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Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
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We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At
low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations
are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with
nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important
phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain
the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange
in the spin subsystem. We apply the results to the problem of equilibration of the one-dimensional Wigner
crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations
off each other. We discuss the implications of our results for the conductance of quantum wires at low electron
densities.
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I. INTRODUCTION

The low-energy properties of one-dimensional electron
systems are commonly described in the framework of the
Tomonaga-Luttinger liquid theory [1]. In this approach, the
electrons are described in terms of elementary excitations
with bosonic statistics, which have the meaning of waves
of charge and spin densities. These waves propagate at
different velocities [2], resulting in the separation of the
charge and spin of the electrons. A detailed theory of
spin-charge separation can be developed in the case of strong
repulsive interactions. This was first accomplished for the
one-dimensional Hubbard model by Ogata and Shiba [3], who
showed that the ground-state wave function of the system
can be expressed as a product of two separate wave functions
describing the charge and spin degrees of freedom.

Experimentally, one-dimensional electron systems are of-
ten realized in GaAs quantum wires [4]. In contrast to the
Hubbard model, electrons in quantum wires are not confined
to discrete lattice sites, and they interact via the long-range
Coulomb repulsion V (x) = e2/ε|x|. The density of electrons
in these systems is easily controlled by gates. At low density,
n � a−1

B , the Coulomb repulsion between electrons is much
larger than their kinetic energy, and in the ground state the
system forms a Wigner crystal [5]. (Here aB = ε�

2/me2 is the
Bohr radius in the material, ε is the dielectric constant, and m

is the effective mass of the electrons.)
This physical picture of strongly interacting one-

dimensional electron systems enables a simple description
of the charge excitations as phonons in the Wigner crys-
tal. Mathematically, they are accounted for by the phonon
Hamiltonian

H (0)
ρ =

∑
l

p2
l

2m
+ e2

2εa3

∑
l �=l′

(ul − ul′ )2

|l − l′|3 , (1)

where a = n−1 is the average interelectron distance, and the
lth electron is described by its momentum pl and displacement
from the equilibrium position, ul = xl − la.

As long as the displacements ul are small, the spins are
attached to the lattice sites. For the spins to move along the
crystal, neighboring electrons must be able to switch places
on the Wigner lattice. Such processes lead to the exchange
coupling of the spins [6],

H (0)
σ =

∑
l

J Sl · Sl+1. (2)

Because the exchange process involves two adjacent electrons
tunneling through the strong Coulomb barrier e2/ε|xl − xl+1|,
the coupling constant J is exponentially small,

J ∼ (naB)5/4 e2

εaB

exp

(
− η√

naB

)
, (3)

where η ≈ 2.798 [6–8].
The Hamiltonian given by Eqs. (1) and (2) describes

the charge and spin excitations in the Wigner crystal near
the ground state. At finite temperature, the electron density
fluctuates, resulting in thermal fluctuations of the exchange
constant (3). This limits the applicability of the Hamiltonian (1)
and (2) to relatively low temperatures, T � (e2/εaB )(naB)7/4.
Note that this range includes the most interesting temperature
regime T � J .

As expected, the charge and spin fluctuations described by
Eqs. (1) and (2) are decoupled from each other. Another inter-
esting feature of this Hamiltonian is its integrability. Indeed,
Eq. (1) describes noninteracting phonons, and integrability of
the spin- 1

2 Heisenberg model (2) was shown by Bethe [9] in
1931. A defining characteristic of integrable models is a large
number of integrals of motion, which prevents relaxation of the
system to equilibrium. Thus, although the Hamiltonian (1) and
(2) gives an adequate description of the equilibrium properties
of the system, corrections to it must be considered in order
to discuss the approach to equilibrium. Examples of physical
effects controlled by equilibration include various transport
phenomena in high-mobility quantum wires [10–16].

The first goal of this paper is to identify and evaluate the
leading-order corrections to the Hamiltonian (1) and (2). Such
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corrections fall into three categories. First, one should note
that the Wigner crystal is not a perfectly harmonic chain.
Anharmonic corrections to the Hamiltonian (1) are determined
by the third and higher derivatives of the interaction potential
and are well understood. Corrections of the second type
account for coupling between the charge and spin excitations.
They can be understood by noting that the exchange constant
J in Eq. (2) depends on the electron density, Eq. (3), which
fluctuates as the phonons propagate through the system.
Corrections of the third type appear in the spin channel.
Similarly to the nearest-neighbor exchange coupling (2), they
are caused by quantum tunneling processes resulting in some
electrons changing places on the Wigner lattice.

Our second goal is to develop a theory of equilibration of
a one-dimensional Wigner crystal at the lowest temperatures,
T � J . The full equilibration of one-dimensional systems is
an exponentially slow process, as it requires backscattering
of highly excited hole quasiparticles [10,17–19]. In the case
of strong interactions, the hole becomes a spinon excitation
in the spin chain formed on the lattice sites of the Wigner
crystal; see Eq. (2). Because the typical energy of the spinon
J is small compared to the Fermi energy, the equilibration
rate is greatly enhanced in this regime. It is dominated by the
processes of scattering of spinons by the thermal excitations of
the system. The evaluation of the scattering rate relies heavily
on the preceding results for the form and magnitude of the
integrability-breaking perturbations in the one-dimensional
Wigner crystal.

We discuss the corrections to the Hamiltonian (1) and
(2) in Sec. II. Study of the exchange processes beyond
the nearest-neighbor coupling requires the calculation of the
relevant tunneling amplitudes in the WKB approximation.
We evaluate the WKB action for the dominant three-particle
exchange process in Sec. III. In addition to corrections to the
nearest-neighbor exchange constant (3), this process generates
exchange coupling of the next-nearest-neighbor spins in the
crystal, which breaks the integrability of the Heisenberg
chain. In Sec. IV, we use the results of Secs. II and III to
evaluate the rate of full equilibration of the Wigner crystal at
low temperatures. In Sec. V, we summarize our results and
discuss their implications for the temperature dependence of
conductance of quantum wires.

II. HAMILTONIAN OF THE WIGNER CRYSTAL

One-dimensional electrons interacting via sufficiently
strong repulsion form a periodic chain regardless of the spatial
dependence of the interaction potential V (x), except for an
extremely short-ranged interaction. In this paper, we focus
on the case of pure Coulomb repulsion, V (x) = e2/ε|x|,
corresponding to the traditional definition of the Wigner
crystal. The regime of strong repulsion is realized at low
electron density n, when the typical energy of Coulomb
repulsion (e2/ε)n greatly exceeds the typical kinetic energy
(�2/m)n2 in a free-electron gas. Thus the Wigner crystal limit
is achieved at naB � 1, or at

rs = 1

2naB

� 1. (4)

It is worth mentioning that in one dimension, quantum
fluctuations destroy long-range order even at zero temperature,
and the Wigner crystal picture refers only to the short-range
ordering of electrons.

The full microscopic Hamiltonian of one-dimensional
electrons with Coulomb interactions is given by

H =
∑

l

p2
l

2m
+ 1

2

∑
l �=l′

e2

ε|xl − xl′ | . (5)

Our goal in this section is to develop the low-energy description
of the system at naB � 1.

A. Spin-charge separation

To leading order in naB , electrons do not switch places on
the Wigner lattice. Indeed, in order to do so, one-dimensional
electrons must approach each other and experience strong
Coulomb repulsion. As a result, this process is essentially
tunneling under the Coulomb barrier, and its amplitude is
exponentially small.1 As long as electrons do not switch places,
their spins do not interact, and each state of N particles is
2N -fold degenerate.

The effect of the tunneling processes can be understood
as follows. Because the Hamiltonian (5) does not depend on
spins, the eigenstates of the system factorize into the product
of the coordinate and spin components:

ψ(x1,σ1; . . . ; xN,σN ) = χσ1,...,σN
φ(x1, . . . ,xN ). (6)

The coordinate wave function φ(x1, . . . ,xN ) satisfies

Hφ = Eφ (7)

with H given by Eq. (5). One can interpret Eq. (7) as the
Schrödinger equation for a system of N spinless distin-
guishable particles. In the absence of tunneling, the spatial
ordering of the particles is preserved. Furthermore, for any
state φ(x1, . . . ,xN ), there are a total of N ! degenerate states
obtained from it by all permutations of the coordinates x1, . . .,
xN . The strongest tunneling process permutes two adjacent
particles. Thus, at low energies, the Hamiltonian (5) can be
approximated as

H = Hρ − J

2

∑
l

P (xl,xl+1), (8)

where P (xi,xj ) is the operator of the permutation of the
coordinates of the ith and j th particles. The constant J can be
computed in the WKB approximation [6–8] and is given by
Eq. (3).

