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We present a functional renormalization group (fRG) formalism for interacting fermions on lattices that
captures the flow into states with commensurate spin-density-wave order. During the flow, the growth of the
order parameter is fed back into the flow of the interactions and all modes can be integrated out. This extends
previous fRG flows in the symmetric phase that run into a divergence at a nonzero RG scale, i.e., that have to be
stopped at the ordering scale. We use the corresponding Ward identity to check the accuracy of the results. We
apply our method to a model with two Fermi pockets that have perfect particle-hole nesting. The results obtained
from the fRG are compared with those in random-phase approximation.
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I. INTRODUCTION

States with broken symmetry play an important role in
our understanding of interacting electron systems. Among
many possibilities, electron spin magnetism is certainly one
of the most important examples [1,2]. For strongly interacting,
localized electrons, pure spin models can be used to study
magnetic order and the corresponding excitations. If the
interactions are weaker and the electrons near the Fermi level
are delocalized, magnetism can also occur as an instability
that modifies the single-particle excitation spectrum. Such a
behavior is even more likely in layered, quasi-two-dimensional
systems, where the electronic bands can cause sharp peaks
in the density of states and nesting of sizable regions in the
Brillouin zone. In these cases, characteristic length scales are
typically larger and energy scales lower than in the localized
moment systems, and details of the band structures play a role.
This sets strong limitations to the applicability of theoretical
methods. For the systems in question, theoretical insight
can be gained from methods in the realm of random-phase
approximation (RPA) or mean-field theory (MFT). Ab initio
techniques such as the spin-resolved density functional the-
ory [3] fall into the same class, regarding the treatment of
fluctuations and competing effects. Usually, information on the
type and strength of the ordering can be obtained from these
methods, while, in particular, the latter is often overestimated.
For drawing a more precise and rounded picture, the functional
renormalization group (fRG) is expected to become a useful
tool. So far, in the context of interacting electron systems,
RG methods have been employed a lot to determine the
leading ordering tendencies (for reviews, see Refs. [4,5]). The
strength of these methods lies in their unbiased treatment
of fluctuations. More precisely, they sum up all important
fluctuations in different channels together instead of singling
a particular one out as the MFT. However, the information
from the RG is usually restricted to the type of order and
a rough estimate of the corresponding energy scale. At this
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energy scale, the RG flow has to be stopped as a runaway
flow of the coupling constants spoils the applicability of the
flow equations. A real improvement would be to avoid the
unphysical (but meaningful) runaway flow and continue the
RG flows into the low-energy regime of broken symmetry.
Then, all scales could be integrated out and a renormalized
band structure together with a fluctuation-corrected value of
the ordered moment would be obtained.

The development of fRG methods that can flow towards a
symmetry-broken state has already seen some initial stages.
In a number of papers, simplified mean-field models with
infinitely long-ranged interactions have been studied [6–9].
For these models, MFT holds exactly due to the specific
form of their interaction terms, and this exact solution can be
recovered within a fRG framework. More generic interactions
were treated by Gersch et al. in Ref. [10] for the attractive
Hubbard model, and in a more recent study by one of us and
Metzner for the repulsive Hubbard model [11].

In both cases, the order parameter that developed during
the flow was of superconducting type. In particular, the afore-
mentioned work on the repulsive Hubbard model continues
a line of RG studies (for a review, see Ref. [4]) showing
a leading pairing instability in the d-wave channel for the
Hubbard model and gives precise values for the gap magnitude
as a function of the model parameters. Also more recently,
two of us have worked out the analogous flows for the
case of spin-density-wave (SDW) magnetic ordering in two
dimensions [9], again first for a model that is exactly solvable
in MFT. In this work, we give the extension to the more general
case of short-range initial interactions, choosing a model with
two pockets that are perfectly nested.

