γ2

∫
q

r1

r2
0 − r2

1

.

Evaluating the integrals, we obtain

r0 = α+ + γ1

2π
ln

�√
r2

0 − r2
1

,

(138)

r1 = α− + γ2

2π
coth−1

(
r0

r1

)

(coth−1 x is arc-hyperbolic-cotangent of x).
The primary fields �x

1 and �x
2 get ordered when r2

0 − r2
1

becomes equal to zero. We see from (137) that this only
happens at α+ = −∞. This is specific to d = 2 and to systems
with M � 3 components, as we already discussed.

At high temperatures T � TCDW, α1 ≈ α2 > 0, hence,
α+ � α− > 0. In this range, the physically meaningful
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FIG. 16. (Color online) The behavior of r1 and r0 as a function
of α+.

solution of (138) is r0 ≈ α+, r1 ≈ α−. As temperature de-
creases, α+ and r0 decrease, while r1 increases. Still, according
to the first equation in (138), r0 remains larger than r1.
Eventually, α+ changes sign and becomes negative. The
quantities r0 and r1 evolve as shown in Fig. 16. At finite but
large negative α+, r0 and r1 are both large and Eqs. (138)
simplify to

r0 = α+ + γ1

2π
ln

�√
r2

0 − r2
1

,

(139)

r1 = γ2

2π
coth−1

(
r0

r1

)
.

From the second equation, we obtain r0 = r1 coth(2πr1/γ2).
Plugging this back to both sides of the first equation and
introducing r̄1 = 2πr1/γ2, we find, at |α+| � ln �,

r̄1 coth r̄1 + γ1

γ2
ln

r̄1

sinh r̄1
= 2π

γ2
α+. (140)

Solving this equation, we obtain

r1 ≈ |α+| γ2

γ1 − γ2
. (141)

Note that because r0 and r1 are close to each other at large
|α+|, the susceptibility of the primary fields χ ∝ 1/(r2

0 − r2
1 )

is strongly enhanced. Still, r2
0 > r2

1 , i.e., the primary order does
not develop.

We now look at the first equation in (136). Evaluating the
integral, we find that the solution with infinitesimally small ϒ

emerges when

γ3

2π
coth−1

(
r0

r1

)
= r1. (142)

Using the second equation from (138), we rewrite this as the
condition on a critical r1,c,

r1,c = α−

(
γ3

γ3 − γ2

)
. (143)

This critical r1,c is some positive number because α− > 0 and
γ3 > γ2 [see Eq. (97), γ3 > γ2 is equivalent to Jβ1Jβ2 > J 2

β3
].

We next use the fact that r1 monotonically increases as the

temperature decreases. Hence, r1 must reach r1,c at some finite
T = Tt , and below this temperature the expectation value of ϒ

becomes nonzero. A nonzero ϒ = ±ϒ0 in turn gives rise to a
nonzero value of the composite order parameter 〈�x

1(�x
2)∗〉 ∝

±iϒ0.
In the consideration above, we used the fact that α− > 0,

in which case the expectation value of �1 is never zero [see
Eq. (136)], and only ϒ field acquires a nonzero value due to
spontaneous symmetry breaking. In general, α− ∝ (Te − To)
is nonzero and positive. However, we found earlier that it is
quite small because both Te and To are very close to the original
TCDW, which, we remind, is a mean-field CDW transition
temperature in the “hot spot” approximation, when �x

1 and
�x

2 are equivalent fields. If we set Te = To = TCDW, i.e., set
α− = 0, we immediately find from (136) that the field �1 can
also order only due to symmetry breaking. The self-consistent
equations for �1 and ϒ now have equivalent kernels, and
which of the two acquires a nonzero value depends on the ratio
γ3γ2. Like we just said, in our case, γ3 > γ2, hence ϒ field
orders under proper conditions, but �1 = 0. In this situation,
only the first two equations (136) matter, and solving them we
obtain that ϒ acquires a nonzero value when the two conditions
are met:

r0 = α+ + γ3

2π
ln

�

r0
, 1 = γ3

2π

1

r0
. (144)

Solving this set, we obtain that, like in a more general case, a
nonzero ϒ emerges at a negative but still finite

α+ = − γ1

2π

(
ln

2π�

γ3
− γ3

γ1

)
. (145)

At larger negative α+, i.e., at smaller T , a nonzero ϒ = ±ϒ0

gives rise to a nonzero value of the composite order parameter
〈�x

1(�x
2)∗〉 ∝ ±iϒ0.

When γ3 = γ2 or, equivalently, β3 = β1β2, the equations for
ϒ and �1 are identical, and one can immediately make sure
that ϒ and �1 in (136) can be cast as “real” and “imaginary”

components of the “supervector” � =
√

ϒ2 + �2
1e

iθ . In the
HS analysis, the magnitude of � becomes nonzero at some
finite T , however, neither ϒ nor �1 order at any finite T

because of fluctuations between the directions of ϒ and of �1.
In other words, in this situation, there will be no preemptive
order which would break Z2 TR symmetry. This is entirely
consistent with the fact that without distinction between
different α and β, the effective action decouples between �

Q
k

and �
Q
−k , such that both orders appear simultaneously at T =

TCDW. This last result shows that nonequivalence of βi terms,
namely, the inequality β1β2 > β2

3 , is the necessary condition
for the existence of a preemptive state with composite order
which breaks TRS.

3. Preemptive order for state II

Before we proceed with the phase diagram, we briefly
discuss potential preemptive orders for state II. As we found
in the previous section, the CDW transitions into both versions
of state II are first order. In this situation, the analysis within
the GL model is meaningless. One can still argue, though,
that because order parameter manifold in the CDW-ordered
state has additional Z2 component (either Qx/Qy or ±π/2
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for the relative phase between �1 and �2, depending on the
realization of state II), there may be a preemptive transition
into a state with a composite order parameter. However, to
investigate this possibility, one has to go beyond GL expansion
in powers of �. We will not pursue this issue further.

VII. PHASE DIAGRAM

For the rest of the paper, we focus on state I, for which phase
transitions are continuous ones. To construct the phase diagram
for state I, we first consider how TCDW(ξ ) evolves when hole
doping increases and magnetic correlation length decreases.
We found that at a finite ξ , the scale v2

F ξ−2/ḡ ∼ ḡ/λ2 serves
as the lower-energy cutoff for the logarithm, i.e., T in (16) gets
replaced by, roughly, (T 2 + ḡ2/λ4)1/2. As the consequence,
TCDW(ξ ) decreases with increasing ξ and vanishes when
ξ−1

cr ∼ ḡ/vF , i.e., when the dimensionless coupling constant
λ ∼ 1. We show this behavior in Fig. 17(b). The vanishing
of TCDW(ξcr) sets up a charge QCP at some distance away
from a magnetic QCP. The temperature Tn at which composite
nematic order sets in, and the temperature Tt at which the
preemptive TRSB order sets in, also gets smaller as ξ increases.
We analyzed the emergence of the composite and CDW orders
at T = 0 using the same approach as in Ref. [71] [this requires
one to include the dynamical term into αq in Eq. (135)] and
found that the three lines Tn, Tt , and TCDW all terminate near the
CDW quantum-critical point QCP 2, which actually becomes

FIG. 17. (Color online) Phase diagram for state I. (a), (b) The
behavior of superconducting TSC (a) and the onset temperatures for
charge order Tn, Tt , and TCDW (b), when superconductivity and charge
order are treated independent of each other. Tn is the preemptive
nematic transition temperature, and Tt is the temperature below
which a q = 0 order emerges, breaking time-reversal symmetry.
(c) The full phase diagram, which includes the competition between
superconductivity and charge order. QCP1 and QCP2 are quantum-
critical points towards SDW and CDW order, respectively.

the point of weak first-order transition [71]. It is possible,
although not proven yet, that a preemptive order survives down
to T = 0, in which case QCP 2 splits into two or even three
quantum-critical points. We show the behavior of Tn(ξ ), Tt (ξ ),
and TCDW(ξ ) in Fig. 17(b).

The behavior of TCDW(ξ ) is different from that of supercon-
ducting TSC(ξ ). The latter does not vanish at a finite ξ and just
interpolates between quantum-critical form TSC ∼ ω0 at large
ξ and BCS form TSC ∝ ω0e

−1/λ at smaller ξ , when λ becomes
a small parameter. This behavior of superconducting TSC has
been studied in Ref. [37] and we also discuss it in detail in
Appendix F.

Figures 17(a) and 17(b) show the onset temperatures for
superconducting order and for CDW and composite orders,
when the CDW and SC are considered independent of each
other. In reality, charge and superconducting orders compete
for hot fermions on the FS, and the competition implies that the
order, which sets up first, tends to suppress the other one. In the
spin-fluctuation approach, the value of TSC is larger than TCDW,
but the two are of the same order and comparable in magnitude.
The values of Tn and Tt are larger than TCDW, and we assume
that at large ξ , we have Tn,Tt > TSC, i.e., the composite charge
orders set up first upon the lowering of T . The composite order
suppresses TSC and gives rise to a nonmonotonic behavior of
TSC(ξ ) already in the paramagnetic phase. At the same time, it
increases the correlation length for the primary CDW order
parameter [66], i.e., the composite order tends to increase
TCDW. At larger ξ , TCDW then well may become larger than
the reduced TSC, in which case charge order develops prior
to superconductivity. At the lowest T , our calculations in
Sec. IV show that CDW and superconducting orders coexist.
The phase diagram for state I is shown in Fig. 17(c). It has a
number of features consistent with the experimental data on
hole-doped cuprates. Namely, the theoretical phase diagram
contains regions of SDW and d-wave superconductivity, and
also a region with a nematic order, a region where time-reversal
symmetry is broken, and a region of a true CDW order.
The CDW order at T = 0 coexists with superconductivity
and terminates at a CDW quantum-critical point QCP 2,
distinct from the magnetic quantum-critical point QCP 1.
It is tempting to associate the Tn line with the onset of
nematic order seen in neutron scattering [1–3,5] and in Nernst
experiments [102], associate Tt line with the onset temperature
for the Kerr effect [6], intra-unit-cell magnetic order [7,8], the
magnetoelectric birefringence [9], and associate TCDW with
the onset temperature of CDW order [10–13,16–18], perhaps
pinned by impurities [14,15]. In our model calculations,
the nematic transition temperature Tn is larger than the
onset temperature Tt for time-reversal symmetry breaking. In
general, the two temperatures are comparable, and the position
of Tn and Tt lines on the phase diagram may depend on the
type of material.

The association of Tt with these three experiments requires
care because, as we said in the Introduction, Kerr effect does
not change sign in a magnetic field over 10 T [6] and linear
birefringence is often associated with the breaking of a mirror
symmetry rather than with breaking of time reversal [9]. To
address this issue in more detail, one needs to study 3D
systems, particularly the arrangements of the charge currents
between neighboring layers.
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VIII. COMPARISON WITH ARPES DATA

In this section, we discuss in some detail the comparison
between our theory and ARPES data. The data on the fermionic
spectral function in the pseudogap region all show [21,77,103–
106] that below a certain T > TSC, the spectral weight in the
antinodal regions transforms from the FS to high frequencies,
and the FS looks like a set of four disconnected Fermi arcs.
We show in the following that this is an expected behavior
for a system with strong CDW fluctuations, but without a true
CDW order.

A generic charge order with an ordering momentum
Q introduces a new term H ′ = �

Q
k c

†
k+Qck−Q + H.c. into

the Hamiltonian. Then, fermions with momenta k ± Q,k ±
3Q,k ± 5Q, . . . all become coupled. For commensurate Q =
πM/(N ), where M and N are integers, the “chain” of
coupled momenta gets closed when after N steps, for in-
commensurate Q it is not closed, but for practical purposes
one can approximate Q by a close commensurate value.
To diagonalize such a Hamiltonian, one has to solve an
N -dimensional matrix equation [64]. The energy eigenstates
with eigenvalues E1,E2, . . . ,EN are linear combinations of
the original fermions⎛
⎜⎜⎝

d1

d2
...

dN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u11 u12 . . . u1N

u21 u22 . . . u2N

...
...

. . .
...

uN1 uN2 . . . uNN

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ck

ck−2Q

...
ck−2(N−1)Q

⎞
⎟⎟⎠ . (146)

The ARPES spectral function measures the correlator of c

fermions and contains contributions from all eigenstates, with
different weights

I (ω,k) ∝ Im[〈ck(ω)c†k(ω)〉]

= Im

(∑
i

u2
i1〈di(ω)d†

i (ω)〉
)

= Im

(∑
i

u2
i1

ω − Ei − i�

)
. (147)

We keep the damping term � finite to model the state in which
CDW fluctuations are well developed but a true CDW order
does not yet occur [107].

We use this procedure to obtain the spectral function
I (ω,k) at ω = 0, as a function of k for “damped” stripe
CDW order with either Q = Qx or Q = Qy . The position
of the peak in this spectral function yields the location of
the reconstructed FS in the CDW-ordered state, a � gives
a finite width to the peak. In a macroscopic system, there
exist domains with stripes in both directions, and we assume
that the measured ARPES intensity is the sum of I (ω,k) for
Q = Qx and Qy .