The operator Hρ in Eq. (8) coincides with Eq. (5) with
the additional condition that no switching of the position of
the particles is allowed. It can be formally defined by adding
to Eq. (5) the pointlike repulsive potential Aδ(xl − xl′ ) with
A → +∞. In the Wigner crystal approximation, one expresses
the coordinates of the particles in terms of their displacements

1Strictly speaking, the one-dimensional Coulomb barrier is impen-
etrable [35]. On the other hand, quantum wires always have finite
width w, which results in the finite tunneling amplitude depending
only logarithmically on w; see Ref. [8].
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from lattice sites, xl = la + ul . Expanding the interaction term
to second order in ul , one obtains the phonon Hamiltonian (1).

When applying the result (8) to a system of identical
fermions, one should bear in mind that the wave function (6)
changes sign upon simultaneous permutation of coordinates
xl ↔ xl+1 and spins σl ↔ σl+1. Thus for fermions the two
permutations are related as P (xl,xl+1) = −Pσl,σl+1 , where

Pσi,σj
= 1

2 + 2Si · Sj (9)

is the operator of permutation of spins i and j . Using this
result, we find that the second term in Eq. (8) gives the spin
Hamiltonian (2).

Equations (1) and (2) represent the leading contributions to
the low-energy Hamiltonian of the system. As discussed above,
the resulting theory is integrable, which precludes scattering of
either charge or spin excitations. The latter is made possible by
the subleading contributions to the Hamiltonian. They include
corrections in the charge sector, in the spin sector, and the
coupling between the charge and spin sectors.

B. Charge sector

It is convenient to rewrite Eq. (1) in terms of the phonon
operators bq , b

†
q using the standard relations

ul =
∑

q

√
�

2mNωq

(bq + b
†
−q)eiql, (10)

pl = −i
∑

q

√
�mωq

2N
(bq − b

†
−q)eiql . (11)

Here N = nL is the total number of electrons in a system of
size L, and the phonon frequencies are found by solving the
classical equations of motion with the Hamiltonian (1),

�ωq = 2(naB)3/2 e2

εaB

[ ∞∑
l=1

1 − cos(ql)

l3

]1/2

. (12)

This yields

H (0)
ρ =

∑
q

�ωq

(
b†qbq + 1

2

)
. (13)

The behavior of ωq at q → 0 is discussed in Appendix A.
Beyond the harmonic approximation, one finds corrections

to the Hamiltonian (13), which include terms of third and
higher powers in the phonon operators bq and b

†
q and can

be interpreted as interactions of the phonons. Expanding
the Coulomb interaction in Eq. (5) to all orders in electron
displacements, one can express the anharmonic corrections to
H (0)

ρ as

Hρ = H (0)
ρ +

∞∑
r=3

V̂ (r)
ρ , (14)

V̂ (r)
ρ = e2

εar+1

∑
l>l′

(ul′ − ul)r

(l − l′)r+1
. (15)

This expression can be equivalently written in terms of the
phonon operators using Eq. (10).

C. Spin sector

The Hamiltonian (2) accounts for the processes of two
nearest-neighbor electrons switching positions on the Wigner
lattice. Additional contributions to the spin Hamiltonian will
appear from any cyclic exchange process, including exchanges
of two next-nearest neighbors, three consecutive electrons,
four consecutive electrons, etc. The four processes we listed
were considered in the case of a quasi-one-dimensional Wigner
crystal [20,21]. The range of electron densities considered
there was above the transition from a purely one-dimensional
Wigner crystal into the zigzag phase. Based on the results of
Refs. [20,21] in the region of lowest densities studied, where
the zigzag distortion is small, we conclude that the strongest
exchange is that of nearest neighbors, and the next strongest
one involves three consecutive electrons.

One can account for the three-particle exchange processes
following the prescription of Sec. II A. In addition to the two-
particle exchange term in Eq. (8), one obtains the contribution
of the form

− J̃

2

∑
l

[P (xl,xl+1,xl+2) + P (xl,xl+2,xl+1)], (16)

where the operator P (xi,xj ,xk) performs a cyclic permutation
of coordinates xi → xj → xk → xi . Because this is an even
permutation, its outcome is equivalent to the permutation
of electron spins Pσi,σk,σj

. One can therefore rewrite the
perturbation (16) as

− J̃

2

∑
l

[
Pσl,σl+1,σl+2 + Pσl,σl+2,σl+1

]

= −J̃
∑

l

[
1

4
+ Sl · Sl+1 + Sl+1 · Sl+2 + Sl · Sl+2

]
,

where we used the expression for the three-spin permutation
in terms of the spin operators obtained in Ref. [22]. Omitting
the inessential constant, we get the following perturbation in
the spin Hamiltonian due to the exchange of three consecutive
electrons:

V̂σ = −
∑

l

J̃ [2Sl · Sl+1 + Sl · Sl+2]. (17)

The constant J̃ will be evaluated in the WKB approximation
in Sec. III. We will see that J̃ is exponentially smaller than
the nearest-neighbor exchange constant J . Thus the first term
on the right-hand side of Eq. (17) gives only a negligible
correction to J . On the other hand, the second term couples
next-nearest-neighbor spins. Such perturbations break the
integrability of the Heisenberg model (2) and give rise to
relaxation of spin excitations.

D. Spin-charge coupling

So far we discussed corrections to the low-energy Hamil-
tonian of the Wigner crystal given by Eqs. (1) and (2), which
give rise to the scattering of excitations separately in the charge
and spin sectors. As a result of such scattering, the excitations
equilibrate within each sector, but not with the excitations
in the other sector. Full equilibration of the system requires
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coupling of the charge and spin excitations, which we discuss
below.

The magnitude of the exchange constant J depends strongly
on the electron density [see Eq. (3)]. The latter varies when
phonons propagate through the system, giving rise to the
coupling of the charge and spin degrees of freedom [22].
One can account for this effect by evaluating J in Eq. (2),
using instead of the average density n in Eq. (3) the position-
dependent electron density in the presence of the phonon
deformation:

n → 1

a + ul+1 − ul

= n

1 + n(ul+1 − ul)
. (18)

To lowest order in the phonon displacements and naB , this
procedure results in the coupling of the charge and spin degrees
of freedom in the form

V̂ρσ = −J
η

2
√

naB

∑
l

n(ul+1 − ul) Sl · Sl+1. (19)

The displacements ul in (19) can be expressed in terms of
the phonon operators using Eq. (10). The above procedure
is justified as long as the phonon density fluctuations remain
approximately uniform at the scale of interparticle distance,
i.e., for phonons with |q| � 1. The same condition ensures
that the density fluctuations are static on the scale of the WKB
tunneling time.

III. THREE-PARTICLE EXCHANGE IN
THE WKB APPROXIMATION

Spin exchange in the Wigner crystal is caused by quantum
tunneling processes which allow electrons to switch places
on the Wigner lattice. We discussed these exchange processes
in Secs. II A and II C. In particular, we found the expression
(17) for the leading-order correction to the spin Hamiltonian
(2). In this section, we discuss the magnitude of the respective
exchange constant J̃ .

At small naB , the tunneling amplitudes are small and can
be evaluated in the WKB approximation. We perform the
calculation using the instanton technique. In this approach,
the tunneling amplitudes are controlled by the imaginary-time
action,

S[{xl(t)}] =
∫ (∑

l

m

2
ẋ2

l +
∑
l<l′

e2

ε|xl − xl′ |

)
dt. (20)

It is convenient to introduce the dimensionless coordinates Xl

and time τ as

xl = 1

n
Xl, t = �εaB

(naB)3/2e2
τ. (21)

This procedure brings Eq. (20) to the form

1

�
S[{xl(t)}] = 1√

naB

η[{Xl(τ )}], (22)

where η is the dimensionless action,

η[{Xl(τ )}] =
∫ (∑

l

1

2
Ẋ2

l +
∑
l<l′

1

|Xl − Xl′ |

)
dτ. (23)

It is minimized for the trivial trajectory Xl(τ ) = l.