As the main outcome of our work, we find that the extension
into the SDW regime gives useful results for our test model
and can hence be applied to more sophisticated cases. The
scheme allows for determining corrections to the mean-field
picture, e.g., for the size and parameter dependence of the
magnetic order parameter. In addition to obtaining numerical
values for these corrections, one can also gain insight about the
impact of other collective channels on them. In our case, the
charge-density wave (CDW) and the singlet-pairing channel
have a substantial impact on the corrections to the SDW order
parameter.
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The paper is organized as follows. In Sec. II, we present
a channel-decomposed one-particle-irreducible (1PI) fRG
scheme for antiferromagnets. After reviewing the fRG flow
for charge-conserving theories, we give a parametrization of
the interaction that exploits the residual spin symmetry for
collinear magnetic ordering in Sec. II B. For the special case
of antiferromagnetic ordering, we then discuss the interaction
terms allowed by the remaining symmetries. In Sec. II D, we
give an approximate parametrization of the 1PI functional,
which plays the role of an effective action. In the course of these
approximations, we resort to an exchange parametrization
within a channel decomposition, and we neglect the breaking
of the discrete time-reversal and translational symmetries.
At the one-particle level, however, the breaking of these
symmetries will be retained. The underlying formalism for
the channel decomposition and the exchange parametrization
is laid out in Appendices A and B 3, respectively. We then give
the corresponding fRG flow equations, which are derived in
Appendix B. In Sec. II E, we discuss these flow equations in
RPA and observe that the mean-field gap equation is recovered
exactly from the fRG.

In Sec. III, we consider the fRG flow into the SDW phase
of a simple two-pocket model [12] at perfect nesting. After
discussing this model, we give details of our implementation
in Sec. III B. The numerical solution of the fRG flow equations
is discussed in Sec. III C. We then comment on the fulfillment
of the global SU(2) Ward identity for the gap in Sec. III D.
Finally, we compare the gaps obtained from fRG to MFT
in Sec. III E and show that, despite the relatively small
renormalizations of the mean-field results, the coupling of
different interaction channels plays an important role in the
flow equations. Therefore, the (subleading) charge-density
wave and pairing channels need to be included in order to
obtain reasonable results from the fRG.

II. METHOD

In this section, we present a 1PI fRG scheme for commen-
surate antiferromagnets. While it will be applied to a simple
two-pocket model in Sec. III, it is not solely designed for that
particular model. It may therefore be carried over to other
models of interest such as single-band and multiband Hubbard
models.

A. General context

In this paper, we will study models with actions of the form

A[ψ̄,ψ] =
∑

σ

∫
dk dk′ ψ̄σ (k) C0

σ (k,k′) ψσ (k′)

+A(4)[ψ̄,ψ] (1)

and interactions

A(4)[ψ̄,ψ] = 1

4

∫
dξ1 . . . dξ4 f (ξ1,ξ2,ξ3,ξ4)

×ψ̄(ξ1) ψ̄(ξ2) ψ(ξ3) ψ(ξ4) , (2)

with Grassmann fields ψ and variables ξi that include the
spin projection σi , momentum ki , and Matsubara frequency
k0,i . (In Sec. III A, we will study a two-dimensional model,

but the formalism presented here is applicable for arbitrary
lattice dimensions.) The two latter quantum numbers are also
collected in a generalized momentum k = (k0,k). C0

σ (k,k′) is
the inverse free propagator of the theory, and f (ξ1,ξ2,ξ3,ξ4)
accounts for the interaction. The functional renormalization
group (fRG) flow then describes the change of the one-particle-
irreducible (1PI) vertices when the modes summed over in the
quadratic part in Eq. (1) are integrated out in a continuous way.
In this context, we call A in Eq. (1) the initial action of the
system.

The terms that are allowed, i.e., nonzero, in Eq. (1) can be
analyzed by considering the symmetries of the system. This
usually simplifies the study a lot. The translational symmetry
on the lattice and in imaginary time renders the quadratic part
diagonal in k, and makes the interaction term only depend
on three instead of four ks. Furthermore, spin-rotational
symmetry allows for replacing the spin-index-afflicted func-
tion f (ξ1,ξ2,ξ3,ξ4) by a coupling function V (k1,k2,k3) as in
Ref. [13]. However, for a system with spontaneously broken
symmetries such as an antiferromagnet, new terms that are
absent in the initial action may occur at lower energy scales,
or, in other words, during the RG flow. This issue will be
covered in the next subsection.

In a fRG flow, a dependence on a cutoff scale λ is introduced
in the quadratic part of the action. The regularization scheme
underlying this replacement Cσ (k,k′) → Cλ

σ (k,k′) does not
need to be specified a priori. As laid out in Ref. [13], the
flow of the 1PI self-energy is governed by the equation

∂λ�(ξ1,ξ2) =
∫

dη1 dη2 S(η2,η1) f (ξ1,η1,η2,ξ2) ,

where S denotes the single-scale propagator

S(ξ1,ξ2) = ∂λG(ξ1,ξ2) −
∫

dη1 dη2 G(ξ1,η1)