We show our result for the photoemission intensity I (0,k)
in Fig. 18. The Fermi arcs, terminating at hot spots, are clearly
visible. The actual FS’s in the CDW-ordered state indeed
cannot terminate inside the BZ, but other pieces of the FS have
small spectral weights and are washed out by a finite �. In the
calculations we used the dispersion from Ref. [21]: ε(kx,ky) =
−2t(cos kx + cos ky) − 4t ′(cos kx cos ky) − 2t ′′(cos 2kx +
cos 2ky) − 4t ′′′(cos 2kx cos ky + cos kx cos 2ky) − ε0, with

FIG. 18. (Color online) The theoretical spectral function at ω =
0 for a state with strong CDW fluctuations, which we model by
introducing CDW orders �x and �y , but keeping a finite lifetime
of fermions on the FS. The Fermi arcs, terminating at hot spots, are
clearly visible.

t = 0.22 eV, t ′ = −0.034 315 eV, t ′′ = 0.035 977 eV,
t ′′′ = −0.007 163 7 eV, and we took ε0 = −0.243 27 eV,
slightly different from −0.240 577 eV in [21], to get a
commensurate 2Q = 0.2π instead of 2Q ≈ 0.19π in [21].
We then used N = 10,M = 1, and set � = 50 meV.

The appearance of the arcs can be understood analytically.
Consider Q = Qy and focus on the region around hot spot 1 in
Fig. 8, with momenta near (π − Q,Q). One can easily verify
that the most relevant momenta involved in CDW-induced
mixing are (π − Q,Q) and (π − Q, − Q) since for the other
momenta in (146), either the gap is smaller or the states
are away from the FS. The effective 2 × 2 Hamiltonian
H = H0 + H ′ can then be diagonalized by the standard
Bogoliubov transformation. Defining c1 = ck , c2 = ck−2Q,
ε1 = εk , ε2 = εk−2Q, and � = |�Q

k0
|, with k0 = (π − Q,0) we

obtain

(
d+
d−

)
=
(

u v

−v u

)(
c1

c2

)
, (148)

where

u2 = 1

2

[
1 + ε1 − ε2√

(ε1 − ε2)2 + 4�2

]
,

(149)

v2 = 1

2

[
1 − ε1 − ε2√

(ε1 − ε2)2 + 4�2

]
.
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FIG. 19. (Color online) The position of the peak in spectral
function at ω = 0 around the hot spot 1 (red line). The saturation
of color indicates the spectral weight of the peak. The spectrum to the
right of the hot spot 1 is pushed out of BZ boundary by large enough
CDW order parameter � used in the plot.

The energy eigenvalues are

E± = ε1 + ε2

2
±
√(

ε1 − ε2

2

)2

+ �2. (150)

The ARPES spectral function at ω = 0 is

I (ω = 0,k) ∝ Im(〈c1c
†
1〉) = Im

(
u2

E+ − i�
+ v2

E− − i�

)
.

(151)

The peaks in the momentum distribution curves are at E± =
0, which correspond to ε1ε2 = �2. This condition defines a
hyperbola in the momentum space around the hot spot 1, as
shown in Fig. 19. The solid and dashed lines in this figure
are the original FS εk = 0 and the “shadow” FS εk−2Q = 0.
At small �, there is another part of the FS, to the right of
point 1 in this figure, but for large enough �, used in the plot,
this part is pushed out the BZ boundary. The spectral weight
along the red line in Fig. 19 depends on coherence factors and
is much larger for the part which is close to the original FS
than for the part close to the shadow FS. As a result, the only
visible spectral peak at ω = 0 in the momentum space is along
the former FS εk = 0, and it effectively terminates at the hot
spot, as in Fig. 19. The contribution from the domain with
Q = Qx is obtained in a similar manner, and the full result is
the spectral function with the largest intensity at four Fermi
arcs, as in Fig. 18.

The Fermi arcs in the disordered CDW state and the Fermi
pocket in the ordered CDW state, whose position and size are
consistent with quantum oscillation measurements [19,108],
have been recently obtained in the analysis [109], similar to

the one we presented here, but extended to the full Brillouin
zone (BZ).

We next consider the dispersion along the BZ boundary
in the antinodal (AN) regions. Experiments [21] performed
on Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (Pb-Bi2201) have detected
two prominent features: (1) upon cooling below about the
same temperature where arcs appear, the measured dispersion
evolves into a band which comes towards a FS and then
moves away from the FS, (2) the momentum, at which the
reconstructed dispersion has a minimum, shifts from kF to a
larger value kG, (3) once the system is further cooled down
below TSC, a weak, “shoulderlike” peak appears in the energy
distribution curve at the binding energy ω ∼ 25 meV. We find
that all these features can be accounted for within our theory.

Because the features are at finite energy, we can safely
neglect � and compute ARPES dispersion assuming a true
CDW order. However, we still need to consider two domains:
domain I with CDW order with Q = Qy and domain II with
CDW order with Q = Qx . For simplicity, we will assume
both CDW gaps can be approximated by constants, in which
case �x = μ�y , with μ > 1. Because the typical energy
scale for the fermionic dispersion in the AN region is much
smaller than the bandwidth, we again can neglect high-energy
electronic states. A simple analysis shows that for low-energy
consideration it is sufficient to include three states with
momenta k,k + 2Qy,x,k − 2Qy,x . We show this in Figs. 20(a)
and 20(b).

In domain I, the two states with momenta k and k + 2Qy

cross at a small positive energy δε at kx = kG = Q, which
is larger than the original kF simply because the distance
between the two neighboring hot spots (one on top of the other)
is larger than the distance between the two points (kF ,π ) and
(−kF ,π ), at which the FS crosses the BZ boundary. The energy
of the state with momentum k − 2Qy is much larger in this
region, so we can further reduce the three-state system to a
two-state system. The energy eigenvalues at the crossing point
are E1,2 = δε ± �y . Once �y exceeds δε, one of the energies
E1 = δε − �y becomes negative, and the corresponding state
becomes visible by ARPES. Evaluating E1(kx) at different kx ,
we find that E1(kx) initially follows the original dispersion and
moves towards zero, but deviates from the bare dispersion as
kx approaches kF , passes through a minimum at some finite
negative energy, and then moves away from the Fermi level.
We show this in Fig. 20(a). The minimum of the reconstructed
dispersion is right at kG > kF , where the two unreconstructed
states with momenta k and k + 2Qy cross. That the minimum
of the reconstructed dispersion is at momentum larger than
the original kF is consistent with the experiment [21]. One can
easily make sure that the shift of the minimum to kG > kF is the
consequence of the fact that the momentum of CDW order is
along Qy or Qx . If the CDW order parameter was with Q along
the zone diagonal, the result would be the opposite: the position
of the local minimum would shift to a smaller momentum.
This is yet another indication that CDW order does emerge
with Q = (2Q,0) or (0,2Q) rather than with the diagonal
(2Q, ± 2Q). Note in this regard that kG would remain equal
to kF if the reconstruction of the fermionic dispersion was due
to precursors of superconductivity. We used the experimental
value of δε = 5 meV, and set �y = 35 meV to match the
energy of the local minima at kG at ω = 30 meV, as in [21].
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FIG. 20. (Color online) Interpretation of the ARPES data around antinodal areas. (a) Contribution from the domain I with Q = Qy . (b)
Contribution from the domain II with Q = Qx . (c) The combined spectral peaks from both domains seen by ARPES.

In domain II, with CDW order with Qx , two out of three
states are degenerate, and we define επ+2Q,ky

= επ−2Q,ky
≡

εb(ky). We also define εa(ky) = επ,ky
. Solving the 3 × 3 matrix

equation on eigenvalues and eigenfunctions, we find that the
dominant contribution to the spectral function comes from the
peak at E = E11 = (εa + εb)/2 +√[(εa − εb)/2]2 + 2�2

x >

εa . The value of E11 is positive for the set of parameters which
we used. Because ARPES can only detect filled states, the
peak at E = E11 > 0 is invisible to ARPES. In other words,
in the normal state, the full dispersion, measured by ARPES,
comes from domain I.

Once superconductivity sets in at TSC, electron and hole
states get mixed up, and the system develops a shadow

image of E1 at a negative energy, at −
√

E2
11 + �2

SC. The
superconducting gap �SC is rather small in Pb-Bi2201, hence
the image is approximately at −E11. We show this in Fig. 20(b).
The emergence of the new band below TSC is again consistent
with the experiment [21]. To match the measured position of
the new band at around 25 meV, we use experimental values
of εa(ky = 0) = −38 meV, εb(ky = 0) = −59 meV, and set
�x = 51 meV, larger than �y = 35 meV. This is consistent
with theoretical �x = μ�y and μ > 1. In Fig. 20(c), we show
the combined peaks from both domains. This is our theoretical
result for the spectral function for comparison with ARPES.
In our view, the theoretical spectral function is quite consistent
with the data.

The above analysis is valid in the vicinity of hot spots.
More efforts are needed to see whether our CDW order is
compatible with ARPES along the cuts away from hot regions,

particularly near zone diagonals. The data in these regions
have been successfully fitted by the theory based on the pair-
density-wave scenario [110]. To compare with the data within
our CDW scenario, one needs to go beyond what we did so far
and to solve for the CDW order parameter outside hot regions.
This would require full model calculations on a lattice.

IX. CONCLUSIONS

The goal of this paper was twofold. First, to understand
whether the spin-fluctuation approach, which describes d-
wave superconductivity and non-Fermi-liquid physics in the
normal state, also allows one to understand the development
of charge order in hole-doped cuprates. Second, to study the
structure of charge order parameter and potential preemptive
instabilities which break discrete symmetries but leave a
continuous U (1) phase symmetry intact. We argued that a
magnetically mediated interaction gives rise to charge order
with momenta Qx = (2Q,0) and Qy = (0,2Q), as seen in
the experiments. The critical temperature for the onset of
the charge order TCDW is comparable to superconducting
TSC at large values of magnetic correlation length ξ and the
ratio TCDW/TSC tends to one at ξ = ∞. At the same time,
as ξ decreases with increasing doping, the ratio TCDW/TSC

decreases, and at some finite doping TCDW vanishes, setting up
the second quantum-critical point at some distance away from
the magnetic one.

Our most significant observation is that the CDW order
parameter �

Q
k with a given Q, say Qy , has two components,
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one (�Q
1 ) is an even function of the center-of-mass momentum

k, another (�Q
2 ), is an odd function of k. In real space, these

two components describe, respectively, an incommensurate
site and bond density variation δρ(r) ∝ cos 2Qy, and an
incommensurate current jx(r) ∝ sin 2Qy. We derived and
analyzed the full GL functional for four CDW components
�

Qx

1 ,�
Qx

2 , �
Qy

1 ,�
Qy

2 first in the mean-field approximation and
then beyond mean field. Within mean field, we found two CDW
states: state I and state II. Which of the two states is realized
depends on the interplay between two system parameters,
which are comparable to each other and which we only know
approximately. The state I emerges via a continuous transition
and is of stripe type: nonzero CDW components have either
Q = Qx or Qy . Both �1 and �2 are nonzero, and the relative
phase between these two U (1) fields is locked at ±π/2. The
full order parameter manifold for state I is U (1) × Z2 × Z2

where one Z2 is associated with the choice between Qx and
Qy , another Z2 with the choice between π/2 and −π/2 for
phase locking, and U (1) is the symmetry with respect to
the common phase of �1 and �2. To obtain a phase with
this order parameter manifold, it was essential to include the
center-of-mass momentum dependence of �

Q
k for k near the

midpoint between neighboring hot spots.
For state II, the CDW order emerges via a strong first-order

transition, and in the ordered state |�Qx

1 | = |�Qy

2 | and |�Qy

1 | =
|�Qx

2 |. There are two realizations of state II and the choice is
dictated by the interplay between parameters which become
nonequal only due to k dependence of �

Q
k . One realization

is the checkerboard order (all four �’s are nonzero and equal
by magnitude), another is a stripe state with only two nonzero
components, say, �Qx

1 and �
Qy

2 . For both realizations, the order
parameter manifold is U (1) × Z2, where in the first realization
Z2 is associated with the phase locking at ±π/2 between �1

and �2 (same locking for Qx and Qy components), and in the
second Z2 is associated with the symmetry between choosing
�1 with Qx or Qy .

We focused on the state I because it emerges via a
continuous transition and analyzed the GL action beyond
mean field. Our goal was to understand whether the two
Z2 Ising symmetries can be broken at higher temperatures
than TCDW at which U (1) symmetry gets broken. We used
the HS approach, introduced composite fields conjugated to
composite order parameters, which order if the corresponding
Z2 symmetry gets broken, integrated over the primary � fields,
and analyzed the resulting effective action for the composite
fields. We found that each of the Z2 degrees of freedom gets
broken before a true CDW order sets in. We found that at a
highest Tn, a nematic order sets in, i.e., the system selects Qx

or Qy , while U (1) phase symmetry remains intact. Then, at
Tt � Tn, another Z2 symmetry gets broken, and the relative
phase between �1 and �2 gets locked at π/2 or −π/2, while
U (1) symmetry of the common phase of �1 and �2 remains
unbroken. In the real-space picture, below Tt both density and
current components fluctuate, such that 〈δρ(r)〉 = 〈jx(r)〉 = 0,
however, their fluctuations are correlated, and 〈δρ(r)jx(r)〉
is nonzero. Such an order breaks time-reversal symmetry.
Finally, at TCDW < Tt , U (1) symmetry gets broken and a true
CDW order sets in.