The cyclic exchange of three particles in Eq. (16) is
described by trajectories with boundary conditions Xl = l at
τ → −∞ and

X0 = 2, X1 = 0, X2 = 1; Xl = l, l �= 0,1,2 (24)

at t → +∞. In the WKB approximation, the coupling constant
J̃ is given by

J̃ = J̃ ∗ exp

(
− η̃√

naB

)
, (25)

where η̃ is the difference between the minimum action of
the cyclic exchange trajectory and the action of the trivial
trajectory Xl(τ ) = l. We evaluate the instanton action and
obtain η̃ numerically in Sec. III A. The preexponential factor
J̃ ∗ is discussed in Sec. III B.

A. Numerical evaluation of the instanton action

The full consideration of any exchange of particles in the
Wigner crystal requires that the motion of all particles forming
the crystal is taken into account. In practice, the consideration
of a large number of them is feasible. Assuming that in addition
to n particles exchanging positions, N spectators (N/2 on
each side of the exchanging cluster) are free to move from
their equilibrium positions, the numerical minimization of the
dimensionless action Eq. (23) over the particle trajectories
Xl(τ ) is straightforward to set up. The case of a single instanton
where two adjacent particles exchange positions has been
examined in detail previously [7]. In general, the problem
is equivalent to solving a system of n + N second-order
differential equations of motion with appropriate boundary
conditions reflecting the initial and final state of the system.

We take the opportunity here to introduce a shorthand
notation for relevant exchanges, denoting them by the index
at static equilibrium of the particles involved. For example,
[01] stands for the two-particle exchange involving electrons
labeled by l = 0 and 1. Multiple exchanges can be chained
together, as we will see below.

One complication is the divergence of the bare Coulomb
interaction and the treatment of the associated singularity when
two particles occupy the same position in the course of the
exchange. There are various well-documented methods of how
to treat such singularities in order to obtain the solutions to the
corresponding differential equations of motion. It is simpler
and better suited for our purposes to consider a regularized
Coulomb interaction by introducing a small cutoff δ:

1

|Xl − Xl′ | → 1

|Xl − Xl′ | + δ
, (26)

and study the evolution of the solutions as δ → 0.
Considering two interacting instantons brings additional

complications in the calculation which will be explained
below. Starting with the simplest nontrivial exchange beyond
nearest-neighbor, one has to consider the exchange of three
particles, which is illustrated in panel (a) of Fig. 1. Following
the convention adopted above, we call it [01−12] for the sake
of brevity.

At sufficiently large temporal distance τ0 between the two
interacting instantons, the calculation is equivalent to that of
two single instantons, resulting in an exponent two times
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τ
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2

3

τ
0

1

2

3

4

τ

(a)  [01-12] (b)  [01-23] (c)  [01-34]

FIG. 1. (Color online) (a) The exchange of three particles as it unfolds in imaginary time. The numbers indicate the equilibrium positions
of the exchanging particles. We call this type of exchange [01−12] following the convention introduced in the main text. The spectators, i.e.,
the other particles in the chain that extend indefinitely above and below, are assumed frozen in place and are not shown. (b) and (c) The two
most relevant exchanges in addition to [01−12]. We dub them [01−23] and [01−34], respectively, for obvious reasons. Note that in the case
of [01−34], particle 2 is, in fact, a spectator.

that of the single instanton: η∞ = 2η; see Appendix B for
a more detailed exposition. At this stage, the minimization
of the dimensionless action Eq. (23), i.e., the solution of the
differential equations of motion, is carried out at fixed distance
τ0 by splitting the imaginary time interval into appropriate
pieces and joining the solutions using standard methods.

By examining the action as τ0 is varied, we find that
the instantons attract at large distances and repel at short
distances. The system permits an intuitive electrostatic analogy
in terms of interacting dipoles, which is further developed in
Appendix B [see Eq. (B10)]. Bringing the instantons closer
together, we discover that their interaction has a minimum at
a temporal distance τ0 of the order of the temporal extent of
the instanton. That characteristic distance τ0 depends on the
number of spectators that are allowed to move in addition to
the exchanging triad. As a result, the distance between the
instantons becomes an additional minimization parameter for
the numerical treatment of this problem. Therefore, the full
calculation consists of a minimization with respect to τ0 on
top of each minimization of the dimensionless action Eq. (23).

Similar considerations apply for the more complicated
exchanges shown in panels (b) and (c) of Fig. 1. Among a
large set of possible candidates, these are the ones that are
intuitively most relevant. Detailed calculations confirm that
they are negligible compared to the contribution of [01−12].

Figure 2 shows how the difference �η = ηmin − η∞ be-
tween the exponent corresponding to infinite distance τ0

between the instantons and that obtained at the minimum
depends on the number of spectators and the cutoff used in
the calculations. A cutoff δ = 10−3 is more than adequate for
this comparison, and it in fact gives an excellent approximation
to the result one would obtain with an unscreened Coulomb
interaction for [01−23] and [01−34]. Given the considerable
separation between the curves, it is reasonable to claim that
even at the δ → 0 limit, the exchange [01−12] of three
consecutive particles is the dominant one.

An important observation that we should make at this point
is that while the exponents themselves converge quite slowly to
their δ → 0 values, the difference �η = ηmin − η∞ between

the exponent obtained for infinite distance τ0 between the
instantons and that at the minimum converges much faster.
Typically, one would have to go down to δ ∼ 10−7 to obtain
a value of the exponent that is in reasonable agreement with
the result of the calculation using an unscreened Coulomb
interaction. The calculation with δ ∼ 10−4 gives an excellent
approximation to the result for �η one would obtain with
an unscreened Coulomb interaction. Use of the regularized
Coulomb interaction simplifies the calculation significantly
from two aspects: computational cost and complexity of the
code involved.

0 2 4 6 8 10 12 14 16 18 20

−0.012

−0.010

−0.008

−0.006

−0.004

−0.002

0

number of spectators

η m
in
−

η ∞

 

 

[01−12]

[01−23]

[01−34]

FIG. 2. (Color online) A comparison of the difference �η =
ηmin − η∞ between the exponent obtained for infinite distance τ0

between the instantons and that at the minimum for the various
kinds of exchanges considered here. [01−12], i.e., the three-particle
exchange, dominates. The curves shown have been obtained using
a cutoff δ = 10−3 for the Coulomb interaction, which is more than
adequate for this kind of comparison. In fact, [01−23] and [01−34]
have for all practical purposes converged to their δ → 0 values.
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−5 x 10−3

number of spectators

Δη

 

 

δ=10−1

δ=10−2

δ=10−3

δ=10−4

FIG. 3. (Color online) The difference �η = ηmin − η∞ for the
dominant three-particle exchange as a function of the cutoff δ

used in the calculation. The result for δ = 10−4 is an excellent
approximation to the result one would obtain with an unscreened
Coulomb interaction.

Focusing on the three-particle exchange, we were able
to extend the calculation to 25 spectators on each side of
the exchanging triad, 50 spectators total. Figure 3 shows the
evolution of �η as a function of the cutoff δ and the number
of spectators that are allowed to move. We find that the value
quickly saturates for decreasing δ. As mentioned above, the
calculation with δ ∼ 10−4 gives an excellent approximation
to the result one would obtain with an unscreened Coulomb
interaction.

With this extended data set, it is possible to extract the
asymptotic behavior in the limit of large N . Neglecting
logarithmic corrections, an excellent approximation is the
expression taken from Ref. [7]:

(�η)N = �η + α

N2
. (27)

The above formula results in excellent fits, and we obtain
�η0112 = −0.013 24 ± 0.000 01 and α0112 = 0.21 ± 0.01 in
the limit where all particles participate in the three-particle
exchange.

Using a similar procedure and by comparing the value
obtained from the extended data set and that shown in Fig. 2,
we obtain estimates for the parameters relevant to the other
two exchanges, [01−23] and [01−34]. In particular, we find
that �η0123 = −0.0036 ± 0.0002, α0123 = 0.11 ± 0.05 and
that �η0134 = −0.0016 ± 0.0002, α0134 = 0.08 ± 0.05.