×[∂λ�(η1,η2)]G(η2,ξ2) , (3)

and G(ξ1,ξ2) the full propagator. In the Katanin truncation [14]
of the 1PI fRG scheme, the flow of the interaction for a charge-
conserving theory is given by

∂λf (ξ1,ξ2,ξ3,ξ4) = Fpp(ξ1,ξ2,ξ3,ξ4) + Fph(ξ1,ξ2,ξ3,ξ4)

−Fph(ξ1,ξ2,ξ4,ξ3),

where the right-hand side consists of particle-particle and
particle-hole diagrams

Fpp(ξ1,ξ2,ξ3,ξ4) = 1

2

∫
dη1 dη2 dη3 dη4 f (ξ1,ξ2,η2,η3)

×[∂λG(η2,η1) G(η3,η4)]

×f (η4,η1,ξ3,ξ4)

and

Fph(ξ1,ξ2,ξ3,ξ4) = −
∫

dη1 dη2 dη3 dη4 f (η4,ξ2,ξ3,η1)

×[∂λG(η1,η2) G(η3,η4)]

×f (ξ1,η2,η3,ξ4),

respectively. While three-particle and higher interaction terms
are not taken into account explicitly, contributions from the
three-particle vertex are partly included in Fpp and Fph.
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B. Parametrization for collinear spin ordering

In an antiferromagnet (AF), at least two different symme-
tries are broken spontaneously. For one thing, translational
invariance is reduced in an AF phase as the magnetic unit
cell defined by the ordering pattern is larger than the unit
cell given by the lattice structure. For commensurate ordering,
the magnetic cell volume is an integer multiple of the lattice
unit cell. In this work, the unit cell of the symmetry-broken
state will be twice as large as in the symmetric phase.
Moreover, a collinear AF state breaks the SU(2) symmetry by
spontaneously selecting a preferred axis for the alignment of
the spins. Let this be the z axis. Then, there are still remnants
of the SU(2) symmetry. Namely, the system stays invariant
under spin rotations in the xy plane.

We work with Green’s functions and one-particle-
irreducible (1PI) vertices as basic elements. These objects
contain a wealth of information and need to be parametrized
in an efficient way. Such a parametrization should therefore
take the remaining symmetry for collinear spin ordering
into account. In Ref. [9], we have already given such a
parametrization for charge-conserving theories, which we now
briefly recapitulate. (In a real-space description, a similar
parametrization was used in Ref. [15].) The elements of the
remaining spin symmetry group Uz(1) are U (ϕ) = eiϕτ z

with
arbitrary real ϕ and the third Pauli matrix τ z acting on the spin
space spanned by spin up and spin down with respect to the
z axis. The action of a system with collinear spin symmetry
stays invariant if the Grassmann fields are transformed by an
element of Uz(1).

Then, for the magnetic ordering along the z axis, the one-
particle Green’s function only has diagonal entries in spin
space. It can hence be split into a spin-reversal symmetric and
a spin-reversal antisymmetric part according to

Gσ1,σ2 = G1δσ1,σ2 + Gzτ
z
σ1,σ2

= Gσ1 ,

with the spin indices σi taking on the values ↑ or ↓. Consider
next a two-particle interactionA(4) of the form given in Eq. (2).
The Uz(1) symmetry now restricts the spin dependence of the
f to the form

f (ξ1,ξ2,ξ3,ξ4) = V↑(k1,k2,k3,k4) δσ ,↑↑↑↑
+V↓(k1,k2,k3,k4) δσ ,↓↓↓↓
+V↑↓(k1,k2,k3,k4) δσ ,↑↓↑↓
−V↑↓(k1,k2,k4,k3) δσ ,↑↓↓↑
+V↑↓(k2,k1,k4,k3) δσ ,↓↑↓↑
−V↑↓(k2,k1,k3,k4) δσ ,↓↑↑↓ .

Due to the antisymmetry property of f (ξ1,ξ2,ξ3,ξ4), V↑ and
V↓ are antisymmetric under k1 ↔ k2 and k3 ↔ k4, whereas
the Pauli principle does not impose a constraint on V↑↓.

A global SU(2) Ward identity for the self-energy can be
derived in analogy to the U(1) case in Ref. [6], Eq. (85). One
obtains

Cz(k1,k2) − C0
z (k1,k2) = −

∫
dp1 dp2 dp3 dp4 C0

z (p1,p2)

×G↓(p2,p3) G↑(p4,p1)

×V↑↓(k1,p3,p4,k2), (4)

where Cz and C0
z denote the spin-antisymmetric part of

the inverse of the full and the bare one-particle propagator,
respectively. Note that Gσ represents the full propagator and
that V↑↓ enters as a renormalized interaction. We will make
use of the Ward identity later on, as a second way to assess the
self-energy in addition to obtaining it from the renormalization
group flow.