The existence of the preemptive order is the crucial
element in our scenario. Without it, CDW instability would
be subleading to d-wave superconductivity and also to bond
order with diagonal Qd = (2Q, ± 2Q) as in the mean-field
approximation both have slightly larger onset temperatures
than TCDW (TSC � Tbo � TCDW). However, the superconduct-
ing order parameter and order parameter for bond charge
order do not break C4 lattice rotational symmetry and have
only one, even in k, component. Accordingly, there are no
preemptive instabilities for these orders. Because TSC, Tbo,
and TCDW are close to each other at large ξ and Tn,Tt > TCDW,
it is likely that they also exceed TSC and Tbo, in which case
the first instability upon lowering of T is into a state with
a composite CDW order. Once composite order forms, it
reconstructs fermionic excitations and tends to reduce the
onset temperatures for superconductivity/bond order because
composite charge order and superconductivity/bond order
compete for the FS. At the same time, a composite CDW
order increases the susceptibility for the primary CDW fields
and hence increases TCDW, much like a spin-nematic order
in Fe pnictides increases the Néel temperature of SDW
order [66]. An increase of Tn and Tt compared to the onset
of superconductivity/bond order becomes even stronger once
we include into consideration 2D fluctuation effects because
near-degenerate d-wave superconductivity and bond order
form a weakly anisotropic O(4) model, in which TSC is
strongly reduced by fluctuations from the O(4) manifold.

The phase diagram resulting from our analysis is shown
in Fig. 17(c). It has numerous features consistent with the
experiments on hole-doped cuprates. We performed a more
detailed comparison with ARPES studies and found good
quantitative agreement with the data.

Overall, we believe that the most significant result of
our theory is that it shows that pseudogap physics can be
well understood within the same spin-fermion model which
was earlier shown to yield d-wave superconductivity and
non-Fermi-liquid physics. We believe that, with our result,
the spin-fermion model reemerges as the strong candidate for
the theoretical model for the cuprates.

Several issues are not covered by this analysis and are
left for further study. One issue is the interplay between our
spin-fluctuation scenario and the one based on microscopic
analysis of charge fluctuations [28]. Another issue, specific
to our model, is to what extent TCDW for a true CDW order
and Tn,Tt for preemptive transitions vary between different
families of hole-doped cuprates. The third issue is the detailed
analysis of the relation between our composite charge order
which breaks time-reversal symmetry, and Kerr effect [6] and
neutron scattering results from Refs. [7,8]. The fourth issue is
the interplay between our incommensurate charge order and
incommensurate pair-density-wave (PDW) order discussed in
Refs. [75,76,110]. The two orders are “cousins” in the same
way as SC and diagonal bond order are. Whether fluctuations
between our CDW order and PDW order further complicate
the phase diagram remains to be seen.

Note added. Recently, the phenomenological GL model
for the PDW order parameter has been considered in a
preprint by Agterberg and Kashuap [111]. They introduced two
order parameters �̄Q̄

p = c
†
p+Q̄,α

(iσ y

αβ)c†−p+Q̄,β
with Q̄ along
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X and Y directions in momentum space, and argued that
�̄Q̄

p and �̄−Q̄
p are not necessarily the same. The “cousins”

CDW and PDW order parameters transform into each other
by changing one c into c† and replacing spin dependence
δαβ for CDW into iσ

y

αβ for PDW, but without changing the

momentum. A cousin of our CDW order parameter �
Q
k =

c
†
k+Q,αδαβck−Q,β with the center-of-mass momentum k is PDW

order c
†
k+Q,α(iσ y

αβ)c†k−Q,β ≡ �̄
Q̄
Q with the total momentum

2Q̄ = 2k. The orders �̄Q̄
p and �̄−Q̄

p are then cousins of our �
Q
k

and �
Q
−k , and the nonequivalence of �̄Q̄

p and �̄−Q̄
p explored

in [111] is the PDW analog of the nonequivalence between
�

Q
k and �

Q
−k , which we explored in this paper. Agterberg

and Kashuap also identified an additional Z2 component of
the order parameter manifold, associated with time-reversal
symmetry, and argued that Z2 can be broken at a higher T than
the one at which a true PDW order develops.
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APPENDIX A: GAP EQUATIONS FOR MOMENTUM- AND
FREQUENCY-DEPENDENT CDW ORDER PARAMETERS

In this appendix, we present the full linearized equa-
tions for the CDW order parameters as integral equations
in momentum and frequency. We measure frequency and
temperature in units of ω0: �∗

m = �m/ω0, �∗ = �/ω0,
T ∗ = T/ω0, and measure momentum in units of (γω0)1/2 =
3ḡ/(2πvF ): x∗ = x/(γω0)1/2,y∗ = y/(γω0)1/2. We recall that
ω0 = 9ḡ/(16π )[(v2

y − v2
x)/v2

F ], where ḡ is the spin-fermion

coupling. We keep the momentum dependence of �
Q
k (�m)

along the FS and neglect the momentum dependence trans-
verse to the FS. We consider the FS geometry as in Fig. 1
and, to avoid too lengthy formulas, consider the limit vx = 0
when Fermi velocities at hot spots 1 and 2 are antiparallel and
the ones at hot spots 3 and 4 are parallel. In this limit, the
momentum dependence along the FS is along the x axis for
�

Q
k0

and along the y axis for �
Q
kπ

. Integrating over momentum
transverse to the FS, we obtain

�
Q
k0

(�∗
m,x∗) = −3T ∗

8

∑
|�∗

m′ |<1

∫ ∞

0
dy∗ �

Q
kπ

(�∗
m′ ,y∗)√

(y∗)2 + |�∗
m − �∗

m′ |

[
x∗sgn(�∗

m′ ) + i
(√

(y∗)2 + |�∗
m − �∗

m′ | + 3
8 |�̃∗(�∗

m′ ,y∗)|)]2[
(x∗)2 + (√(y∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,y∗)|)2]2 ,

(A1)

�
Q
kπ

(�∗
m,y∗) = −T ∗ ∑

|�∗
m′ |<1

∫ ∞

0
dx∗ �

Q
k0

(�∗
m′ ,x∗)√

(x∗)2 + |�∗
m − �∗

m′ |

√
(x∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,x∗)|

|�̃∗(�∗
m′ ,x∗)|[(y∗)2 + (√(x∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,x∗)|)2] ,

(A2)

where �̃∗ = �∗
m + �∗ and G−1(k,ω) = i�̃(k,ω) − εk . For the self-energy, we obtain

�∗(�∗
m′ ,x

∗) = T ∗ ∑
|�∗

m′ |<ω0

∫ ∞

0
dy∗ 1√

(y∗)2 + |�m − �m′ |
sgn(�∗

m′)
(√

(y∗)2 + |�m − �m′ + 3
8 |�̃∗(�m′ ,y∗)|)+ ix

(x∗)2 + (√(y∗)2 + |�m − �m′ | + 3
8 |�̃∗(�m′ ,y∗)|)2 . (A3)

The ix term numerator is even in �∗
m′ and renormalizes the Fermi velocity. We follow the standard procedure and incorporate

this term into the bare dispersion. The expression for �∗(�∗
m′ ,y∗) is obtained from (A3) by interchanging x∗ and y∗.

For large �∗(�∗
m′ ,x∗) ∝ (T ln ξ )1/2, the dependence on momentum in the self-energy and in the CDW order parameters can

be neglected, i.e., �Q
k0

(�∗
m,x∗) ≈ �

Q
k0

(�∗
m), �Q

kπ
(�∗

m,y∗) ≈ �
Q
kπ

(�∗
m), �∗(�∗

m′ ,x∗) ≈ �∗(�∗
m′). In this approximation, Eqs. (A1)–

(A3) reduce to Eqs. (3)–(5) from the main text. In general, however, the gap equations are integral equations in both momentum
and frequency. Moreover, at deviations from hot spots 1 and 2 along the FS, �

Q
k0,x∗ acquires an imaginary part, which is also

odd in frequency: �
Q
k0

(�∗
m,x∗) = �0,a + i�0,bx

∗sgnω, where �0,a and �0,b are even functions of momentum and frequency. To

match this behavior, �
Q
kπ

also acquires an imaginary part, odd in frequency, but at deviations from hot spots 3 and 4 transverse

to the FS: �
Q
kπ

(�∗
m,x∗,y∗) = �π,a + i�π,bx

∗sgnω, where �π,a and �π,b are again even functions of momentum and frequency.
In the same approximation, the linearized equation for d-wave superconducting order parameter �SC(�∗

m,y∗) is

�SC(�∗
m,y∗) = T ∗ ∑

|�∗
m′ |<1

∫ ∞

0
dx∗ �SC(�∗

m′ ,x∗)√
(x∗)2 + |�∗

m − �∗
m′ |

√
(x∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,x∗)|

|�̃∗(�∗
m′ ,x∗)|[(y∗)2 + (√(x∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,x∗)|)2] .

(A4)
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The equation for rescaled gap function �̄SC(�∗
m) = �SC(�∗

m)/�∗(�∗
m) for the most generic case, when (i) the gap depends on

momentum along the FS and (ii) fermionic self-energy is not assumed to be larger than other terms in the pairing kernel, is

�̄(�∗
m,x∗) = T ∗ ∑

|�∗
m′ |<1

∫ ∞

0

dy∗√
(y∗)2 + |�∗

m − �∗
m′ |

[
�̄(�∗

m′ ,y∗)

|�m′ | − �̄(�∗
m,x∗)

�m

�∗
m′

|�m′ |
]

×
√

(y∗)2 + |�∗
m − �∗

m′ | + 3
8 |�̃∗(�∗

m′ ,y∗)|[
(x∗)2 + (√(y∗)2 + |�∗

m − �∗
m′ | + 3

8 |�̃∗(�∗
m′ ,y∗)|)2]2 . (A5)

We see that the term with zero bosonic Matsubara does not
cancel out completely. However, when �̃∗ is larger than other
terms, the dependence of �̄(�∗

m,x∗) on x∗ and of �̄(�∗
m,y∗)

on y∗ become weak, and Eq. (A5) reduces to Eq. (33) in the
main text.

APPENDIX B: EVALUATION OF THE TERMS I1–I4

In this appendix, we evaluate the terms I1–I4, which
we need to decide whether the system develops stripe or
checkerboard order. Each Ii is a convolution of four fermionic
propagators:

I1 ≡ −1

2

∫
G2

1G
2
2,

I2 ≡ −1

2

∫
G2

1G
2
5,

(B1)

I3 ≡ −
∫

G1G
2
5G6,

I4 ≡ −
∫

G1G2G5G6.

The abbreviations for the Green’s function are G1 ≡
G[ωm,k1 + (kx,ky)], etc., where 1,2 and 5,6 label hot spots in
Fig. 1. The integrations are performed over running frequency
ωm and momenta kx and ky . We use Green’s functions for free
fermions and expand to linear order near hot spots. The Fermi
velocities at relevant hot spots are vF,k1 = (vx,vy), vF,k2 =
(vx, −vy), vF,k5 = (−vx,vy), and vF,k6 = (−vx, − vy).

For I1 we obtain

I1 = −T

2

∑
m

∫ �

−�

dkxdky

(2π )2

[
1

iωm − (vxkx + vyky)

]2

×
[

1

iωm − (vxkx − vyky)

]2

. (B2)

We keep the upper cutoff � in the momentum integrals, i.e.,
integrate over a finite momentum range around hot spots. We
will take the limits vx � vy and vx� � T . The ratio vx�/T

can, in principle, be arbitrary for T ∼ TCDW, but is definitely
large for T → 0. We will keep vx� � T in our calculations.

Introducing the new parameters

x = vxkx, y = vyky, �x = vx�, �y = vy� � �x,

(B3)

we rewrite I1 as

I1 = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy

(
1

y + x − iωm

)2

×
(

1

y − x + iωm

)2

. (B4)

We separate the y integral
∫ �y

−�y
dy into I1 = ∫∞

−∞ dy −∫
|y|>�y

dy ≡ I1a − I1b. For I1a we obtain

I1a = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ ∞

−∞
dy

(
1

y + x − iωm

)2

×
(

1

y − x + iωm

)2

= − iT

16πvxvy

∑
m

sgn(ωm)
∫ �x

−�x

dx

(
1

x − iωm

)3

= − iT

16πvxvy

∑
m

∫ �x

−�x

dx

(
1

x − i|ωm|
)3

= − iT

32πvxvy

∑
m

[(
1

|ωm| + i�x

)2

−
(

1

|ωm| − i�x

)2
]

≈ − i

64π2vxvy

∫
dω

[(
1

|ω|+i�x

)2

−
(

1

|ω| − i�x

)2
]

= − 1

16π2vxvy

1

�x

. (B5)

Note that the original integrand is singular in the infrared, so it
is important to keep the temperature finite as a regulator of the
singularity and set T → 0 only at the very end of calculations.
We will use the same procedure for the other integrals.