B. Preexponential factor

As we saw in Sec. III A, the dimensionless instanton action
η̃ < 2η. This fact is important for the theory of equilibration
of the Wigner crystal; see Sec. IV. In terms of the instanton

trajectories, it is a consequence of the attraction of single
instantons at large temporal distances. This attraction can be
understood analytically; see Appendix B. On the other hand,
the attraction is very weak, �η ∼ 10−2. This implies that
the three-particle instanton consists of two single instantons,
which are not significantly distorted by the interaction with
each other; see Fig. 1(a). The approximation of two weakly
coupled instantons enables us to find the preexponential factor
J̃ ∗ in the expression (25) for the exchange constant J̃ while
avoiding the evaluation of the fluctuation determinant near the
instanton trajectory.

We start by considering the contribution of a single instan-
ton to the path integral representing the evolution operator,

I

∫ T

0
dt = J

2�
T . (28)

Here I includes the instanton action and the integral over
the Gaussian fluctuations near the instanton trajectory; the
integral over the position of the instanton τ accounts for the
zero mode. The right-hand side of Eq. (28) is obtained by
isolating the contribution of the nearest-neighbor exchange
in the Hamiltonian (8) and expanding the evolution operator
e−HT /� to first order in J . Equation (28) enables us to identify
I = J/2�.

Next, we consider the contribution to the path integral due
to a single three-particle exchange shown in Fig. 1(a),

I 2
∫ T

0
dt1

∫ T

τ1

dt2 e−δη(τ2−τ1)/
√

naB = J̃T
2�

+ 1

2

(
JT
2�

)2

. (29)

Here the relation between t1,2 and τ1,2 is given by Eq. (21).
The quantity δη(τ ) is defined as the difference between the
action of a two-instanton trajectory with the distance τ between
the instantons and the action η∞ = 2η of two instantons at
infinite separation, τ → ∞; its minimum value coincides with
�η. The numerically evaluated δη(τ ) is shown in Fig. 4. On
the left-hand side of Eq. (29), we neglected the effect of the
interaction between the instantons on the Gaussian fluctuations
about the instanton trajectories. On the right-hand side, we
accounted for the fact that three-particle exchange processes
appear as a result of the three-particle permutation operators
(16) in the Hamiltonian, or in the second-order perturbation
theory in the nearest-neighbor exchange J . Using the relation
I = J/2�, we express J̃ as

J̃ = J 2 εaB

2(naB)3/2e2
F (naB), (30)

where

F (x) =
∫ ∞

0

[
exp

(
−δη(τ )√

x

)
− 1

]
dτ. (31)

The integral (31) converges because, as discussed in
Appendix B, at large τ the interaction of single instantons
falls off as δη(τ ) ∝ τ−2; see Eq. (B10).

At x → 0, the integral (31) can be evaluated in the saddle-
point approximation,

F (x) =
√

2π

δη′′ x1/4e−�η/
√

x, (32)
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FIG. 4. (Color online) Interaction between two instantons
δη(τ ) = η(τ ) − η∞ at a temporal distance τ evaluated numerically.
The inset shows the numerically evaluated function F (x) defined by
Eq. (31).

where �η ≈ −0.013 24 and δη′′ ≈ 0.024 are the values of
δη(τ ) and its second derivative at the minimum. Substituting
Eq. (32) into (30), we find that J̃ depends on naB as

J̃ ∼ (naB)5/4 e2

εaB

exp

(
−2η + �η√

naB

)
. (33)

Note that the sign of the exchange constant is positive, and
the preexponential factor up to a numerical factor coincides
with the one for the nearest-neighbor exchange (3). This is the
expected behavior for any exchange process controlled by a
well-defined instanton trajectory.

It is important to note that the saddle-point approximation
(32) holds only at x � (�η)2. In physical terms, this means
naB � 10−4. On the other hand, the WKB approximation
is applicable under the less stringent condition naB � 1. To
evaluate the integral (31) in the intermediate region 10−4 �
x � 1, one can completely neglect the attraction of single
instantons and the shallow minimum of δη(τ ) associated with
it. Instead, one should notice the strong repulsion of the cores
of the instantons at short distances. Taking this repulsion into
consideration, one can approximate the integrand of Eq. (31)
by −θ (τ0 − τ ), where θ (x) is the unit step function and τ0(x)
is defined as the solution of the equation δη(τ0) = x1/2. This
yields

F (x) = −τ0(x). (34)

The cores of single instantons repel exponentially, δη(τ ) ∼
e−λτ with λ ∼ 1. In that case, τ0(x) depends on x logarithmi-
cally, and we find

F (x) = − 1

2λ
ln

1

x
. (35)

Interestingly, the results (34) and (35) are negative. This means
that the next-nearest-neighbor exchange constant (30) has the
ferromagnetic sign only at naB < x∗, where x∗ ∼ 10−4, and
becomes antiferromagnetic at higher densities, naB > x∗. In
this regime,

J̃ ∼ −J 2 εaB

(naB)3/2e2
ln

1

naB

. (36)

The result of numerical evaluation of F (x) is shown in Fig. 4.
The sign of the exchange constant (30) changes at naB = x∗ ≈
3 × 10−4.

IV. RATE OF FULL EQUILIBRATION OF THE WIGNER
CRYSTAL AT LOW TEMPERATURES

In Secs. II and III, we studied the corrections to the leading-
order Hamiltonian of the Wigner crystal given by Eqs. (1) and
(2). These corrections break the integrability of the problem
and give rise to the scattering of excitations. As a result, the
system relaxes to thermodynamic equilibrium. In this section,
we study the corresponding equilibration rate in the regime of
low temperatures, T � J .

This problem has been solved previously for weakly
interacting electrons [10], for the spinless Wigner crystal
[17], as well as for a spinless quantum liquid with arbitrary
interaction strength [18,19,23]. The equilibration proceeds in
two stages. First, the low-energy excitations collide with each
other and achieve thermal equilibrium. At low temperatures,
the momenta of these excitations are small, p � �n, and to a
first approximation the collisions conserve the total momentum
of the excitations, Pex. As a result, the equilibrium state of
the gas of excitations is characterized by Pex �= 0. This first
stage of the equilibration process proceeds relatively quickly,
with the typical relaxation time τ0 following a power-law
temperature dependence.

The second stage of the equilibration process involves slow
relaxation of Pex to its equilibrium value. For a system at rest,
the total momentum of the excitations in equilibrium is zero,
and the approach to equilibrium follows the usual relaxation
law,

Ṗex = −Pex

τ
. (37)

The microscopic processes driving the relaxation (37) involve
excitations diffusing in momentum space from the vicinity of
one Fermi point to the other. The bottleneck in this process is
the center of the Fermi sea where the excitation energy reaches
its maximum value �. As a result, the rate of full equilibration
follows the activated temperature dependence τ−1 ∝ e−�/T .

In a spinless system, the excitation with the lowest energy
in the center of the Fermi sea is essentially a hole dressed
by electron-electron interactions. The full expression for the
equilibration rate is given by [18]

τ−1 = 3�k2
F B

π2
√

2πm∗T

(
�v

T

)3

e−�/T . (38)

Here, kF is the Fermi wave vector and v is the velocity of
the low-energy excitations. The parameters m∗ and B are,
respectively, the effective mass and the diffusion constant
in momentum space for the hole excitation at the center of
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p0 pF 2pF

εp

Δ

FIG. 5. The spectrum of elementary excitations of a one-
dimensional Wigner crystal consists of two branches, phonons and
spinons, shown by dashed and solid lines, respectively. Equilibration
of the system is controlled by the scattering processes in which a
quasiparticle crosses the edge of the Brillouin zone p = pF , i.e.,
umklapp processes. At low temperatures, the occupation numbers of
the excitations at the edge of the Brillouin zone are exponentially
small. Because the energy of a spinon with momentum pF is much
smaller than that of a phonon, the contribution of the latter is
negligible. Each umklapp process includes absorption of one acoustic
excitation and emission of another one. Processes involving two
acoustic phonons and two acoustic spin excitations are shown by
thin dashed and solid lines, respectively. Mixed processes involving
one of each type of acoustic excitations are also allowed.

the Fermi sea. The temperature dependence of the diffusion
constant is given by

B = 4π3n2T 5

15�5m2v8

(
�′′ − 2v′

v
�′ + �′2

m∗v2

)2

. (39)

The primes in Eq. (39) denote derivatives with respect to the
particle density n. We shall now discuss how these results
change in the presence of spins.