C. Two-particle interaction terms in an antiferromagnet

In order to get some intuition for the particularities of
the channel-decomposed flow equations in the presence of
antiferromagnetic ordering, let us first discuss processes
mediated by some kind of exchange boson that comply with
the remaining symmetries. In addition to the contributions
that are already present in the symmetric phase, there will be
processes that violate the translational or SU(2) symmetries or
both.

Let us start with discussing the Nambu-index dependence
of the interaction. In the case of commensurate AF, the
renormalized interaction is only invariant under translations
by an even number of sites. In momentum space, the ordering
vector Q then corresponds to half a reciprocal lattice vector.
Accordingly, the coupling functions can be decomposed into a
momentum-conserving part V c

... and a nonconserving part V nc
... ,

which is generated during the flow. We then have

V...(k1,k2,k3,k4) = V c
...(k1,k2,k3) δ(k1 + k2 − k3 − k4)

+V nc
... (k1,k2,k3)

×δ(k1 + k2 − k3 − k4 + Q),

with Q = (0,Q). In Nambu representation with pseudospinors

�σ (k) =
(

ψσ (k)

ψσ (k + Q)

)
, (5)

the interaction can be parametrized in the same way as
in the conventional representation with coupling functions
V...(k1,k2,k3,k4) using coupling functions W...(K1,K2,K3,K4),
where Ki = (ki,si) with Nambu indices si .

For an even number of equal Nambu indices s = ±1, the
interaction W... in Nambu representation then corresponds to
V c

... and to V nc
... for an odd number of equal Nambu indices.

Thus, one has

W...(K1,K2,K3,K4) = δ̃{ki } V c
...(�1,�2,�3)

for even
∑

i
si

2 , and

W...(K1,K2,K3,K4) = δ̃{ki } V nc
... (�1,�2,�3)

otherwise, where the physical momenta are denoted by �i =
ki + (1 − si)Q/2. In these formulae, the momenta ki are
restricted to half the BZ, and therefore δ̃{ki } ensures momentum
conservation only up to multiples of the ordering vector Q.

In contrast to the discrete translational invariance, the
SU(2) symmetry is a continuous one. Its spontaneous breaking
is therefore accompanied by the emergence of massless
Goldstone modes. In a purely fermionic language, this will
be reflected by the divergence of some contributions to the
two-particle interaction in the limit of a vanishing seed field,
as for a broken U(1) symmetry [6,10,16,17]. The radial mode,
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FIG. 1. CDW, S2
z , and spin-anomalous Szn terms in a boson-

exchange picture.

however, will have a mass and therefore the corresponding
contributions to the interaction remain regular for a vanishing
seed field. Let us now define the fermionic spin-density-wave
(SDW) bilinear

S
s1s2
i (l) =

∑
σσ ′

∫
d ′k ̄s1

σ (k + l/2) τ i
σσ ′

s2
σ ′(k − l/2),

where τ i with i = x,y,z denotes a Pauli matrix and there
the momentum integration only runs over the magnetic BZ,
which is indicated by the prime in the measure d ′k. Note
that the Nambu indices are treated as some kind of flavor
quantum numbers here. For l = 0, the physical SDW transfer
momentum amounts to l if s1 = s2 and to l + Q if s1 �= s2.
In the spirit of a gradient expansion around the center of the
magnetic BZ, this picture still holds in an approximate sense
also for l �= 0.

In a boson-exchange picture, the Goldstone and radial
vertices then correspond to S2

x + S2
y and S2

z terms, respectively.
[For a pictorial representation of the S2

z term, see Fig. 1(a).]
If the SU(2) symmetry is broken, those terms differ. Even
though, they both are still invariant under a reversal of the spin-
projection quantum number. In the following, we will call such
contributions to the interaction spin normal. The remaining
Uz(1) symmetry also allows for spin-anomalous terms of
the form SxSy . So, in a channel decomposition of the fRG
flow equations, the magnetic channel of Refs. [18–20] should

split into radial and Goldstone as well as spin-anomalous
contributions. In addition, there will be charge-density wave
(CDW) contributions of the form n2 [see Fig. 1(b)], where

ns1s2 (l) =
∑

σ

∫
d ′k ̄s1

σ (k + l/2) s2
σ (k − l/2)

denotes the CDW bilinear. Also, spin-anomalous Szn contri-
butions as depicted in Fig. 1(c) are allowed.