The contribution to I1 from |y| > �y is

I1b = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫
|y|>�y

dy

(
1

y + x − iωm

)2

×
(

1

y − x + iωm

)2

= − T �x

2π2vxvy

∑
m

∫ ∞

�y

1(
y2 + ω2

m

)2
= − 1

16π2vxvy

�x

�2
y

. (B6)
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In the first line, we used the fact that �y � �x . As we see,
both contributions are small in 1/�. The full result for I1 is

I1 = − 1

16π2vxvy

(
1

�x

− �x

�2
y

)
≈ − 1

16π2v2
xvy

1

�
. (B7)

For I2 we have

I2 = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy

(
1

x + y − iωm

)2

×
(

1

x − y + iωm

)2

. (B8)

We again separate the integral over y as I2 = ∫∞
−∞ dy −∫

|y|>�y
dy ≡ I2a − I2b. This time, the integral over y from

−∞ to ∞ vanishes because the poles are all located in the
same half-plane. The integral I2b also vanishes:

I2b = − T

8π2vxvy

∑
m

∫ �x

−�x

dx

∫
|y|>�y

dy

(
1

x + y − iωm

)2

×
(

1

x − y + iωm

)2

= − T �x

4π2vxvy

∑
m

∫ ∞

�y

[(
1

y − iωm

)4

+
(

1

y + iωm

)4
]

≈ − �x

8π3vxvy

∫
dω

∫ ∞

�y

[(
1

y − iω

)4

+
(

1

y + iω

)4
]

= 0. (B9)

As a result, I2 = 0.
Now we turn to I3. We explicitly write it as

I3 = T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy

(
1

x + y − iωm

)2

× 1

(x − y)2 + ω2
m

. (B10)

As before, we write I3 = ∫∞
−∞ dy − ∫|y|>�y

dy ≡ I3a − I3b.
We evaluate I3a by extending the integral over y onto the
half-plane where the integrand contains a single pole:

I3a = T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ ∞

−∞
dy

(
1

x + y − iωm

)2

× 1

(x − y)2 + ω2
m

= T

16πvxvy

∑
m

sgn(ωm)
∫ �x

−�x

dx

(
1

x − iωm

)2 1

ωm

= − T

16πvxvy

∑
m

sgn(ωm)
2�x

�2
x + ω2

m

1

ωm

≈ − 1

16π2vxvy

1

�x

ln
ω0

T
. (B11)

We see that I3a is logarithmically singular at T → 0. The
other part, I3b, is regular at T → 0. Therefore, to logarithmic

accuracy,

I3 ≈ − 1

16π2v2
xvy

1

�
ln

ω0

T
. (B12)

Finally, for I4 we have

I4 = − T

4π2vxvy

∑
m

∫ �x

−�x

dx

∫ �y

−�y

dy
1

(x + y)2 + ω2
m

× 1

(x − y)2 + ω2
m

. (B13)

The most straightforward way to evaluate this integral is to
first extend both x and y integrations to infinite limits and
then check how the results change when we restore finite
limits of integration. To evaluate the integral in infinite limits,
we introduce new variables a = x + y and b = x − y and
reexpress I4 as

I4 ≈ − T

8π2vxvy

∑
m

∫ ∞

−∞
da

∫ ∞

−∞
db

1

a2 + ω2
m

1

b2 + ω2
m

= − 1

8vxvy

T
∑
ωm

1

ω2
m

= − 1

32vxvy

1

T
. (B14)

We see that I4 diverges as 1/T . The divergence comes from
momenta much smaller than �, hence, the prefactor for the
1/T term does not depend on whether the limits of momentum
integration are infinite or finite. Integration in finite limits gives
rise to corrections to (B14) of order {1 + O[T/(vx�)]}.

APPENDIX C: ON THE STABILITY OF HS SADDLE POINT
IN A COMPLEX PLANE

In the main text, we discussed the stability of the mean-field
CDW solution. We used the HS transformation and obtained
the effective action in terms of HS collective variables �+
and �−, proportional to the two CDW order parameters �

Q
k0

and �
Q
kπ

. We found that the saddle-point solution below TCDW

is such that one variable is real and another is imaginary.
Expanding near the saddle-point solution, we obtained the
effective action which contains bilinear combination of fluc-
tuations of �+ and �− with imaginary prefactor. This form of
the action persists also if we expand around �+ = �− = 0 at
T > TCDW. The complex form of the action requires extra care
when one analyzes the convergence of the Gaussian integrals
over fluctuations of �+ and �−.

The same situation with two HS fields emerges in the
analysis of a Z2 spin-nematic order in Fe pnictides [66].
There, the solution of the saddle-point equations for collective
nematic variables is again such that one variable is along
the real axis and the other is along the imaginary axis. When
one expands next the saddle-point solution, one faces the same
issue of convergence of Gaussian integrals, taken by shifting
one of the variables into a complex plane.

In this appendix, we discuss several generic issues, as-
sociated with the expansion near the saddle points in the
complex plane and with the accuracy of using saddle-point
approximation for HS fields. Specifically, we follow the
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suggestion put forward in Ref. [88] and consider the model
with no momentum dispersion (formally, in dimension D =
0). In this case, the partition function can, in certain limits,
be evaluated explicitly with or without HS transformation. We
use this fact to demonstrate that the computational procedure,
which we used in the main text, yields the results identical
to the one which one obtains in a direct integration over the
primary fields.

We consider two extensions of the original bosonic model,
which allow us to put the calculation of the partition function
under control. One is the extension to large N . It is obtained by
extending the underlying fermionic model to N � 1 fermionic
flavors (for details see, e.g., Ref. [66]). The net result of
such an extension is the appearance of the overall factor of
N in the effective action for bosonic variables. Another is
the extension to the number of components of the bosonic
fields to large M . This gives rise to more complex form of
the action as quadratic and quartic terms in bosons change
differently. We argue below that the HS transformation is
useful in the large-M limit, while at large N it is easier to
evaluate the partition function by integrating directly over the
original variables, without introducing HS collective variables.
To put it differently, large-N and large-M limits are the two
examples when one has to take care in choosing the variables
whose fluctuations are weak. At large N , fluctuations of the
original bosonic fields around the mean-field solution are weak
and there is no need to perform the HS transformation. If one
does transform to HS fields, one finds that fluctuations of
HS fields around their mean-field solution are strong. On the
contrary, at large M , fluctuations of the original Bose fields
are strong, while fluctuations of the HS fields around their
saddle-point values are weak. In this limit, HS transformation
and the subsequent saddle-point analysis of the effective action
in terms of the HS fields are fully justified.

Which extension better describes the original model is a
priori unclear and requires complementary analyses [66,68],
particularly in the cases when the analysis in terms of HS
variables yields a preemptive transition into a state with a
composite order. In principle, such a transition may exist only
at large enough M and disappear when M is reduced to the
original value of order one. At the same time, we are not aware
of the examples when a composite order, detected in the model,
extended to large M , does not exist in the original model with
M = O(1).

1. Model with one real field

We assume that the HS transformation from the original
fermionic variables to collective bosonic variables is already
performed and consider the action in terms of bosonic fields.
As a warmup, consider the effective action for one real single-
component bosonic field �:

S[�] = α�2 + 1
2�4. (C1)

The partition function is

I = 1√
π

∫
e−S[�]d�. (C2)

At a mean-field level, 〈�〉 = 0 at α > 0 and 〈�〉 = ±(−α)1/2

at α < 0.

a. Large N

Consider first the extension of the model to large N (large
number of flavors of original fermions). This extension adds
N as the overall factor to the action [66]

S[�] = N
[
α�2 + 1

2�4
]
. (C3)

We first compute the partition function directly and by using
the HS transformation to composite Bose fields.

For α > 0 and α2N � 1, the quartic term can be neglected
and we immediately obtain

I = 1√
Nα

, α > 0. (C4)

For α < 0 and Nα2 � 1, we expand near � = ±(−α)1/2 =
(|α|)1/2 and after simple integration obtain

I = 2
e

Nα2

2√
2N |α| , α < 0 (C5)

(the overall factor 2 comes from summing up contributions
from positive and negative �). The crossover between the two
results for I occurs in the range Nα2 � 1. In this range, more
accurate analysis is needed to compute the partition function.

We now use the HS transformation

e−N�4/2 = 1√
2πN

∫
dψ e− ψ2

2N eiψ�2
. (C6)

Substituting this into (C2) and integrating over �, we obtain

I = 1

2π

∫
dψ e−Seff [ψ],

Seff[ψ] = 1

2
ln(α + iψ) + Nψ2

2
. (C7)

So far, this is exact (the argument of the log is perfectly well
defined for real ψ), and the integration over ψ indeed gives
the correct I , as one can easily check. However, the reason we
use the HS transformation is that we hope that the integration
over the field ψ can be done by expanding around a saddle
point. Let us see what we get if we do this.

First, let us obtain the saddle-point solution. Differentiating
Seff[ψ] from (C7) over ψ , we obtain

Nψ = i

2

1

α − iψ
. (C8)

The solution is along the imaginary axis: −iψ = ψ0. Intro-
ducing α + ψ0 = r0, we reexpress (C8) as

r0 = α + 1

2Nr0
. (C9)

There are two solutions of this equation. For one, r0 > 0, for
the other r0 < 0. At large positive α, ψ0 is obviously small and
hence r0 ≈ α > 0. Because r0 never crosses zero [see (C9)],
only the solution with a positive r0 is physically relevant. We
have

r0 = α

2
+
√

α2

4
+ 1

2N
, ψ0 = −α

2
+
√

α2

4
+ 1

2N
. (C10)

Now let us expand around this saddle point. Introducing ψ̃ via
ψ = iψ0 + ψ̃ and substituting into (C7), we obtain, without
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making any approximation,

Seff[ψ] = S0 + N
ψ̃2

2
+ 1

2

[
ln

(
1 − iψ̃

r0

)
+ iψ̃

r0

]
, (C11)

where

S0 = N
ψ2

0

2
− 1

2
ln r0. (C12)

Then,

I = e− Nψ2
0

2√
2πr0

Ĩ , (C13)

where

Ĩ =
∫ ∞

−∞
dψ̃ e

−{N ψ̃2

2 + 1
2 [ln (1− iψ̃

r0
)+ iψ̃

r0
]}
. (C14)

So far, all transformations were exact. Now let us see whether
we can treat ψ̃ as small and expand near the saddle point. Let us
start with positive α. At α > 0 and α2N � 1 we have r0 ≈ α

and ψ0 ≈ 1/(2αN ). Expanding in (C14) to second order in ψ̃ ,
we obtain

Seff[ψ] = S0 + N
ψ̃2

2

(
1 + 1

2Nα2

)
. (C15)

The integral over ψ̃ in (C14) is perfectly convergent, and
evaluating it we obtain

I = 1√
Nα

, α > 0 (C16)

which is the same result as in (C4).
For α < 0 (and, still, α2N � 1), the situation is more

complex as now ψ0 ≈ |α| and r0 ≈ 1/(2α|N ). Substituting
these forms into (C13), (C14), and rescaling, we find

I =
√

|α|Ne

π
e

Nα2

2 Ī , (C17)

where in rescaled variables

Ī = r0

∫ ∞

−∞
du e

− u2

8α2N e− 1
2 [ln (1−iu)+iu] (C18)

and u = ψ̃/r0. The exponent e
Nα2

2 comes from the saddle point
and is the same as in (C5). However, the prefactor cannot be
obtained by expanding around the saddle point; we clearly see
from (C18) that typical u are of order one, hence, one cannot
approximate the logarithmical term in the exponent in (C18)
by expanding to order u2. Rather, one has to evaluate the full
integral. This shows that the saddle-point approximation is
only partially valid at large N : the exponent in I comes out
right, but the prefactor cannot be obtained by expanding near
the saddle point to order ψ̃2.

The integrand in (C18) converges at u → ±∞, and the
integral can be easily evaluated by closing the integration
contour in the lower half-plane (u = a − ib, b > 0). There is a
branch cut along negative imaginary axis, at b > 1. Integrating
over the boundaries of the branch cut we obtain after simple

algebra

Ī = −ir0

∫ ∞

1
db e−b/2[e− 1

2 (ln b−1−iπ) − e− 1
2 (ln b−1+iπ)]

= 2r0

∫ ∞

1

db e−b/2

√
b − 1

= 2r0

√
2π

e
. (C19)

Substituting this into (C17) we obtain

I = 2
e

Nα2

2√
2N |α| , α < 0. (C20)

This expression coincides with (C5), as it indeed should.
The message from this analysis is that, at large N , there is

no advantage of using the HS transformation and expanding
around a saddle point; it is more straightforward to compute
I by directly integrating over � and expanding around its
mean-field solution along the real axis. For α < 0, one has
to expand around the minimum of S[�] at a nonzero � =
±|α|1/2, and this expansion is controlled by 1/N . Still, one
can get the correct result for I even from HS analysis. The
exponent at α < 0 comes from the saddle point, but to get the
prefactor right one has to do full integration, without expanding
to quadratic order in the deviations from the saddle point.

b. Large M

Let us now consider a different extension of Eq. (C1).
Suppose that the field � has M components, and M � 1.
At large M , it is convenient to rescale the prefactor for the �4

term to 1/M and analyze the action

S[�] = α

M∑
i=1

�2
i + 1

2M

(
M∑
i=1

�2
i

)2

. (C21)

The partition function is

I = 1

πM/2

M∏
i=1

∫
d�ie

−S[�]. (C22)

As in the previous section, we compute I in two ways: (i) by
directly integrating over �i and (ii) by using HS transformation

We begin with direct computation. Introducing M-
dimensional spherical variables, one can rewrite (C22) as

I = (AM/πM/2)
∫ ∞

0
rM−1dr e−[αr2+r4/(2M)]

= AMMM/2
∫ ∞

0

dx

x
eM[ln x−αx2−(1/2)x4], (C23)

where AM = 2πM/2/�(M/2) is the area of a M-
dimensional sphere with unit radius. At large M , �(M/2) ≈√

4π/M(M/2)M/2e−M/2.
Because of prefactor M in the exponent in (C23), the inte-

gral over x can be evaluated by expanding around the minimum
of ln x − αx2 − (1/2)x4. The position of the minimum is at
x = x0, where

x0 =
[
−α

2
+
√

α2

2
+ 1/2

]1/2

. (C24)
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Introducing x = x0 + x̃ and expanding around the saddle
point, we obtain perfectly convergent integral over x̃ with M

in the exponent, which justifies the expansion. Evaluating the
integral over δx and adding the contribution from the saddle
point, we obtain

I = eM(S0+ 1+ln 2
2 ) 1

(α2 + 2)1/4(
√

α2 + 2 − α)1/2
, (C25)

where S0 = ln x0 − αx2
0 − (1/2)x4

0 . Note that only a portion of
the exponential prefactor in (C25) comes from the saddle point,
another portion comes from AM (the area of M-dimensional
sphere).