A. Equilibration rate for a Wigner crystal at T � J

The general picture of two-stage relaxation also applies
to systems with spins. In this case, there are two types
of low-energy excitations in the system, corresponding to
the charge and spin degrees of freedom. For instance, at
strong interactions the charge excitations are the phonons
in the Wigner crystal, cf. Eq. (13), whereas the elementary
excitations of the spin Hamiltonian (2) are the so-called
spinons with the excitation spectrum [24,25],

ε(q) = πJ

2
sin q. (40)

Here the wave vector of the excitations on the spin chain is
related to their physical momentum as q = p/�n.

Because of the smallness of the exchange constant J in
Eq. (40), the spinons are the lowest-energy excitations of
the system at any given momentum; see Fig. 5. Thus the
full equilibration of the Wigner crystal is achieved by their
diffusion in momentum space, similar to that of the holes in
spinless systems. We therefore conclude that the activation
energy � that will appear in the generalization of Eq. (38) to

the spin-degenerate case will be given by the maximum energy
of the spinon, and the effective mass will be determined by the
curvature of ε(q) near the maximum,

� = πJ

2
,

1

m∗ = πJ

2�2n2
. (41)

At q near 0 or π , the spinon spectrum is linear with the
velocity

vσ = πJ

2�n
. (42)

Such low-energy spin excitations can be equivalently repre-
sented in terms of the bosons in the Tomonaga-Luttinger liquid,
which for particles with spin is described by the Hamiltonian
[1]

HTL =
∑

p

[vρ |p|b†pbp + vσ |p|c†pcp]. (43)

Here bp and cp are the bosonic annihilation operators of
the charge and spin excitations, while vρ and vσ are the
corresponding velocities.

At the first stage of the equilibration process, the bosonic
excitations collide with each other, and their distribution
function relaxes to the equilibrium form

N (ρ,σ )
p = 1

e(vρ,σ |p|−up)/T − 1
. (44)

These equilibration processes are caused by the integrability-
breaking perturbations (15), (17), and (19). Because typical
excitations participating in this process have energies of order
temperature, the relaxation rate τ−1

0 is only power-law small in
T . Compared with the exponentially slow rate of full relaxation
(38), these processes can be considered instantaneous, and
the magnitude of τ−1

0 has no effect on the subsequent
discussion.

The parameter u in Eq. (44) accounts for momentum
conservation in the boson collisions. The total momentum of
the gas of excitations is then easily found,

Pex = πLT 2

3�

(
1

v3
ρ

+ 1

v3
σ

)
u. (45)

It is important to keep in mind that Eq. (45) is not the full
momentum of the system. In the Luttinger liquid theory, the
latter is given by [26]

P = pF (NR − NL) + Pex, (46)

where the zero modes NR and NL have the meanings of the
total numbers of the right- and left-moving electrons in the
system. The first term in Eq. (46) accounts for the simple fact
that even in the absence of excitations, the system can move
as a whole and thus have a nonvanishing momentum.

At u > 0, the occupation numbers of the bosonic acoustic
excitations (43) depend on the direction of motion, with the
right-moving states being more populated than the left-moving
ones at the same energy. Thus when spinons with momenta
near pF collide with acoustic excitations, their momentum is
more likely to increase than decrease. This gives rise to a net
current of spinons in momentum space through the edge of the
Brillouin zone p = pF ; see Fig. 5. As a result of such umklapp
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scattering processes, the right-moving spinons convert to left-
moving ones, leading to a decrease of velocity u. Since the
total momentum (46) of the system is conserved, during this
second stage of the equilibration process the momentum is
being transferred from excitations to the zero modes [13,23].
This corresponds to backscattering of electrons in the system.
The resulting effects on the electronic transport are discussed
in Sec. V.

At low temperature T � �, the typical change of momen-
tum T/vρ,σ in the processes shown in Fig. 5 is small compared
to the typical scale

√
m∗T at which the spinon distribution

function varies near the edge of the Brillouin zone. This
enables one to evaluate the rate of change of the momentum
of excitations Ṗex using the Fokker-Planck equation for the
spinon distribution function,

∂tf = −∂pJ, J = −B

2

[
ε′
p

T
+ ∂p

]
f, (47)

where εp = ε(p/�n). By imposing the boundary conditions
on the distribution function obtained with the help of Eq. (44),
one finds

Ṗex = −u
2L�

3k2
F B

πT
√

2πm∗T
e−�/T . (48)

The derivation is identical to the case of diffusion of holes
in a spinless system [17,18,23], with the exception of a
factor of 2 accounting for two possible spin polarizations of
spinons. In this approach, the diffusion constant B appears
as a phenomenological parameter. Its evaluation requires a
microscopic treatment of the coupling of the spinons to the
bosonic excitations, and it will be discussed below.

We can now combine the results (45) and (48) with the
definition (37) of the equilibration time τ . The resulting
expression coincides with Eq. (38) with the substitution
v3 → 2/(v−3

ρ + v−3
σ ). Taking advantage of the fact that in the

Wigner crystal vσ � vρ and using Eqs. (41) and (42), the result
can be brought to the form

τ−1 = 3π3B

32n2

(
J

T

)7/2

exp

(
−πJ

2T

)
. (49)

In a system described by the leading-order Hamiltonian (1)
and (2), integrability results in a vanishing diffusion constant
B. To evaluate it, one has to consider the corrections to the
Hamiltonian discussed in Sec. II.

B. Diffusion of spinons in momentum space

The parameter B in the expression (49) for the equilibration
rate has the meaning of the diffusion constant describing the
motion of spinons in momentum space near the top of the
spinon spectrum. It is formally defined [18] as

B = 1

�2

∑
δp

(δp)2W (δp), (50)

where W (δp) is the rate of the scattering events changing
the spinon momentum by δp. The scattering originates from
the interaction of the spinon with the low-energy excitations
of the system described by Eq. (43).

It is convenient to classify the low-energy excitations
as belonging to one of the four branches, ρR, ρL, σR,
and σL, depending on their charge or spin nature, and the
direction of motion. Because the velocity of the spinon near
the top of the spectrum is small compared to both vσ and vρ ,
scattering processes involving excitations in only one of the
four branches are forbidden by conservation of momentum
and energy. Thus, the dominant scattering processes involve
two branches, and the scattering rate has the following general
form:

W (δp) = 1

2

∑
α,β

∑
a,e

Wαβ
ae (δp). (51)

Here a and e label the branches from which excitations are
absorbed and emitted, respectively, whereas α and β denote
the spin projections of the spinon before and after the scattering
event. The partial scattering rates are obtained from Fermi’s
golden rule,

Wαβ
ae (δp) = 2π

�

∑
pa,pe

Mαβ
pape

(δp) δ(εp − εp+δp + vapa − vepe).

(52)

Here va and ve denote the velocities of the absorption and
emission branches, which according to Eq. (43) are vρR =
−vρL = vρ and vσR = −vσL = vσ . Momentum conservation
is ensured by the matrix element of the T matrix entering the
definition

Mαβ
pape

(δp) =
∑
i,f

wi|〈f ; β,p + δp|T̂ |i; α,p〉|2

×δ
P

f
a ,P i

a−pa
δ
P

f
e ,P i

e +pe
. (53)

In this expression, i and f refer to the initial and final states of
the Luttinger liquid, wi is the Gibbs weight of the initial state,
and p and p + δp are the values of the spinon momentum
before and after the collision. Finally, P

i(f )
a is the total initial

(final) momentum of the excitation branch a, and P
i(f )
e is that

for branch e.
Each of the indices a and e in Eq. (51) takes one of the

four values, ρR, ρL, σR, and σL, resulting in 16 possible
contributions to the scattering rate. It is convenient to group
these contributions into three classes, determined by the
charge or spin nature of the two branches participating in
spinon scattering. Accordingly, the diffusion constant (50) is
presented as a sum of three contributions,

B = Bρρ + Bρσ + Bσσ . (54)

Here Bρρ accounts for the four types of processes in which
a and e are chosen from the branches ρR and ρL, the
contribution Bσσ accounts for the four terms in which only
σR and σL branches are involved, and Bρσ includes the
eight remaining types of processes. To evaluate the three
contributions to B, we need to consider the coupling of the
spinon to the acoustic spin and charge excitations.