So far, we have discussed different particle-hole exchange
processes. One may now wonder whether the breaking of
the SU(2) symmetry has also nontrivial consequences for
contributions to the interaction induced by the exchange of
virtual Cooper pairs. One may intuitively expect that there
will be singlet- and triplet-pairing terms, but this classification
does not apply in a strict sense if the SU(2) symmetry is broken.
This can be seen by considering the Cooper-pair bilinear

φs1s2
σ1σ2

(l) =
∫

d ′q ̄s1
σ1

(l/2 + q)̄s2
σ2

(l/2 − q),

which equals −φs2s1
σ2σ1

(l) due to the Pauli principle.
In the presence of SU(2) spin rotation invariance, Cooper

pairs can be classified as singlet and triplet pairs, which do not
get mixed under spin rotations. The singlet-pair bilinear, for
example, reads as

φs1s2
sing(l) = i√

2

∑
σσ ′

τ
y

σσ ′φ
s1s2
σσ ′ (l).

If the SU(2) rotation invariance is broken as in the case of
antiferromagnetic order, the triplet component splits and φ↑↑,
φ↓↓, and (φ↑↓ + φ↓↑)/

√
2 are not degenerate. Thus, in this

case, φ can be decomposed in four Uz(1) invariant parts.
This observation has also been made by Scherer et al. in the
context of the Kitaev-Heisenberg model [21]. In the following,
the terms “singlet and triplet pairing” will only be used for
SU(2) invariant contributions to the interaction. Conversely,
SU(2)-breaking contributions in the pairing channels will
be called “anomalous pairing terms.” Having qualitatively
discussed the consequences of the broken SU(2) and trans-
lational symmetries, we are now in a position where we can
formulate our approximate parametrization of the effective
action in an antiferromagnet. The parametrization is based on
a decomposition of the vertex in interaction channels, which
is presented in Appendix A.

D. Approximate parametrization of the effective
action and fRG flow equations

In order to reduce the computational cost of our fRG
flow, we now resort to an approximate parametrization of the
effective action

�[̄,] =
∑

σ

∫
d ′k ̄σ (k) Cσ (k) σ (k) + �(4)[̄,],

in which only the most important renormalizations are re-
tained. It contains the inverse C of the one-particle propagator
in the quadratic part, and, in agreement with the flow equations
in Sec. II A, the interactions are truncated after the two-particle
term �(4). At the two-particle level, anomalous contributions
breaking discrete symmetries seem to be of minor importance
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in an antiferromagnet. At the one-particle level, however, such
anomalous terms are retained, and we allow for the breaking
of the continuous SU(2) symmetry in our parametrization of
the interaction. While the former is essential for obtaining a
nonzero AF order parameter, the latter reflects the physics of
the Goldstone theorem.

Before writing an ansatz for the effective action and giving
the corresponding fRG flow equations, let us first elaborate
on the role of the breaking of discrete symmetries in an
antiferromagnet. While a nonzero staggered magnetization
obviously implies the breaking of translational symmetry, both
a time-reversal operation and a translation by one primitive
lattice vector only change the sign of the order parameter. This
sign, however, is fixed by some arbitrary convention and does
not reflect any macroscopic property of the system. Of course,
we have to fix the sign of the AF gap at the one-particle level,
but it appears likely that the breaking of discrete symmetries
flipping this sign can be neglected at the two-particle level.1

In the following, we will do so and the Ward identity (WI)
for the gap will serve as a measure of the quality of our
approximations.

In addition to dropping time-reversal breaking interaction
terms, we now resort to an exchange parametrization of the
interaction within a channel decomposition. This decomposi-
tion is discussed in Appendix A in detail, and the exchange
parametrization in Appendix B 3. The interaction then takes
on the form

�(4)[̄,] = A(4)[̄,]

+ 2
∑
{s}

∫
d ′l φs1s2

sing(l) φs3s4
sing

∗(l) D{s}(l)

+
∑
{s}

∫
d ′l ns1s4 (l) ns2s3 (l) N {s}(l)

+
∑
{s}

∫
d ′l Ss1s4

x (l) Ss2s3
x (l) M {s}

xy (l)

+
∑
{s}

∫
d ′l Ss1s4

y (l) Ss2s3
y (l) M {s}

xy (l)

+
∑
{s}

∫
d ′l Ss1s4

z (l) Ss2s3
z (l) M {s}

z (l),

where D{s}, N {s}, M
{s}
xy , and M

{s}
z are exchange propagators

that still depend on four Nambu indices. They account
for the renormalization of the bare interaction A(4) in the
Cooper, CDW, and in-plane and along-axis magnetic channel,
respectively.