We next evaluate the partition function using the HS
transformation. Using a generic formula for e−X2/2M for
real x,

e−X2/2M =
√

M

2π

∫
dψ e−M

ψ2

2 eiψX, (C26)

applying it to X =∑M
i=1 |�i |2 and integrating over the

components of the � field, we obtain

I =
√

M

2π

∫
dψ e−M[ ψ2

2 + 1
2 ln(α−iψ)]. (C27)

The saddle point is at ψ = iψ0, where

ψ0 = −α

2
+
√

α2

4
+ 1

2
. (C28)

As before, we can rewrite the equation for the saddle point as

r0 = α + 1

2r0
, (C29)

where r0 = α + ψ0. This equation formally has two solutions,
for one r0 > 0, for the other r0 < 0. However, only the
solution with r0 > 0 is meaningful because (i) at large
positive α, ψ0 is small and r0 ≈ α > 0 and (ii) r0 does
not change sign as a function of α because r0 = 0 is not a
solution of (C29).

Introducing ψ = iψ0 + ψ̃ and expanding the exponent
around the saddle point we obtain

I =
√

M

2π
eM(ψ2

0 /2−ln r0)
∫

dψ̃ e−M[ ψ̃2

2 (1+1/(2r2
0 ))]. (C30)

The integration is elementary and yields

I = 1√
1 + 1

2r2
0

eM(ψ2
0 /2−ln r0). (C31)

Using Eq. (C28) and the fact that r0 = α + ψ0 = α
2 +√

α2

4 + 1
2 , one can easily verify that the expressions for

the partition functions obtained directly and using the HS
transformation, Eqs. (C25) and (C31), are identical.

The message here is that the partition function in the
large-M limit can be computed directly by integrating over
the � field, but it can also be obtained by using the HS
transformation and expanding around the saddle point. This
expansion is perfectly well justified at large M and, moreover,
the exponent in I in (C31) contains the action taken right
at the saddle point. In the direct integration, the exponent in

I comes partly from the action at the minimum and partly
from AM .

Note that in both calculations we computed the partition
function by expanding around the extremal value of the action
(first derivative of the action vanishes). In the direct integration
over �, the point for which dS/d� = 0 is along the real axis,
and the integration over fluctuations of � is also along the
real axis. Within the HS approach, the extremum of the action
is along the imaginary axis, and by writing ψ = iψ0 + ψ̃ we
shift the integration contour into the complex plane. For the
one-component model, this is not a dangerous procedure as the
only requirement on the integration over ψ̃ in the HS approach
is that the integration contour should merge with the real axis
at infinite ψ . Still, the agreement between I obtained via the
HS transformation and by direct integration over � along the
real axis tells us that the shift into the complex plane, used
in the HS calculation, is a perfectly legitimate procedure. For
the one-field case, there is little doubt that this is true, but
we will see below that the analogy between direct and HS
calculations helps us to justify the integration over HS fields
over the contour in the complex plane in a more involved case
of two Bose fields.

2. Model with two order parameters

For definiteness, consider the two-field model discussed in
Ref. [66] in connection with a preemptive spin-nematic order

S[�1,�2] = α
(
�2

1 + �2
2

)+ 1

2

(
�2

1 + �2
2

)2 − β

2

(
�2

1 − �2
2

)2
,

(C32)

where 0 < β < 1. As before, we extend the model separately
to large N and to large M .

a. Large N

The extension to large N is straightforward; one just has to
multiply the effective action in Eq. (C32) by N . We have

I = 1

π

∫
d�1 d�2 e−NS[�1,�2]. (C33)

We begin with a direct computation of I . Introducing �1 =
� cos ϕ,�2 = � sin ϕ, and substituting into (C33), we obtain

I = 2

π

∫ ∞

0
dx

∫ π/4

−π/4
dϕ e[−N(αx+ x2

2 (1−β cos2 2ϕ))]. (C34)

For α > 0 and α2N � 1, the x2 term in the exponent is
irrelevant and we get

I = 1

Nα
. (C35)

For negative α and, again, α2N � 1, one can complete the
square in the exponential term, introduce y = x − |α|/(1 −
β cos2 2ϕ) as a new variable, and integrate over y in infinite
limits. This yields

I = 4√
2πN

∫ π/4

−π/4

dϕ√
1 − β cos2 2ϕ

e
Nα2

2(1−β cos2 2ϕ) . (C36)
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The exponent has a maximum at ϕ = 0. Expanding near the
maximum, we obtain

I = 2
√

2π√
N (1 − β)

e
Nα2

2(1−β)

∫ ∞

−∞
dz e

− 2Nα2βz2

(1−β)2 . (C37)

Evaluating then the integral over z, we obtain

I = 2

N |α|

√
1 − β

β
e

Nα2

2(1−β) . (C38)

Now let us see whether we can reproduce this result using
the HS analysis. We use

e− Nβ

2 (�2
1+�2

2)2 =
√

N

2πβ

∫
dψ e

( −Nψ2

2β
)
eiNψ(�2

1+�2
2),

(C39)

e
N
2 (�2

1−�2
2)2 =

√
N

2π

∫
dυ e

(− Nυ2

2β
)
eNυ(�2

1−�2
2).

Substituting these integrals into (C33) and integrating over �1

and �2, we obtain

I = 1

2π
√

β

∫
dψ dυ e−Seff [ψ,υ], (C40)

where

Seff[ψ,υ] = N

(
ψ2

2
+ υ2

2β

)
+ 1

2
ln [(α − iψ)2 − υ2].

(C41)

The equations on the extremum of the action are

υ

[
1 − β

N

1

(α−iψ)2 − υ2

]
= 0, − iψ= 1

N

α−iψ

(α − iψ)2 − υ2
.

(C42)

One obvious solution is υ = 0, ψ = iψ0, where, as in the
previous case,

ψ0 = −α

2
+
√

α2

4
+ 1

N
(C43)

and

r0 = α + ψ0 = α

2
+
√

α2

4
+ 1

N
. (C44)

Introducing ψ = iψ0 + ψ̃ and expanding around this saddle
point, we obtain

Seff[ψ,υ] = S0 + N
υ2

2β

(
1 − β

Nr2
0

)
+ N

ψ̃2

2

(
1 + 1

Nr2
0

)
,

(C45)

where

S0 = −N

2
ψ2

0 + ln r0. (C46)

For α > 0 and α2N � 1, r0 ≈ α and ψ0 ≈ 1/(Nα). In this
case, the saddle point is a minimum along real υ and real ψ̃ .
The effective action can be approximated by

Seff[ψ,υ] ≈ ln α + N

(
υ2

2β
+ ψ̃2

2

)
. (C47)

Substituting this into the integral for I and integrating over υ

and over ψ̃ , we obtain

I = 1

Nα
, (C48)

which coincides with (C36).
For α < 0 and α2N � 1, the situation is different. Now

r0 ≈ 1/(N |α|) and the prefactor for the υ2 term in (C45) be-
comes negative: 1 − β/(Nr2

0 ) ≈ −βNα2 < 0. This obviously
implies that the extremum at υ = 0 is a maximum rather
than a minimum, and one has to search for a solution of
the saddle-point equations with υ �= 0. Such a solution is a
“nematic” solution in the current nomenclature, although a true
nematic order is indeed impossible in the zero-dimensional
case.

The solution of (C42) for υ = ±υ0 �= 0 is

ψ0 = |α|
1 − β

, υ2
0 =

(
αβ

1 − β

)2

− β

N
,

(C49)

r0 = α + ψ0 = |α|β
1 − β

, r2
0 − υ2

0 = β

N
.

Such a solution is possible when α2N > (1 − β)2/β.
Expanding near ψ0 and ±υ0, we obtain

I = 1

π
√

β
e

Nα2

2(1−β)

(
Ne

β

)1/2

Ĩ , (C50)

where

Ĩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy e

− N
2 ( x2

β
+y2)

× e
− 1

2 [ln (1− 2N
β

(iyr0+xυ0)− N(x2+y2)
β

)+ 2N
β

(iyr0+xυ0)]
, (C51)

where x = υ − υ0 and |x| is assumed to be small. As in the
case of one field, we cannot expand under the logarithm as
typical x and y are such that the argument of the logarithm
is of order one. The integrals over x and over y are, however,
fully convergent, and the integration can be performed in any
order. We notice that the integrand vanishes for all large y in
the lower half-plane and integrate over y by closing the contour
in the lower half-plane of y. There is again a branch but along
the negative imaginary axis of y. Closing the contour such that
it does not cross the imaginary axis of y in the range where
the branch cut exists, and integrating over y, we obtain, after
straightforward algebra,

Ĩ = 2
(1 − β)

|α|N
(

2π

e

)1/2 ∫ ∞

−∞
dx e

− x2N
2β

(1−β)
. (C52)

In writing (C52) we used the fact along the branch cut
iyr0 + xυ0 = O(1/N ) and r0 = υ0 + O(1/N). To leading
order in 1/N , we then have y2 ≈ −x2, such that x2/β + y2 in
the exponent in (C51) can be approximated by x2(1 − β)/β.
Integrating finally over x in (C52) and substituting the result
into (C50), we obtain

I = 2

N |α|

√
1 − β

β
e

Nα2

2(1−β) . (C53)

This is exactly the same result as Eq. (C38).
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Furthermore, one can easily check that the direct calculation
and the one using the HS transformation yield the same values
of average quantities. In particular, the direct evaluation of

Q =
∣∣�2

1 − �2
2

∣∣
�2

1 + �2
2

(C54)

yields Q = O(1/N ) for α > 0 and Q ≈ 1 − O(1/N ) for α <

0. In both cases, calculations are under control at α2N �
1. The analysis based on the HS transformation yields the
same result. The crossover from small Q to Q ≈ 1 occurs in a
narrow range α2N � 1. In principle, one can compute I in this
range and obtain the full crossover behavior of Q and related
quantities. This, however, requires more computational efforts.

The conclusion of the large-N analysis is that we can
reproduce the result for the partition function at large N

by using the HS transformation. At α < 0, to do so we
need to expand near the “nematic” solution υ = ±υ0. Typical
deviations from the saddle-point solution at nonzero υ0 are
small in 1/N . We cannot expand under the logarithm in (C51)
because typical values of the argument are of order one, but the
integrand, viewed as a function of y = ψ̃ = ψ − iψ0, is nicely
convergent and can be evaluated using standard means. Once
we integrate over y, the remaining integral over x = υ − υ0

is a conventional Gaussian integral with large prefactor N in
the exponent. Obviously, typical x2 are of order 1/N and are
small.

b. Large M

Let us now extend the original model of two scalar fields
to the model of two M-component fields, and take the limit
M � 1. We have

S[�1,�2] = α

M∑
i=1

(
�2

1,i+�2
2,i

)+ 1

2M

(
M∑
i=1

(
�2

1,i+�2
2,i

))2

− β

2M

(
M∑
i=1

(
�2

1,i − �2
2,i

))2

(C55)

and

I = 1

πM

M∏
i=1

∫
d�1,id�2,ie

−S[�1,�2]. (C56)

We again compute I in two ways: directly and via HS trans-
formation. We will see that the HS approach is advantageous
because the part of the action associated with the deviations
from the saddle point contains large M in the prefactor. At the
same time, the action written in terms of υ − υ0 and ϕ − iϕ0

has a cross term with imaginary coefficient. The validity of
the evaluation of the Gaussian integral over fluctuations in this
situation has been questioned in Ref. [88]. We will see that
the computation of I by direct integration over �1 and �2 is
free from such complications as the integrals do not have to
be shifted from the real axis. We argue that the way how the
Gaussian integration has to be done in the HS approach is set by
the necessity to obtain the same I as in the direct calculation. In
this respect, the zero-dimensional case is a blessing, as for any
D > 0 there is no way to check the HS calculation by directly

integrating over � (the �4 term contains components with
four different momenta, subject to momentum conservation).

We begin with the direct calculation of I . Using m-
dimensional spherical coordinates for each of the two M-
component fields, we rewrite (C56) as

I = A2
m

πM

∫ ∞

0
d�1

∫ ∞

0
d�2 (�1�2)M−1 e−S[�1,�2], (C57)

where, as before, AM = 2πM/2/�(M/2) is the area of
a unit sphere in M dimensions. At large M , �(M/2) ≈
2(M/2)M/2e−M/2√π/M .