1. Effective Hamiltonian of the spinon interacting
with acoustic excitations

The general form of the Hamiltonian of the Wigner crystal
discussed Sec. II is valid in a rather wide temperature interval
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T � (e2/εaB)(naB)7/4. To discuss equilibration of the system
at T � J , where the density of high-energy spinons is
exponentially small, it is sufficient to consider the interaction
of a single spinon with acoustic spin and charge excitations.
Toward that end, we introduce an effective Hamiltonian de-
scribing the motion of a spinon coupled to the acoustic modes.

In the low-energy limit, the acoustic modes are described
by the Tomonaga-Luttinger Hamiltonian (43). In the effective
theory, the spinon is treated as a mobile impurity with spectrum
(40) and spin S. The Hamiltonian of a free spinon can be
written as

H (0)
sp = ε (−ia∂Y ) � � − �

2 (−i∂Y − πn/2)2

2m∗ . (55)

The last expression in Eq. (55) is valid near the top of the
spinon spectrum, and the values of � and m∗ are given by
Eq. (41).

The parameter � = πJ/2 in Eq. (55) depends on the
particle density n. This enables us to obtain the coupling of the
spinon to the phonons following the procedure of Sec. II D,

V̂ph = −nu′(Y )�′, (56)

where �′ = d�/dn; cf. Eq. (39).
Quite generally, the coupling of an impurity with spin S to

the low-energy spin degrees of freedom may be described by
a perturbation of the form

V̂K = JR
K S · sR(Y ) + JL

K S · sL(Y ).

Here Y is the position of the spinon in Lagrangian variables
defined as y = la [19]. A Hamiltonian of this form was applied
recently to the related problem of a mobile impurity with
spin in a one-dimensional Fermi gas [27]. The spin densities
sR(Y ) and sL(Y ) associated with the right- and left-moving
excitations at the position Y of the impurity are easily
expressed in terms of the creation and annihilation operators of
the one-dimensional fermions considered in Ref. [27]. Upon
bosonization, the expressions for the z components take the
forms

sR,L
z (Y ) = ∓ i

2

∑
p

√
|p|

π�L
θ (±p)(cpeipY/� − c†pe−ipY/�).

(57)

By virtue of the universality of the Luttinger liquid theory,
this expression applies at any strength of interaction between
electrons. The expressions for the x and y components of the
spin densities are more complicated, but their explicit forms
will not be used in this paper. For the spinon near the top of
the spectrum, the constants JR

K and JL
K are equal to each other

and will be denoted by JK . Thus, the operator V̂K takes the
form

V̂K = JK S · [sR(Y ) + sL(Y )]. (58)

The operators (56) and (58) describe the coupling of the
spinon to a single bosonic excitation. In principle, the spinon
can interact with an arbitrary number of bosons. Of all such
perturbations, we will only need the explicit form of the
operator that couples the spinon to one charge excitation and
one spin excitation. It can be obtained by noticing that the

coupling constant JK in Eq. (58) depends on density, and
applying the procedure of Sec. II D,

V̂2 = −nu′(Y )J ′
K S · [sR(Y ) + sL(Y )]. (59)

Finally, the evaluation of the diffusion constant B requires
consideration of the coupling of the acoustic spin and charge
modes to each other. We start by rewriting the spin part of the
Hamiltonian (43) in terms of the z components of spin density
operators (57) as∑

p

vσ |p|c†pcp = 2π�

∫
vσ

{ [
sL
z (y)

]2 + [
sR
z (y)

]2 }
dy. (60)

Noticing that vσ depends on the electron density and applying
the procedure of Sec. II D again, we obtain the perturbation of
the form

V̂ρσ = −2π�nv′
σ

∫
u′(y)

{ [
sL
z (y)

]2 + [
sR
z (y)

]2 }
dy. (61)

It is important to note that the operator (61) couples a phonon
to two spin excitations moving in the same direction. The
Hamiltonian also contains the perturbation that couples a
single phonon to one right-moving and one left-moving spin
boson. To obtain its explicit form, we need to consider the
correction [1] to the spin sector of the Tomonaga-Luttinger
Hamiltonian (60),

Hg = −2π�gvσ

∫
sR(y) · sL(y)dy. (62)

At low energies, this perturbation scales to zero logarithmi-
cally, g = 1/ ln(J/T ). The density dependence of vσ yields a
coupling of the form

V̂g = 2π�gnv′
σ

∫
u′(y) sR(y) · sL(y)dy. (63)

To summarize, in the effective low-energy theory, the
spinon is a mobile impurity in the Tomonaga-Luttinger liquid
(43). It is described by the free-spinon Hamiltonian (55) and
the various perturbations (56), (58), (59), (61), and (63).

The perturbations (56) and (58) are nominally marginal,
and the remaining ones are irrelevant. The perturbation (56)
does not scale at all, whereas (58) scales logarithmically at
low energies. The scaling of the coupling constant JK can be
understood by noticing that the perturbation of the form (58)
describes the two-channel Kondo problem [27].

Positive JK corresponds to the antiferromagnetic Kondo
problem. In that case, the coupling constant grows at low
energies, and the two-channel Kondo problem scales to an
intermediate-coupling fixed point [28], where the impurity
spin is fully screened. The enhanced coupling suppresses the
mobility of the impurity [27] to μ ∝ T −2, compared to μ ∝
T −4 in the spinless case [29]. As a result, the diffusion constant
in momentum space, B = 2T/μ [30], should scale as B ∝ T 3,
in contrast to B ∝ T 5 for a spinless impurity [18].

Our interest in diffusion of mobile impurities is motivated
by the problem of scattering of spinon excitations in the
Heisenberg chain (2). Their spins are not screened even at T =
0, indicating that the coupling constant JK may not be positive.
Negative JK corresponds to the ferromagnetic Kondo problem,
in which the coupling constant scales to zero logarithmically,
and the impurity spin remains unscreened. This form of scaling
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of the coupling of spinons to low-energy spin excitations in
one-dimensional Fermi systems was discussed in Ref. [31].
At finite temperatures, the scaling suppresses the coupling
constants by a factor of order ln(J/T ), which will not play an
important role in our theory compared to the much stronger
temperature dependence of the equilibration rate (49).

2. Scattering of spinons by charge excitations

We start the evaluation of the diffusion constant B by
studying the contribution Bρρ originating from the coupling of
the spinon to the charge excitations of the Wigner crystal. The
latter are phonons discussed in Sec. II B. The spinon couples
to phonons because its energy ε ∼ J depends on the electron
density. It is important to note that such a coupling is insensitive
to the spin degree of freedom of the spinon. In that sense, the
problem is equivalent to that of a spinless mobile impurity
diffusing in a Luttinger liquid [29]. The diffusion constant in
momentum space was expressed [18] in terms of the spectrum
of the impurity and its dependence on density, and it is given
by Eq. (39). We thus obtain Bρρ by substituting � = πJ/2 and
v = vρ into the above expressions. Because of the exponential
dependence (3) of J on density, the first term in the parentheses
in Eq. (39) gives the dominant contribution, and we find

Bρρ = π5η4

240

T 5J 2

�5n4a2
Bm2v8

ρ

. (64)

The phonon velocity vρ can be obtained from Eq. (12). At
q → 0, one finds

vρ =
√

2L
�n

e2

εaB

(naB)3/2. (65)

Theoretically, the parameterL diverges logarithmically at q →
0; see Appendix A. On the other hand, the scattering of the
spinons is dominated by thermal phonons, for which

L = ln
e2(naB)3/2

εaBT
. (66)

Alternatively, if the Coulomb interaction is screened by a metal
gate at a distance d from the Wigner crystal, the divergence is
cut off as L = ln(nd).

3. Mixed scattering processes

We now consider the contribution Bρσ to the diffusion
constant (54). This contribution accounts for the scattering
processes in which one of the two branches a and e belongs
to the charge sector and the other to the spin sector. The first
step is to obtain the corresponding term in the T matrix using
the standard perturbative expression

T̂ = V̂ + V̂
1

Ei − H0
V̂ + · · · , (67)

where Ei is the energy of the initial state. We are interested
in the on-shell matrix elements for which the energies in the
initial and final states are equal. The relevant contribution has
the form

tmnu′(Y ) S · [sR(Y ) + sL(Y )]. (68)

Similar to Eq. (39), there are three contributions to tm arising
from different perturbations in the effective Hamiltonian.