Following the above guiding principle, we then drop
interaction terms that conserve momentum only up to Q. In
addition, we only take bilinears around the important ordering
momenta into account, which are 0 in the Cooper and Q in the
particle-hole channels. More formally, we may account for the

1Note that, for a time-reversal operation, the situation is different in a
ferromagnet. Namely, the sign of the order parameter does have some
macroscopic content in that case and, consequently, time-anomalous
interaction terms should be kept.

Nambu-index dependence by using the 2×2 unit matrix τ 0 and
Pauli matrices τ i , where i = 1,2,3. (In contrast, we denote the
Pauli matrices by τ x , τ y , and τ z when they are used for the
spin-index dependence.) In this notation, we have

D{s}(l) ≈ τ 0
s1s2

τ 0
s3s4

D(l),

M {s}
xy (l) ≈ τ 1

s1s4
τ 1
s2s3

Mxy,

M {s}
z (l) ≈ τ 1

s1s4
τ 1
s2s3

Mz(l),

N {s}(l) ≈ τ 1
s1s4

τ 1
s2s3

N (l)

with Nambu-index-independent exchange propagators D(l),
Mxy(l), Mz(l), and N (l). Again, note that the attribution of
bilinears with s1 = s2 and −s2 to ordering momenta l and
l + Q only holds in the sense of a gradient expansion. The
approximations made here are fully compatible with the Pauli
principle and the particle-hole symmetry protecting perfect
nesting (for a more detailed discussion, see Appendix B 1). The
pseudospin SU(2) symmetry couples the CDW and Cooper
channels and therefore D(l) = −N (l).

For consistency reasons, we also drop all normal (i.e., time-
reversal invariant and momentum-conserving) contributions to
the self-energy and only the anomalous self-energy [i.e., the
gap �(k)] flows. The quadratic part of the action or, in other
words, the inverse of the full propagator, reads as

C↑(k) = �(k) τ 1 + ik0 − εa(k) τ 3,

C↓(k) = −�∗(k) τ 1 + ik0 − εa(k) τ 3,

where εa(k) denotes the bare dispersion.
The corresponding fRG flow equations are derived in

Appendix B, and we only give the main result here. Due to
symmetries, the exchange propagators and the gap are real
valued and perfect nesting implies D(l) = −N (l) due to the
resulting particle-hole symmetry. In these final flow equations,
the following fermionic loops appear:

I {s ′}
eq (l,p) = 1

2 [G
s ′

1s
′
2

↑ (p − l/2) G
s ′

3s
′
4

↑ (p + l/2)

+G
s ′

1s
′
2

↓ (p − l/2) G
s ′

3s
′
4

↓ (p + l/2)],

I {s ′}
op (l,p) = 1

2 [G
s ′

1s
′
2

↑ (p − l/2) G
s ′

3s
′
4

↓ (p + l/2)

+G
s ′

1s
′
2

↓ (p − l/2) G
s ′

3s
′
4

↑ (p + l/2)].

They enter via the combinations

Ieq(l,p) = 1
4 [I++−−

eq (l,p) + I−−++
eq (l,p) + 2I+−+−

eq (l,p)],

Iop(l,p) = 1
4 [I++−−

op (l,p) + I−−++
op (l,p) + 2I+−+−

op (l,p)].

The exchange propagators then flow according to

Ḋ(l) =
∫

d ′p İeq(l,p) {F [D,(Mz + D)/2 + Mxy](l,p)}2,

(6)

Ṁxy(l) = −
∫

d ′p İop(l,p){F [Mxy,Mz/2 + 3D/2](l,p)}2,

(7)

Ṁz(l) = −
∫

d ′p İeq(l,p)

×{F [Mz, − Mz/2 + Mxy + 3D/2](l,p)}2. (8)
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In these equations, a dot represents a derivative with respect
to the scale λ, and, for a Hubbard-type bare interaction of
strength U , the exchange propagators on the right-hand side
enter via

F [P1,P2](l,p) = 2U + 2P1(l) + P2(p).

Note that these flow equations are not restricted to a specific
cutoff scheme and that the regulator can be chosen freely.