Introducing

�1 = √
z cos ϕ/2, �2 = √

z sin ϕ/2, 0 < ϕ < π (C58)

we reexpress I as

I = A2
M

πM2M+1

∫
dz

z

∫ π

0

dϕ

sin ϕ
eM ln[z sin ϕ]−αz− z2

2M
(1−β cos2 ϕ).

(C59)

Introducing z = xM and u = cos ϕ, we rewrite Eq. (C59) as

I = A2
MMM

πM2M+1

∫
dx

x

∫ 1

−1

du

1 − u2
e−MS[x,u], (C60)

where

S[x,u] = − ln x − 1

2
ln (1 − u2) + αx + x2

2
(1 − βu2).

(C61)

Because the exponent in (C60) contains an overall factor of
M , we search for the extreme of S[x,u] at x = x0 and u = u0.
Differentiating over x and over u, we obtain

1

x0
− α − x0

(
1 − βu2

0

) = 0, u0

[
βx2

0 − 1

1 − u2
0

]
= 0.

(C62)

The second equation in (C62) has two solutions: u0,1 = 0
and u2

0,2 = 1 − 1/(βx2
0 ). For the first solution, we have from

the first equation in (C62) x = x0,1, where

x0,1 = −α

2
+
√

α2

4
+ 1 (C63)

(we recall that, by construction, x > 0). For the second
solution, we have

x0,2 = −α/(1 − β) and u2
0,2 = 1 − α2

c /α
2, (C64)

where αc = (1 − β)/
√

β. Obviously, the solution with a
nonzero u0,2 exists only for α < 0, when |α| > αc. At the
critical value α = −αc, x0,1 = x0,2 = 1/

√
β.

We now expand the action near each of the solutions.
Expanding near u0 = 0, x = x0,1 we obtain

S[x,u] = S[x0,1,0] + u2

2

(
1 − βx2

0,1

)

+ 1

2
(x − x0,1)2

(
1 + 1

x2
0,1

)
. (C65)

We see that the prefactor for the (x − x0,1)2 term is definitely
positive, but the one for the u2 term may have either sign. The
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solution with u0 = 0 is the minimum of the effective action in
the region where βx2

0,1 < 1. An elementary calculation shows
that this holds when α > −αc. We checked the second solution
for these α and found that it corresponds to the maximum of
the action and is therefore irrelevant. Evaluating the Gaussian
integrals over u and over x − x0,1, we obtain

I = A2
MMM−1

πM−12M

1√
1 − βx2

0,1

1√
1 + x2

0,1

. (C66)

The case α > αc is more interesting for our purposes. Now,
the solution with u0,1 = 0 becomes a maximum with respect to
variations of u, and we need to look at another extremal solu-
tion u = ±u0,2 = ±(1 − α2

c /α
2)1/2 and x = x0,2. Expanding

in ũ = u − u0,2 and x̃ = x − x0,2, we obtain

S[x,u] = S[x0,2,u0,2] + Ax̃2 + Bũ2 − 2Cx̃ũ, (C67)

where

A = 1

2
(1 − β) + β

(
1 − u2

0,2

)
,

B = u2
0,2(

1 − u2
0,2

)2 , (C68)

C2 = βu2
0,2

1 − u2
0,2

.

One can immediately make sure that

AB − C2 = 1 − β

2

u2
0,2(

1 − u2
0,2

)2 > 0. (C69)

The integral

J =
∫

dx̃ dũ e−M[Ax̃2+Bũ2−2Cx̃ũ] (C70)

then perfectly converges, no matter in what order we integrate.
There is indeed no need to shift the integration contour from
the real axis. Integrating in (C70), we obtain

J = π

M

1√
AB − C2

. (C71)

Substituting this result into the expression for I and multiply-
ing the result by 2 because there are two extremal points +u0,2

and −u0,2 and one has to expand near both, we obtain

I =
√

2

βM/2
e

M
2 [ α2

1−β
+1]

√
(1 − β)√
α2 − α2

c

. (C72)

This result is valid as long as u2,0 exceed typical |ũ|. The
corresponding condition is α2 − α2

c � 1/
√

M .
We next compute I by applying the HS transformation.

The computational steps are the same as at large N , and the
expression for I is

I = M

2
√

β

∫
dψ dυ e−MSeff [ψ,υ], (C73)

where

Seff[ψ,υ] = ψ2

2β
+ υ2

2
+ 1

2
ln[(α − iψ)2 − υ2]. (C74)

The saddle-point equations have the same form as at large N :
ψ = iψ0 and υ = υ0, where

ψ0 = α + ψ0

(α + ψ0)2 − υ2
0

, υ0

(
1 − β

(α + ψ0)2 − υ2
0

)
= 0.

(C75)

One solution is obviously

υ0,1 = 0, ψ0,1 = −α

2
+
√

α2

4
+ 1. (C76)

The other solution is

υ2
0,2 = β2

(1 − β)2

(
α2 − α2

c

)
, ψ0,2 = − α

1 − β
, (C77)

where αc = (1 − β)/
√

β is the same as the one introduced
after Eq. (C65). For α > −αc, one can easily show that
the solution with υ0,1 = 0 corresponds to the minimum of
Seff[ψ,υ]. Expanding near this point and evaluating the (fully
convergent) Gaussian integrals over υ and over ψ̃ = ψ − iψ0,
we immediately reproduce Eq. (C66).

For α < −αc, we need to consider the second solution
and expand around a nonzero υ0,2 and ψ0,2. There are two
solutions: +υ0,2 = ±[β/(1 − β)](α2 − α2

c )1/2 and −υ0,2. We
expand near one of them, say, +υ0,2, assume that we are in the
region where (υ − υ0,2)2 � υ2

0,2, and multiply the result by 2.
Expanding near υ0,2 and ψ0,2, we obtain

S[ψ,υ] = S[ψ0,2,υ0,2] + Āψ̃2 − B̄υ̃2 + 2iCψ̃υ̃, (C78)

where

Ā = 1

2

(
1 + β + 2υ2

0,2

β2

)
, B̄ = υ2

0,2

β2
,

(C79)

C̄2 =
υ0,2

√
υ2

0,2 + β

β2
.

One can immediately make sure that all three prefactors are
positive, but now

ĀB̄ − C̄2 = −2
(1 − β)υ2

0,2

β3
< 0. (C80)

The quadratic form (C78) has exactly the same form as the
one in our analysis of the stability of the CDW solution
[see Eq. (50) in the main text]. Here, however, we have a
benchmark: the result for I must agree with Eq. (C72).

We first follow the analysis in the main text and combine
the last three terms in the right-hand side of (C78) in the same
way as we did there, into

Ā

(
ψ̃ + i

C̄

Ā
υ̃

)2

+ C̄2 − ĀB̄

Ā
υ̃2. (C81)

We then integrate first over ψ̃ by shifting the integration
variable by adding an imaginary constant, and then over υ̃.
Both integrals are fully convergent, and integrating over ψ̃

and υ̃ and assembling the prefactors, we obtain

I =
√

2

βM/2
e

M
2 [ α2

1−β
+1]

√
(1 − β)√
α2 − α2

c

. (C82)
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This is exactly the same result as Eq. (C72). The agreement
justifies the integration procedure we used in the main text.
Like we said there, we could alternatively integrate over υ̃

first by combining the last three terms in the right-hand side
of (C78) into

− B̄

(
υ̃ − i

C̄

B̄
ψ̃

)2

− C̄2 − ĀB̄

B̄
ψ̃2, (C83)

and then integrate over ψ̃ . In this integration procedure, both
integrals are formally divergent if we integrate in infinite limits.
However, as we said in the main text, if we integrate in finite
limits and set the limit of integration to infinity only after the
integration, we do reproduce the same result as in Eqs. (C72)
and (C82).

The conclusion of the large-M analysis is that it is perfectly
legitimate to expand near the saddle point in which one variable
is along the real axis and the other is along the imaginary axis,
and the way to obtain the correct result is to combine variables
such that we get two convergent integrals. Here, we explicitly
verified this by comparing the answer [Eq. (C82)] with the one
obtained by integrating over the real axis, without shifting the
contour [Eq. (C72)].

Another way to see that the integration around the saddle
point in the HS scheme is noncontroversial is to consider the
last three terms in the right-hand side of (C78) as a matrix
and evaluate its two eigenvalues. This is a simple exercise,
and the result is that both eigenvalues have positive real parts
when C̄2 > ĀB̄, which implies that Gaussian integrals over
fluctuations are convergent.

Indeed, in the zero-dimensional case there is no true nematic
order. Still, the analysis in this appendix shows that one can
successfully apply the HS procedure and reproduce the exact
results for the partition function by integrating in the near
vicinity of the saddle point. The key message is that the need
to integrate over fluctuations along the contour in the complex
plane is not an obstacle; Gaussian integrals over fluctuations
near the saddle point nicely converge.

APPENDIX D: AN ALTERNATIVE HS ANALYSIS, WITH
SADDLE POINTS ALONG THE REAL AXIS

In Sec. IV B of the main text, we represented the four-
fermion interaction in the CDW channel as in Eq. (47), i.e.,
as

H ′ = χ̄
(
ρ̄k0ρkπ

+ ρ̄kπ
ρk0

) = χ̄

2

(
ρ̄k0 + ρ̄kπ

)(
ρk0 + ρkπ

)
− χ̄

2

(
ρ̄k0 − ρ̄kπ

)(
ρk0 − ρkπ

)
. (D1)

In this appendix, we consider a more general representation

H ′ = χ̄
(
ρ̄k0ρkπ

+ ρ̄kπ
ρk0

)
= χ̄

2
√

a1a2

(√
a2ρ̄k0 + √

a1ρ̄kπ

)(√
a2ρk0 + √

a1ρkπ

)
− χ̄

2
√

a1a2

(√
a2ρ̄k0 − √

a1ρ̄kπ

)(√
a2ρk0 − √

a1ρkπ

)
,

(D2)

in which we initially treat a1 and a2 as arbitrary positive
parameters. We see that we have two Hermitian interactions:
the first one is repulsive and the second is attractive. We now
introduce two HS fields �′ and � for these interactions and
perform HS transformation. We introduce χ̃ ≡ χ̄/

√
a1a2, and

we use the same identities as Eq. (48):

exp

(
χ̃

2
z̄+z−

)

=
∫

d�′d�̄′

2πχ̃
exp

[
− |�′|2

2χ̃
+ i

2
(�′z+ + �̄′z̄+)

]
,

exp

(
χ̃

2
z̄−z−

)

=
∫

d�d�̄

2πχ̃
exp

[
− |�|2

2χ̃
+ 1

2
(�z− + �̄z̄−)

]
. (D3)

All integrals converge along the real axis. We apply these iden-
tities to z+ = √

a2ρk0 + √
a1ρkπ

and z− = √
a2ρk0 − √

a1ρkπ

and obtain the effective action

Seff = S0 + 1

2χ̃
�̄′�′ − i

2
�̄′ (√a1ρkπ

+ √
a2ρk0

)
− i

2

(√
a1ρ̄kπ

+ √
a2ρ̄k0

)
�′

+ 1

2χ̃
�̄� − 1

2
�̄
(√

a2ρk0 − √
a1ρkπ

)
− 1

2

(√
a2ρ̄k0 − √

a1ρ̄kπ

)
�, (D4)

where S0 contains the fermionic part of the action.

1. Fluctuations at T > TCDW

Now, let us integrate out the fermions and expand the
effective action in powers of � and �′. To quadratic order
in the HS fields we obtain

Seff[�̄
′,�′,�̄,�] = 1

2χ̃
|�′|2 + 1

2χ̃
|�|2

+ 1

4
(a1A2 + a2A1)(|�′|2 − |�|2)

− i

4
(a2A1 − a1A2)(�̄′� + �̄�′), (D5)

where A1 and A2 are defined in Eq. (52). We now choose

a1 = A1 and a2 = A2. (D6)

With this choice, the effective action becomes Hermitian and
the HS fields � and �′ decouple:

Seff[�̄
′,�′,�̄,�] =

(
1

2χ̃
+ A1A2

2

)
|�′|2

+
(

1

2χ̃
− A1A2

2

)
|�|2. (D7)

We see that the prefactor for |�′|2 is always positive, i.e.,
(〈�′)〉 = 〈χ̃ (

√
A1ρkπ

+ √
A2ρk0 )〉 = 0. Using this condition,
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we find the relation between the average values of ρkπ
and ρk0 :

μ ≡ −
〈
�k

Q
π

〉
〈
�

Q
k0

〉 = −
〈
χρkπ

〉
〈
χρk0

〉 =
√

A2

A1
. (D8)

The prefactor for the |�|2 term becomes negative at TCDW, for
which, in original parameters,

χ̄
√

A1A2 = 1. (D9)

Restoring the frequency and momentum dependence of χ̄ ,
we find the same CDW instability condition as in Eq. (60).
One can easily make sure that Eq. (D8) is also equivalent to
the condition on 〈�k

Q
π
〉/〈�Q

k0
〉, which we obtained by solving

the linearized gap equations (16).