The simplest contribution is obtained by applying the
perturbation (59) in the first order,

t (1)
m = −J ′

K. (69)

This contribution is analogous to the first term in Eq. (39). The
other two contributions arise in the second-order perturbation
theory. Combining the perturbations V̂K and V̂ρσ given by
Eqs. (58) and (61) in the second order, we obtain

t (2)
m = JK

v′
σ

vσ

. (70)

This contribution is analogous to the second term in Eq. (39).
In this process, V̂K describes scattering of a spinon off of
a virtual spin boson, and V̂ρσ describes the interaction of
the latter with the charge and spin bosons present in the
initial and final states. The final contribution arises in second
order in the perturbations V̂ph and V̂K given by Eqs. (56) and
(58). It describes the scattering process in which the spinon
interacts sequentially with the spin and charge bosons present
in the initial and final states. In this process, the absorption
of the initial-state boson and the emission of the final-state
boson can happen in a different order, which leads to a near
cancellation of the corresponding contributions. A finite result
arises only due to the curvature of the spinon spectrum, and it is
given by

t (3)
m = sgn(pape)

�′JK

m∗vρvσ

, (71)

where m∗ is defined in Eq. (41). This contribution is analogous
to the last term in Eq. (39).

The full matrix element tm in Eq. (68) is given by the
sum of the contributions (69)–(71). At low densities, all three
contributions are exponentially small. For the Heisenberg
model (2), the quantities JK and vσ are controlled by a single
parameter J . As a result, the combined contribution

t (1)
m + t (2)

m = JK

[
v′

σ

vσ

− J ′
K

JK

]
(72)

vanishes. A nonvanishing result appears only if one takes into
account next-nearest-neighbor exchange coupling J̃ . Using
Eq. (33), we conclude that

t (1)
m + t (2)

m ∝ J̃ ∝ exp

(
−2η + �η√

naB

)
. (73)

Noticing that � ∼ nJk ∼ J and that m∗vσ = �n, we find

t (3)
m ∝ J 2 ∝ exp

(
− 2η√

naB

)
. (74)

Keeping in mind that �η ≈ −0.013, we conclude that in the
limit of low density, Eq. (73) gives the dominant contribution
to tm, but at naB < 104 the difference between the exponents
in Eqs. (73) and (74) is insignificant.

To obtain the contribution Bρσ to the diffusion constant
(54), we substitute Eq. (68) into Eq. (53) and obtain

Mαβ
pape

(δp) = t2
m(δα,β + 2δα,−β )δpa−pe,δp

× n|pape|
8π�mvρL2

N (a)
pa

(
N (e)

pe
+ 1

)
, (75)
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where N (a,e)
p denote either N

(ρ)
p or N (σ )

p , depending on the
nature of the a and e branches, and they are given by Eq. (44)
with u = 0. Then, using Eqs. (50)–(52), we find

Bρσ = t2
m

2π2nT 5

5�6mv3
ρv

4
σ

. (76)

In analogy with the result (64) for Bρρ , the contribution (76)
scales as T 5. On the other hand, the exponentially small
velocity of the spin excitations vσ in the denominator of
Eq. (76) enhances Bρσ as compared to Bρρ ,

Bρρ

Bρσ

∝ exp

(
− 2η√

naB

)
, (77)

where we used the estimate (74) for tm. From Eq. (77), we
conclude that at low electron density, Bρσ � Bρρ .

4. Scattering of spinons by spin excitations

We now turn to the contribution Bσσ to the diffusion
constant (54). It arises from the scattering processes in which
both the a and e branches belong to the spin sector. The leading
contribution to the T matrix appears in the second order with
perturbations (58) and (62). For a spinon near the top of the
spectrum, the on-shell part is given by

− i

L
JK (JK + 2π�gvσ )

∑
p

e2ipY/�

vσp
S · [sR(p) × sL(p)],

(78)

where we have introduced the Fourier transforms of the spin
density operators via

sR,L(Y ) = 1√
L

∑
p

sR,L(p) eipY/�. (79)

It is important to note that the scattering matrix elements are
enhanced at small momenta p by the denominator in Eq. (78).
Similar contributions proportional to 1/p in the second-order
calculations for the ρρ and ρσ channels cancel each other.
The absence of such a cancelation in the σσ channel is
due to the noncommutativity of the spin operators in the
perturbations (58) and (62). The enhancement of quasiparticle
scattering in the presence of spins was first pointed out in
Ref. [32]. It is worth noting that the nonlocal nature of
Eq. (78) precludes the possibility of such terms appearing as
perturbations in the Hamiltonian of a spinon interacting with
the Tomonaga-Luttinger liquid. We therefore do not expect
first-order contributions to the T matrix of the form (78).

Combining Eqs. (78) and (50)–(53), we obtain the contri-
bution to the diffusion constant in the form

Bσσ = J 2
K (JK + 2π�gvσ )2T 3

8π�7v6
σ

. (80)

The aforementioned enhancement of the scattering in the
spin-spin channel results in Bσσ ∝ T 3, compared to the T 5

dependence of Bρρ and Bρσ . An analogous dependence B ∝
T 3 was recently predicted in the limit of weakly interacting
electrons [33].

At strong interactions, the magnitude of Bσσ is controlled
by the coupling constants JK and vσ . In the Heisenberg chain

(2), there is only a single energy scale, J . Thus, one expects
JK ∼ −gJ/n, where the logarithmic factor g = 1/ ln(J/T )
appears as a result of the usual renormalization of the
ferromagnetic Kondo coupling constant. Taking into account
the expression (42) for vσ , we conclude that the two terms in
the combination JK + 2π�gvσ in Eq. (80) are of the same
order of magnitude, and of opposite signs. On the other
hand, the integrability of the Heisenberg model precludes
real scattering processes, i.e., the above combination of the
coupling constants must vanish.

Nonvanishing scattering appears due to perturbations that
break the integrability of the spin chain (2). The simplest
such perturbation is the next-nearest-neighbor coupling J̃ .
Its presence results in JK + 2π�gvσ ∝ J̃ /n. Substituting this
estimate into Eq. (80) and omitting the logarithmic factors, we
obtain

Bσσ ∼ n2

�

J̃ 2T 3

J 4
. (81)

This estimate applies at T � J . Comparing Eq. (81) with the
estimate of Bρσ given by Eqs. (73) and (76), we find

Bρσ

Bσσ

∝ exp

(
− 2η√

naB

)
(82)

at T ∼ J ; the ratio is even lower at T � J .
In addition to the next-nearest-neighbor coupling in the

spin chain, the integrability of the problem is also broken by
the spin-charge coupling. The leading contribution to Bσσ in
this mechanism is obtained in second order in perturbations
(56) and (63), whereby a spinon is coupled to acoustic spin
excitations via an exchange of a virtual phonon. Instead of
J̃ , such contributions to Bσσ contain J 2, and they result
in essentially the same estimate (82). [See an analogous
discussion below Eq. (74).] However, the processes of coupling
by a virtual phonon do not involve noncommuting spin
operators, and thus they lack the enhancement of the scattering
due to the small momentum in the denominator of Eq. (78).
As a result, their contributions to Bσσ scale as T 5, and they are
small compared to Eq. (80) at T � J . We therefore conclude
that among the three terms in the diffusion coefficient (54), the
spin channel contribution (80) always dominates.

V. SUMMARY AND DISCUSSION

The results obtained in this paper enable us to obtain the
temperature-dependent correction to the conductance of quan-
tum wires at strong interactions in the spin-degenerate case.
Previously such corrections at strong interactions were studied
only for spin-polarized electrons [13,17]. The spin-degenerate
case represents a significantly more complicated problem,
whose treatment requires consideration of all perturbations
breaking integrability of the model, carried out above. We
start by summarizing our results.

In Sec. II, we identified three types of perturbations to the
Hamiltonian (1), (2) of the one-dimensional Wigner crystal.
They include the anharmonic corrections (15) in the charge
sector, the next-nearest-neighbor exchange of the spins (17),
and the coupling of the charge and spin degrees of freedom
(19). The magnitude of the next-nearest-neighbor exchange
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was obtained by numerical treatment of the WKB action in
Sec. III.

All of the above perturbations break integrability of the
Hamiltonian (1), (2), and thus enable scattering of quasiparticle
excitations off each other. In Sec. IV, we applied these
results to the evaluation of the rate of full equilibration of
the one-dimensional Wigner crystal. We have found that the
dominant process of equilibration involves scattering of a
high-energy spinon by two acoustic spin excitations. The
resulting equilibration rate is given by Eq. (49), with the
dominant contribution to the spinon diffusion constant B given
by Eq. (80). Using Eq. (81), one estimates the equilibration rate
as

τ−1 ∼ J̃ 2

�
√

JT
exp

(
−πJ

2T

)
. (83)

The magnitude J̃ of the next-nearest-neighbor coupling is
given by Eq. (30).