The self-energy flows according to

�̇(k) = −
∫

d ′p S+−
↑ (p)

×E[Mz,(D − Mz)/2 + Mxy,D](k,p), (9)

where

E[P1,P2,P3](k,p)=2U + 2P1(0) + P2(k − p) + P3(k + p).

These flow equations have a very similar structure to those
in Refs. [17,19,20]. They are complemented by the WI

�(k) − �0 = −2�0

∫
d ′p Iop(0,p)

×E[Mxy,(Mz + D)/2,D](k,p). (10)

Equations (6)–(9) describe the fRG flow in a simple
approximation beyond mean-field theory. Corrections to the
mean-field picture enter in vertex-correction and box diagrams
for the interaction and Fock-type diagrams for the self-energy.
At the RPA level, such vertex-correction or box diagrams are
neglected and the formal solution of the flow equations fulfills
the WI exactly. Without invoking further approximations, the
mean-field gap equation is recovered.

Beyond RPA, the flow equations have to be solved
numerically. The Ward identity may then be violated due
to the one-loop truncation and due to the approximations
underlying the parametrization employed. The violation of
the WI may therefore be regarded as a measure of truncation
and/or parametrization errors.

E. Random-phase approximation

Let us now consider the flow equations (6)–(8) at the RPA
level, i.e., neglect P2. These flow equations then take on the
form

Ṗ (l) = −P (l) ḂP (l) P (l) (11)

with BP (l) = 4
∫
d ′p IP (l,p) and P (l) = U + P1(l). Here, P1

may be D, Mz, or Mxy and the loop functions are Iop for Mxy

and ±Ieq for Mz or D. One can clearly see that these exchange
propagators only couple via the self-energy at the RPA level.
The generic RPA flow equation (11) is solved by

P (l) = U [1 + UBP (l)]−1, (12)

and this formal solution also fulfills the Bethe-Salpether
equation

P (l) = U [1 − BP (l) P (l)].

Let us also neglect self-energy diagrams with bosonic lines
inside the loops, i.e., P2 and P3 are sent to zero in E in Eq. (9).

The resulting approximate flow equation for the self-energy
reads as

�̇ = −2Mz(0)
∫

d ′p S+−
↑ (p). (13)

Note that the self-energy loses its momentum and frequency
dependence at the RPA level.

We observe that∫
d ′p S+−

↑ (p) =
∫

d ′p Ġ+−
↑ (p) − 1

2
Beq(0) �̇.

By virtue of this identity, inserting the formal solution (12)
for Mz into Eq. (13) and integrating yields the mean-field gap
equation

� − �0 = �U

∫
d ′k

1√
εa(k)2 + �2

. (14)

Let us now discuss the formal solution of the flow equations
in RPA and then elaborate on the fulfillment of the WI. From
the relation ∫

d ′k G+−
↑ (k) = −1

2
�Bop(0)

and the gap equation (14) one obtains

1 + UBop(0) = �0

�
(15)

and, consequently, Mxy(0) = U (�/�0 − 1). This reflects the
Goldstone-vertex nature of Mxy(0). Neglecting bosonic lines
inside closed loops leads to

� − �0 = −�0 Bop(0) [U + Mxy(0)]

for the WI. By inserting the exact solution (12) for the
Goldstone vertex, Eq. (15) is reproduced, and hence the RPA
solution is fully consistent with the WI. As in Ref. [17] for
a singlet superconductor, one may write in leading order in a
gradient expansion with coefficients α and β

Mxy(l) ∝ 1

�0 + αl2
0 + βl2

in the limit �0 → 0. Beyond RPA, this property appears likely
to be preserved by the WI (10), provided that Mxy remains
the only propagator which diverges for a vanishing seed
field.

III. APPLICATION TO A SIMPLE TWO-POCKET MODEL

A. Model

In this section, we numerically integrate the flow equa-
tions (6)–(9) as a first step beyond the mean-field picture for the
AF phase within a fRG framework. In the derivation of these
equations, a perfectly nested dispersion has been assumed.
As an example of such a model, the repulsive Hubbard
model in two dimensions with hopping only between nearest
neighbors has already been mentioned above. Studying its flow
into the antiferromagnetic phase would complement recent
work on the superfluid phase [11,22]. In order to get some
intuition, it seems, however, preferable to consider a model
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with a higher symmetry, which will require less computational
resources. Good candidates for such a model are effective
low-energy theories, e.g., (extended) g-ology models. In this
work, a two-pocket model [12] in two dimensions proposed
by Chubukov et al. will be considered. Originally, it was
conceived for a (Wilsonian) RG study of the competition be-
tween spin-density-wave (SDW) order and superconductivity
in the iron pnictides. Having a purely quadratic dispersion and
a simplified momentum dependence of the interactions, this
model has an ultraviolet cutoff �. The remaining degrees of
freedom live on two patches centered around the � and the M

points in the folded two-dimensional Brillouin zone (BZ) and
mimic the band structure close to the Fermi surfaces around
these points. (For a pictorial representation of the dispersion,
see Fig. 2.) In the following, this folded BZ will be referred to
as the full BZ in order to avoid confusion with the magnetic
BZ, which is bounded by the dashed line in the upper panel
of Fig. 2.