2. Fluctuations at T < TCDW

a. Near TCDW

Next, suppose that we are at a temperature T = TCDW − δ

and δ is small. In this range, the order parameter |�|2 ∼ δ is
also small, and one can restrict with only fourth-order terms in
the expansion in powers of |�|. Expanding in Seff we obtain

Seff[�̄
′,�′,�̄,�]

= 1

2χ̃
(|�′|2 + |�|2) + 1

4
(a1A2 + a2A1)(|�′|2 − |�|2)

− 1

16

(
a2

1I2+a2
2I1
)
[(�̄2−�̄′2)(�2 − �′2) − 4|�|2|�′|2]

− i

4
(a2A1 − a1A2)(�̄′� + �̄�′)

+ i

8

(
a2

2I1 − a2
1I2
)
[�̄�̄′(�2 − �′2) + (�̄2 − �̄′2)��′].

(D10)

We first find the modified relation between parameters a1

and a2, which will keep �′ = 0 as an extremum of the action
and then show that this extremum is a local minimum. The
need to modify the a1/a2 ratio comes from the fact that in the
CDW-ordered state, fourth-order terms bring O(|�|2) = O(δ)
Gaussian corrections to quadratic terms in �′ and �̄′. A simple
experimentation shows that we need to keep �′ = 0 as an
extremum and we need to choose

a2

a1
= A2

A1
+ 1

2

(
|I2| − A2

2

A2
1

|I1|
)

|�|2. (D11)

From the fact that (〈�′)〉 = 〈χ̃ (
√

a1ρkπ
+ √

a2ρk0 )〉 = 0 we
find that

μ2 ≡
〈
χ̃ρkπ

〉2〈
χ̃ρk0

〉2 = A2

A1
+ 1

2

(
|I2| − A2

2

A2
1

|I1|
)

|�|2. (D12)

One can straightforwardly check that this equation is consistent
with Eq. (67).

Next, we verify that �′ = 0 and � = O(
√

δ) correspond to
a local minimum of the effective action. We write the effective

action as

Seff[�̄
′,�′,�̄,�]

=
(

1

χ̃
+ aδ

)
|�′|2 − aδ|�|2

+ 1

16

(
A2

1|I2| + A2
2|I1|

)
[|�′|4 + |�|4

− (�̄2�′2 + �̄′2�2) − 4|�|2|�′|2], (D13)

where a > 0 is a number of order one. Expanding around

|�′| = 0,
(D14)

|�| =
√

8δ

A2
1|I2| + A2

2|I1|
,

we immediately find that this solution is the local minimum
of Seff .

If we now neglect the noncritical fields �̄′ and �′, we obtain
the effective action in terms of the order parameter � along
the real axis. The action has the form

Seff = α|�|2 + β|�|4 + · · · , (D15)

where α = −aδ = a(T − TCDW) and β = (1/16)(A2
1|I2| +

A2
2|I1|) > 0. This agrees with Eq. (69) [we recall that

(1 + λ)/(1 − λ) = √
A1/A2 in (69)]. If we would not neglect

�′ but rather integrated over it (assuming that fourth-order
term |�′|4 is irrelevant), we obtained the same effective action
as in (D15) but with slightly modified prefactors.

b. Smaller temperatures, full nonlinear analysis

When δ is not small we can no longer expand in �. We go
back to the original effective action (D4):

Seff = 1

2χ̃
(|�′|2 + |�|2) + �†

πG−1
π �π + �

†
0G−1

0 �0, (D16)

where we defined �†
π = (c†kπ +Q,c

†
kπ −Q), �

†
0 = (c†k0+Q,c

†
k0−Q),

and

G−1
π =

(
G−1

kπ +Q

√
a1

2 (�̄ + i�̄′)

−
√

a1

2 (� + i�′) G−1
kπ−Q

)
,

(D17)

G−1
0 =

(
G−1

k0+Q

√
a2

2 (�̄ − i�̄′)

−
√

a2

2 (� − i�′) G−1
k0−Q

)
.

Explicitly integrating out fermionic degrees of freedom we
obtain

Seff[�̄
′,�′,�̄,�] = 1

2χ̃
(|�′|2 + |�|2) − ln

{
G−1

kπ+QG−1
kπ −Q

− a1

4
[|�|2 − |�′|2 + i(�̄�′ + �̄′�)]

}

− ln

{
G−1

k0+QG−1
k0−Q − a2

4
[|�|2 − |�′|2

− i(�̄�′ + �̄′�)]

}
. (D18)

The summations over frequency and momentum are assumed.

035149-45



YUXUAN WANG AND ANDREY CHUBUKOV PHYSICAL REVIEW B 90, 035149 (2014)

As before, we must tune a1 and a2 such that �′ = 0 remains
an extremum of the action, and then to show that this extremum
is actually a local minimum. First, we differentiate the effective
action with respect to �̄′, and we find

∂Seff

∂�̄′

∣∣∣∣
�′=0

= ia1

4

∑
k,ω

�

G−1
kπ+QG−1

kπ −Q − a1
4 |�|2

− ia2

4

∑
k,ω

�

G−1
k0+QG−1

k0−Q − a2
4 |�|2

= − i

4
(a1Ā2 − a2Ā1)�, (D19)

where in the last line we have defined

Ā2 =
∑
k,ω

1

−G−1
kπ +QG−1

kπ −Q + a1
4 |�|2 ,

(D20)

Ā1 =
∑
k,ω

1

−G−1
k0+QG−1

k0−Q + a2
4 |�|2 .

Diagrammatically, Ā1 and Ā2 are nothing but the polarization
bubbles with fully dressed normal and anomalous propagators.
Imposing the condition on the extremum of the action, we
obtain

a1 = Ā1 and a2 = Ā2, (D21)

which is to be compared with Eq. (C13). Taking the derivative
with respect to �, we find that the CDW instability sets in
when

χ̃ Ā1Ā2 = 1. (D22)

Next, we show that �′ = 0 is a local minimum. We define the
real and imaginary parts of � and �′ as

� = x + iy,
(D23)

�′ = x ′ + iy ′.

Substituting this into the action, we obtain

Seff[x,y,x ′,y ′] = 1

2χ̃
(x2 + y2 + x ′2 + y ′2)

− ln

{
G−1

kπ+QG−1
kπ −Q − Ā1

4
[x2 + y2 − x ′2

− y ′2 + i(xx ′ + yy ′)]
}

− ln

{
G−1

k0+QG−1
k0−Q − Ā2

4
[x2 + y2 − x ′2

− y ′2 + i(xx ′ + yy ′)]
}
. (D24)

Differentiating Seff twice with respect to x ′ and using
Eq. (D22), we obtain

∂2Seff

∂x ′2

∣∣∣∣
x ′=0, y ′=0

= 2Ā1Ā2 − x2

16

(
Ā2

2|Ī1| + Ā2
1|Ī2|

)
, (D25)

where

Ī2 = −1

2

∑
k,ω

1[−G−1
kπ +QG−1

kπ −Q + 1
4 Ā1(x2 + y2)

]2 ,

(D26)

Ī1 = −1

2

∑
k,ω

1[−G−1
k0+QG−1

k0−Q + 1
4 Ā2(x2 + y2)

]2 .

These two are given by the same square diagrams from Fig. 7,
which we used before, but for the case when CDW order
is already developed Evaluating the integrals, we find that
∂2Seff/∂x ′2 is positive no matter what x is. The same holds for
differentiation over y ′. Hence, �′ = 0 is a local minimum.

The rest of the analysis proceeds the same way as near
T = TCDW. Namely, if we neglect �′, the effective action in
terms of � has a conventional form, and |�|2 increases as T

decreases. This still holds even if we perform the Gaussian
integration over fluctuations of �′.

APPENDIX E: AN ALTERNATIVE METHOD TO GO
BEYOND HOT SPOT TREATMENT

In this appendix, we present a complementary approach to
go beyond hot spot treatment of the CDW order parameters
�

Q
1 and �

Q
2 . The conclusion we reach here is the same: �

Q
1

has a stronger instability. For GL coefficients in Eq. (89),
this corresponds to α2 > α1. In the main text, we assumed
that even and odd components of �

Q
k behave as cos k and

sin k, respectively, along the direction of the center-of-mass
momentum k. Here, we assume a more simple momentum
dependence of �

Q
1 (k) and �

Q
2 (k), namely, assume that the

CDW gap is concentrated around antinodal regions, and the
even component is a constant and the odd component is a linear
dependence on momentum in a hot region:

�
Q
1 (k) ≈ const = �

Q
1 (k0),

(E1)

�
Q
2 (k) ≈ ∣∣�Q

2 (k0)
∣∣π − kx − ky

π − k0
,

where k0 is the center-of-mass momenta when �
Q
k connects

two fermions right at hot spots. Obviously, �
Q
1 and �

Q
2

are symmetric and antisymmetric about the (π,0) point,
respectively. We approximate the interaction χ̄(k,k′) by a
constant within some momentum window π − δ < k′

x − kx <

π + δ and π − δ < k′
y − ky < π + δ and set it to zero outside

this window. We then explicitly compute the eigenvalues for
even and odd in k solutions and compare them. The two
eigenvalues are given by (λ1 is for even solution)

λ1 = χ̄2
∫ δ

−δ

dpf
(
εkπ+p+Q

)− f
(
εkπ+p−Q

)
εkπ+p−Q − εkπ+p+Q

×
∫ δ

−δ

dqf
(
εk0+p+q+Q

)−f
(
εk0+p+q−Q

)
εk0+p+q−Q − εk0+p+q+Q

�
Q
1 (k0+p+q)

�
Q
1 (k0)

,

λ2 = χ̄2
∫ δ

−δ

dpf
(
εkπ+p+Q

)− f
(
εkπ+p−Q

)
εkπ+p−Q − εkπ+p+Q

×
∫ δ

−δ

dqf
(
εk0+p+q+Q

)−f
(
εk0+p+q−Q

)
εk0+p+q−Q − εk0+p+q+Q

�
Q
2 (k0+p+q)

�
Q
2 (k0)

,

(E2)
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FIG. 21. (Color online) The ratio of the eigenvalues λ1 and λ2 for
even and odd in k CDW order parameters �

Q

1 and �
Q

2 , respectively,
as a function as the momentum integration range δ of integration
around the hot spots. Note the change of the behavior at δ = 2Q. We
set T = 1 meV.

where f (ε) is the Fermi function. We set Q = Qy and k0 =
(π − Q,0) and evaluated the two integrals numerically using
the dispersion relation εk for Pb0.55Bi1.5Sr1.6La0.4CuO6+δ (see
Ref. [21]). In Fig. 21, we show our results for λ2/λ1 as a
function of the size of the momentum window δ.

We see from the plot that, as expected, λ2 < λ1, i.e., the
even solution emerges at a higher T . At the same time, the
values of λ2 and λ1 are quite close as long as δ < 2Q. That λ1

is larger, but λ2 is a close second is consistent with the analysis
in the main text and with Refs. [64,65].

APPENDIX F: BOND ORDER WITH DIAGONAL
MOMENTA (±2 Q,±2 Q)

For completeness and for comparison with our results
on CDW order with Qx or Qy , we also consider charge
order with momenta Q̄ = (2Q,±2Q), as depicted in Fig. 22.
A charge order with diagonal momentum has been studied
in Refs. [57,58]. The critical temperature for the instability

FIG. 22. (Color online) Fermions which contribute to diagonal
bond order and d-wave superconducting order. Filled and empty
circles denote particle and hole states, respectively.

FIG. 23. The diagrammatic expressions for the fully renormal-
ized vertices in superconducting and bond order channels.

towards such order is exactly the same as superconducting TSC

if one neglects the curvature of the FS near the hot spots. The
gap function for a diagonal charge order has a d-wave structure
〈c†(k + Q̄)c(k − Q̄)〉 = �(cos kx − cos ky), the same as a d-
wave superconducting order parameter. A d-wave charge order
does not create a charge-density modulation 〈c†(r)c(r)〉, but
it introduces modulations of the correlation function between
neighboring sites:

〈c†(r)c(r + a)〉 = 2� cos Q̄ ·
(

r + a
2

)
(δa,x − δa,y), (F1)

where x and y are vectors along x and y directions, in units
of interatomic spacing a. A charge order of this kind is called
bond order (BO).

To obtain the onset temperature for BO, TBO, and compare it
with SC TSC in the presence of FS curvature, we add to the spin-
fermion action two infinitesimal vertices �0(k)ck,α(iσ y

αβ)c−k,β

and �0(k)ck,αδαβc
†
k+Q̄,β

, where k stands for 2+1 momentum
(ωm,k). These vertices get renormalized by spin-fermion
interaction, and the critical temperature (TBO or TSC) is
obtained when the corresponding susceptibility diverges, i.e.,
the solution for fully renormalized �(k) or �(k) exists even
when the bare vertices are set to zero.