As one can see from Eq. (46), conservation of the total mo-
mentum of the electron liquid means that the full equilibration
is accompanied by backscattering of electrons. This enables
one to relate the equilibration rate to the conductance of long
uniform quantum wires [10,13]. For example, in the limit of
strong interactions, the interaction-induced correction to the
quantum conductance 2e2/h is given by

δG = −2e2

h

8�nT 2

3π3J 3

L

τ
. (84)

The correction grows with the length of the wire L and
eventually saturates at L ∼ Jτ/�n [13]. In shorter wires, the
correction to the quantized conductance is proportional to
the equilibration rate τ−1. Combining Eqs. (83) and (84),
one then obtains δG ∝ T 3/2 exp(−πJ/2T ). The activated
behavior of the correction to conductance of quantum point
contacts was observed experimentally [34]. The activation
temperature reported in Ref. [34] was rather small, TA ∼ 1 K,
and it grew rapidly with electron density n. These observations
are consistent with the fact that the exchange constant J given
by Eq. (3) is exponentially small at naB � 1.
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APPENDIX A: EVALUATION OF PHONON FREQUENCIES
IN THE WIGNER CRYSTAL AT LOW WAVE NUMBER

The frequencies of phonons in a one-dimensional Wigner
crystal are given by Eq. (12). Upon the introduction of the
dimensionless time τ via Eq. (21), the phonon frequencies
become

ω2
q = 4

∞∑
l=1

1

l3
[1 − cos(ql)]. (A1)

At q → 0, one can expand the cosine and obtain the logarith-
mic behavior

ω2
q = 2q2 ln

χ

q
. (A2)

A more careful calculation is required to obtain the value of
the constant χ , which is the subject of this Appendix.

We start by substituting the identity

1

l3
= 1

2

∫ ∞

0
x2e−lxdx

into Eq. (A1) and performing the trivial summation over l in
the resulting expression:

ω2
q =

∫ ∞

0
x2

[
2

ex − 1
− 1

ex+iq − 1
− 1

ex−iq − 1

]
dx. (A3)

Let us now split the above integral into two, with the first one
taken from 0 to x0 and the second from x0 to ∞. The value of
x0 is chosen such that q � x0 � 1. In the first integral, one
can expand ex � 1 + x and obtain∫ x0

0
x2

[
2

ex − 1
− 1

ex+iq − 1
− 1

ex−iq − 1

]
dx

� 2q2
∫ x0

0

x dx

x2 + q2
� 2q2 ln

x0

q
.

To evaluate the second integral, we expand the integrand to
second order in small q and obtain∫ ∞

x0

x2

[
2

ex − 1
− 1

ex+iq − 1
− 1

ex−iq − 1

]
dx

�
∫ ∞

x0

x2q2

(
1

ex − 1

)′′
dx � q2[−2 ln x0 + 3].

The total integral in Eq. (A3) is independent of x0 and given
by

ω2
q = 2q2 ln

1

q
+ 3q2.

Comparing this result with Eq. (A2), we obtain χ = e3/2 ≈
4.48.

APPENDIX B: ANALYTICAL TREATMENT
OF THE INSTANTON ACTION

The instanton action (23) is minimized for the configuration
in which the electrons rest at the positions of static equilibrium,
Xl(τ ) = l. Small fluctuations near the minimum can be
studied by introducing the displacements ul of electrons from
equilibrium positions,

Xl(τ ) = l + ul(τ ). (B1)

Substituting Eq. (B1) into (23) and expanding in ul , one finds
the quadratic action

η(2) =
∫ ∞

−∞

(∑
l

1

2
u̇2

l +
∑
l<l′

(ul′ − ul)2

(l′ − l)3

)
dτ. (B2)

Upon the Fourier transformation of the displacements,

ul(τ ) =
∫

dq dω

(2π )2
eiql−iωτ uqω, (B3)
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the quadratic action takes the form

η(2) =
∫

dq dω

(2π )2

1

2

(
ω2 + ω2

q

)|uqω|2. (B4)

The phonon frequencies ωq are evaluated in Appendix A.

1. Single instanton

The amplitude of the nearest-neighbor exchange between
sites 0 and 1 is determined by the action of an instanton with the
boundary conditions X0(−∞) = X1(+∞) = 0, X0(+∞) =
X1(−∞) = 1, and Xl(±∞) = l for all l �= 0,1. Minimization
of Eq. (23) over all Xl(τ ) then results in the single-instanton
action η ≈ 2.80 [7].

It is instructive to study interaction of the instanton with
long-wavelength fluctuations of the displacements ul(τ ). A
shift of all ul by a constant δu corresponds to the translation
of the whole crystal and has no effect on the action. A uniform
u̇l = v has the meaning of the velocity of the crystal. Although
the instanton action is affected by the motion of the system as
a whole, the effect should be even in v, and thus instanton
action does not couple to u̇l in first order. On the other hand,
the spatial derivative ∂lu corresponds to stretching the crystal
and results in a change of density,

n = n0

1 + ∂lu
. (B5)

Since the dimensionless action (23) assumes that density
equals 1, the effect of the change n0 → n should be obtained
from the full expression (22). Substituting Eq. (B5), one then
obtains

1

�
S1 = η√

n0aB

√
1 + ∂lu � 1√

n0aB

(
η + η

2
∂lu

)
.

Thus to lowest order, the instanton couples linearly to
fluctuations of the field ul(τ ),

δη = d ∂lu, d = η

2
, (B6)

where the derivative ∂lu is taken at l and τ corresponding to
the location of the instanton.

2. Interaction of instantons

Let us now consider the configuration of Xl(τ ) correspond-
ing to two instantons at positions (0,0) and (l,τ ). Assuming
the instantons are far from each other, l2 + τ 2 � 1, the action
can be presented as

η2(l,τ ) = 2η + δη(l,τ ), (B7)

where the small correction δη(l,τ ) has the meaning of the
interaction between the instantons. To find it, one can minimize

the quadratic action (B2) with the perturbation d[∂lu(0,0) +
∂lu(l,τ )]. An alternative approach is to find the shape u(l,τ )
of the instanton centered at (0,0) at large distance using the
perturbation d∂lu(0,0) and then apply Eq. (B6) to find coupling
to the second instanton. Following this approach, one easily
obtains

u(l,τ ) = d

∫
dq dω

(2π )2

iqeiql−iωτ

ω2 + ω2
q

(B8)

at large distances from the first instanton. The interaction
of the instantons is obtained by differentiating the above
expression:

δη(l,τ ) = −d2
∫

dq dω

(2π )2

q2eiql−iωτ

ω2 + ω2
q

= −d2
∫

dq

4π

q2

ωq

eiql−ωq |τ |. (B9)

3. Electrostatic analogy

Because of the logarithmic singularity in ωq , see Eq. (A2),
the remaining integral in Eq. (B9) cannot be easily performed.
On the other hand, considerable progress can be made
by replacing ln(χ/q) with a constant, ωq � sq. Using this
approximation, we immediately find

δη(l,τ ) = d2

2πs

l2 − s2τ 2

(l2 + s2τ 2)2
. (B10)

This result has the form of interaction of two dipoles in two-
dimensional space (l,sτ ).

The analogy is developed as follows. The action (B2) is
presented as

ηel =
∫

d2r
[ s

2
(∇u)2 − ρu

]
, (B11)

where we have added the “charge-density” term ρu. Mini-
mization of ηel with respect to u gives the Poisson equation
∇2u = −ρ/s, with s playing the role of ε0 in SI units.
Substitution of ρ = −s∇2u into Eq. (B11) enables one to
express the action in terms of the “electric potential” u,

ηel = −
∫

d2r
s

2
(∇u)2. (B12)

Thus the action ηel is given by the energy of the effective
electric field with the opposite sign.

The coupling term (B6) corresponds to ρ = d ∂lδ(r),
analogous to the charge distribution in a dipole pointing in
the l direction. In two dimensions, the interaction between
two such dipoles is given by the negative of Eq. (B10), as
expected in our electrostatic analogy.
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