The authors of [57,58] have demonstrated that a super-
conducting instability and an instability towards bond order
come from the fermions located in the same hot regions, only
for bond order one of the regions is shifted by (2π,0). The
ladder renormalizations of �0(k) and �0(k) are shown in in
Fig. 23, where the wavy line is the spin-fermion interaction.
In analytical form we have, at the corresponding critical
temperatures,

�(k) = −3ḡ

∫
G(k′)G(−k′)χ (k − k′)�(k′ + π ),

(F2)

�(k) = 3ḡ

∫
G(k′)G(k + Q̄)χ (k − k′)�(k′ + π ),

where the spin-fermion coupling ḡ and the dynamical spin
susceptibility χ (k − k′) are defined in Eqs. (1) and (2) in
the main text. The difference in the overall sign in the
right-hand side is due to different Pauli algebra: for super-
conducting vertex σ i

α′α(iσ y

αβ)σ i
ββ ′ = −3iσ

y

α′β ′ , while for bond
vertex σ i

α′α(δαβ)σ i
ββ ′ = 3δα′β ′ . One can easily verify [57] that,

if one neglects the curvature of the FS, one finds εk+Q̄ = −εk ,
and hence G(−k) = −G(k + Q̄). In this approximation, the
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kernels in the two equations (F2) become identical, hence,
TSC = TBO. Once the curvature of the FS is included, the
degeneracy is lifted and TSC > TBO. The reasoning is that
superconductivity involves fermions with strictly opposite k,
and the momentum integration can still be replaced by the
integration over εk , with a constant prefactor, even in the
presence of the FS curvature. For BO, the relation εk+Q̄ = −εk

no longer holds in the presence of the FS curvature, and this
reduces the kernel in the Eq. (F2) for �.

Explicitly, expanding near a hot spot, we obtain

ε(k) = −vF (k⊥ + κ̃k2
‖/kF ),

(F3)
ε(k + π ) = vF (k⊥ − κ̃k2

‖/kF ),

where k‖ and k⊥ are momenta parallel and perpendicular to
the FS, respectively, and κ̃ is a dimensionless parameter char-
acterizing the curvature of the FS. We will use dimensionless
parameters

g̃ ≡ ḡ

vF kF

,

(F4)
ξ̃ ≡ ξkF ,

where ξ is the magnetic correlation length, present in χ (k −
k′). The dimensionless coupling g̃, dimensionless correlation

length ξ̃ , and dimensionless FS curvature κ̃ are three input
parameters for the consideration in this section. An additional
parameter, set by the FS geometry, is the angle between
Fermi velocities at hot spots separated by (π,π ). To simplify
the presentation, we assume that these two velocities are
orthogonal to each other.

In this Appendix, we follow earlier
works [37,38,57,58,82,85] and assume that the spin-fermion
interaction can be well approximated by its value between
fermions on the FS. Integrating over momenta transverse
to the FS in the fermionic propagators, we obtain integral
equations for �(ωm,k‖) and �(ωm,k‖), which depend on
frequency and on momenta along the FS. The equations are

�(ωm,k‖) = 3g̃kF

2

∫
m′k′

‖

K(ωm,k‖,ω′
m,k′

‖; 0)�(ω′
m,k′

‖), (F5)

�(ωm,k‖) = 3g̃kF

2

∫
m′k′

‖

K(ωm,k‖,ω′
m,k′

‖; κ̃)�(ω′
m,k′

‖), (F6)

where
∫
m′k′

‖
stands for T

∑
m′
∫

dk′
‖/2π and

K(ωm,k‖,ω′
m,k′

‖; κ̃) = |ω′
m + �(ω′

m,k′
‖)|

[ω′
m + �(ω′

m,k′
‖)]2 + v2

F κ̃2k′4
‖ /k2

F

1

k2
‖ + k′2

‖ + γ |ωm − ω′
m| + ξ̃−2k2

F

. (F7)

1. TSC and TBO at the onset of SDW order ξ−1 = 0

It is convenient to introduce the set of rescaled variables

T̄ = πT

ω0
, ω̄m = ωm

ω0
, k̄‖ = k‖√

γω0
(F8)

where ω0 = 9ḡ/(16π ) × [(v2
y − v2

x)/v2
F ] was introduced in the

main text. In these notations, the linearized gap equation for
BO becomes

�(ω̄m,k̄‖) = 1

4π

∫
T̄

dω̄mdk̄′
‖

k̄2
‖ + k̄

′2
‖ + |ω̄m − ω̄′

m|

× |ω̄′
m + �̄(ω̄′

m,k̄′
‖)|

|ω̄′
m+�̄(ω̄′

m,k̄′
‖)|2 + 16g̃2κ̃2k̄

′4
‖ /π2

�(ω̄′
m,k̄′

‖),

(F9)

where the rescaled self-energy is [38,57]

�̄(ω̄m,k̄‖) =
√

|ω̄m| + k̄2
‖ − |k̄‖|. (F10)

We verified, using the same strategy as in our earlier work [61]
on superconducting TSC at ξ̃−1 = 0, that the leading contribu-
tion to the right-hand side of Eq. (F9) comes from the region
where �̄ > ω̄′

m and k̄2
‖ > ω̄. In this region, the momentum de-

pendence of � is more relevant than its frequency dependence.
Keeping only the momentum dependence in � and introducing

x = k̄2
‖ and y = k̄, we rewrite (F9) as

�(y) = 1

2π

∫ 1

T̄BO

dx

x + y
ln

x2 + 64g̃2κ̃2x3

T̄ 2
BO + 64g̃2κ̃2x3

�(x). (F11)

For superconductivity, the same procedure yields

�(y) = 1

π

∫ 1

T̄SC

dx

x + y
ln

x

T̄SC
�(x). (F12)

Comparing Eqs. (F11) and (F12), we find that extra terms in the
logarithm in (F11) make it smaller than the logarithm in (F12),
hence, in the presence of a FS curvature TBO gets smaller than
TSC. Specifically, the curvature term couples to x3 and provides
a soft upper cutoff to the integral over x, at x ∼ 1/(g̃κ̃)2. At
the same time, TBO remains finite, no matter how large κ is.
Indeed, at large g̃κ̃ we have TBO ∝ TSC/(g̃κ̃)2 � 1. In other
words, at ξ̃−1 = 0, there is no threshold value of κ̃ above which
BO would not develop.

To check our analytical reasoning, we solved Eqs. (F5)
and (F6) numerically and obtained the same result, namely,
TBO decreases with increasing κ̃ but remains finite. We show
the results in Fig. 24. We set g̃ = 0.1, ξ̃ = ∞, and varied κ̃ .

2. TSC and TBO at a finite ξ̃

When the system moves away from the magnetic QCP,
it eventually recovers a conventional FL behavior in the
normal state. Indeed, as the correlation length ξ̃ decreases,
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FIG. 24. (Color online) The onset temperatures for SC and BO
TSC and TBO, respectively, as functions of dimensionless FS curvature
κ̃ at the onset of SDW order (magnetic ξ−1 = 0). We set g̃ = 0.1.
Superconducting TSC is not affected by the curvature, while TBO

decreases but remains finite. In analytical consideration, TBO/TSC

was found to scale as κ̃−2 at large enough curvature. We show this
functional behavior by a dashed line.

ωsf = ξ̃−2k2
F /γ becomes the upper energy cutoff for the

pairing [38,112]. Below this scale, the spin susceptibility
can be treated as frequency independent and the fermionic
self-energy is linear in frequency:

�(ωm,k‖) = 3g̃kF

2π
√

γ

(√|ωm| + k2
‖/γ + ωsf

−
√

k2
‖/γ + ωsf

)
sgn(ωm)

≈ 3g̃ξ̃
√

ωsf

2π

ωm

2
√

ωsf

= λωm. (F13)

In the last line, we have defined λ = 3g̃ξ̃

4π
. Plugging this into

Eq. (F5) for superconducting TSC and using the condition that
typical ω,ω′

m,k2
‖,k

′2
‖ /γ are all small in this limit compared to

ωsf , we integrate over momentum k′
‖ and obtain

� = λ

1 + λ
ln

ωsf

TSC
�. (F14)

For superconducting TSC we then have a conventional BCS–
McMillan result [113]

TSC ∼ ωsf exp

(
−1 + λ

λ

)
. (F15)

Hence, as the system moves away from the QCP, it crosses over
to a BCS behavior, and TSC gradually decreases as ξ̃ decreases
and λ gets smaller.

For BO, the gap equation in the rescaled variables becomes,
in this limit,

� = 1

4π

∫
T̄BO

dωmdk̄′
‖

k̄
′2
‖ + ω̃sf

(1 + λ)|ω̄′
m|

(1 + λ)2|ω̄′
m|2 + 16g̃2κ̃2k̄

′4
‖ /π2

�,

(F16)

where we defined

ω̃sf ≡ ωsf

ω0
= (2λ)−2 . (F17)

Typical k̄
′2
‖ are of order ω̃sf , and in the second term in the

denominator we can safely replace k̄
′4
‖ by ω̃2

sf . We see that
the curvature κ̃ now appears in a combination with a constant
term and provides a lower cutoff for the BCS-type logarithmic
behavior. This is qualitatively different from the behavior at
the magnetic QCP, where the curvature was coupled to the
running variable x3. Because of the cutoff, the frequency
integral in (F16) no longer diverges at T = 0. Hence, at some
critical ξ̃ , the linearized gap equation for the BO vertex � has
a solution at T = 0. Setting T = 0 in (F16) and integrating
over k̄‖, we obtain the condition when TBO = 0:

� = 1

2

λ�

1 + λ

∫ ωsf

−ωsf

dω|ω|
|ω|2 + 16g̃2κ̃2ω2

sf/π
2
. (F18)

Canceling out � and integrating over frequency, we find

1 = λ

1 + λ

(
ln

π

4g̃κ̃

)
. (F19)

This defines a critical ξ̃ at which BO vanishes:

ξ̃−1
cr ∼ g̃ ln

(
π

4g̃κ̃

)
. (F20)

At smaller ξ̃ < ξ̃cr, the equation on � only allows a trivial
solution � = 0, hence, BO does not develop at any T . To verify
this, we solved for TSC and TBO numerically. We set g̃ = 0.1
and κ̃ = 0.14 and varied ξ̃ . We found that superconducting
TSC crosses over to BCS behavior at small enough ξ̃ and that
for BO there exists a critical ξ̃ at which TBO = 0. We show the
results in Fig. 25.
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FIG. 25. (Color online) TSC and the onset temperature TBO for
BO with diagonal Q as functions of the magnetic correlation length.
We set κ̃ = 0.14 and g̃ = 0.1. The red dashed line is ξ̃cr, given by
Eq. (F20).
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FIG. 26. (Color online) A schematic phase diagram for the (ar-
tificial) case when the only two competing states are SC and BO
with a diagonal Q. The light blue region is the pseudogap phase,
which combines SC fluctuations at large x (smaller ξ ) and fluctuations
between SC and BO at small x (large ξ ).

Although the behavior of TBO resembles that of TCDW for
CDW order with Qx/Qy , the physics behind the reduction
of these temperatures with decreasing magnetic ξ is different.

For BO with diagonal Q̄ = (2Q, ± 2Q), the reduction of TBO

compared to TSC and its eventual vanishing is solely due to
the FS curvature. If we set κ̃ to zero, TSC and TBO remain
identical at any ξ . For CDW order with Qx/Qy , the reduction
and eventual vanishing of TCDW upon decreasing of ξ̃ are not
related to curvature and hold even if we set the curvature
to zero. At a small curvature then, TBO > TCDW, but which
temperature is larger at κ̃ = O(1) depends on numbers. We
emphasize again in this regard that for CDW with Qx/Qy the
first instability upon lowering T is at T > TCDW, towards the
state which breaks an Ising Z2 symmetry. No such transition
holds for BO with a diagonal Q.

3. Interplay between superconductivity and bond order

In Fig. 26, we present the phase diagram for the (artificial)
case when the only two competing states are superconductivity
and BO with a diagonal Q, i.e., when CDW order with Qx/Qy

is just neglected. Because TSC is larger than TBO, the leading
instability upon lowering T is always into a superconducting
state, BO may appear only at a lower T . At the same time, at
large ξ , TSC by itself is reduced because over some range
of T the system fluctuates between superconductivity and
BO [58,64] (a light blue region in Fig. 26). The phase diagram
in Fig. 26 is similar to that in Ref. [58], but differs in that in
our analysis BO only emerges at ξ̃ > ξ̃cr, i.e., there exists a
quantum-critical point towards BO (QCP2) at some distance
away from a magnetic quantum-critical point QCP1.
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Y. Sidis, P. Steffens, X. Zhao, P. Bourges, and M. Greven,
Nature (London) 468, 283 (2010).

[9] Y. Lubashevsky, LiDong Pan, T. Kirzhner, G. Koren, and N. P.
Armitage, Phys. Rev. Lett. 112, 147001 (2014).

[10] G. Ghiringhelli, M. Le Tacon, M. Minola, S. Blanco-Canosa,
C. Mazzoli, N. B. Brookes, G. M. De Luca, A. Frano, D. G.
Hawthorn, F. He, T. Loew, M. Moretti Sala, D. C. Peets, M.
Salluzzo, E. Schierle, R. Sutarto, G. A. Sawatzky, E. Weschke,
B. Keimer, and L. Braicovich, Science 337, 821 (2012).

[11] A. J. Achkar, R. Sutarto, X. Mao, F. He, A. Frano, S.
Blanco-Canosa, M. Le Tacon, G. Ghiringhelli, L. Braicovich,
M. Minola, M. Moretti Sala, C. Mazzoli, Ruixing Liang, D.
A. Bonn, W. N. Hardy, B. Keimer, G. A. Sawatzky, and D. G.
Hawthorn, Phys. Rev. Lett. 109, 167001 (2012).

[12] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E.
Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan,
Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A.
Sawatzky, B. Keimer, and A. Damascelli, Science 343, 390
(2014).

[13] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E.
Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z.
Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343,
393 (2014).

[14] T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier,
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