The bare action of the two-pocket model will now be
expressed in terms of the Nambu spinors σ (k) in Eq. (5)
with components s

σ (k), where the subscript σ denotes the
spin projection. In this case, the Nambu indices s can as
well be interpreted as pocket indices, where s = +1 and −1
correspond to the hole pocket at the � point and the electron
pocket at the M point, respectively. The momentum quantum
numbers k therefore vary only within the pockets (see also

FIG. 2. Dispersion of the two-pocket model. Upper panel: Fermi
surfaces (bold lines) in the full BZ for the physical momentum � =
k + (1 − s)/2 (π,π ). The dashed line represents the boundary of the
reduced BZ, on which the momentum quantum number k is defined.
Lower panel: Dispersion as a function of the physical momentum �

along the diagonal of the full BZ. The dispersion is cut off at the
energy ε� = �2/2 − ε0. See text for further explanation.

Fig. 2.) In Nambu space, the bare action then reads as

A =
∑

σ

∫
|k|��

dk ̄σ (k) Cσ (k) σ (k) + A(4)[̄,],

where Cσ (k) is of the form given in Eq. (B6) with

εa(k) = −k2

2
+ ε0 and εs = 0.

In the one-particle dispersion, we have set the fermionic mass
to unity and we will use natural units in the following, i.e.,
energies appear as dimensionless quantities. Note that, in two
dimensions, this dispersion corresponds to a constant density
of states ρ0 = 1/(2π ). In the following, ε0 > 0 so that there
are two circular Fermi surfaces centered around the M and the
� points.

The bare interaction reads as

A(4) = −
∑
s1...s4

∑
σ1...σ4

∫
|ki |��

dk1 . . . dk4̄
s1
σ1

(k1) ̄s2
σ2

(k2)

×s3
σ3

(k3) s4
σ4

(k4) δ{k}δσ1σ4 δσ2,σ3

×
{
U1 δs,(+−−+) + U2 δs,(−+−+)

+ U3

2
[δs,(−−++) + δs,(++−−)]

+ U4

2
[δs,(++++) + δs,(−−−−)]

}

with bare couplings Ui . Both quartic and quadratic parts
respect the positivity and the particle-hole symmetry discussed
in Appendix B 1 and hence the fRG flow equations preserve
these symmetries. In the following, only the case U1 = U2 =
U3 = U4 = U is studied. The interaction then has the same
form as a Hubbard interaction expressed in momentum space.
The only difference to the Hubbard model in the two-patch
approximation then lies in the dispersion, which is isotropic
in the present case. (Note that flipping a Nambu index
corresponds to a momentum shift by Q.)

In order to study the flow into the SDW phase, a small
symmetry-breaking seed field �(k) = �0 is added to the bare
action. This will regularize divergences resulting from the
Goldstone modes. The case of the spontaneous breaking of
the SU(2) and translational symmetries is recovered in the
limit �0 → 0. In practice, this means that �0 is chosen to be
small compared to the other energy scales in the bare action.
After the infrared cutoff λ has been removed by the RG flow,
�0 may subsequently used as a flow parameter which is sent
to zero [17,22]. However, we will refrain from considering a
seed-field flow since the focus in this work rather lies on more
basic questions such as the applicability of our approximate
parametrization.

Also, in the presence of such a seed staggered magnetization
�0, the two-pocket model is momentum conserving in the
basis of pseudospinors defined in Eq. (B5). This implies that
Re εs and Im εa vanish at all instances of the RG flow. (This
can be more easily shown if one chooses the physical spins to
align in the x instead of the z direction.) Moreover, this hidden
symmetry only allows for non-momentum-conserving interac-
tions if these terms also break the time-reversal symmetry. In
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a way, this a posteriori justifies the simultaneous omission of
interactions breaking at least one of these discrete symmetries
in Sec. II B.

From a numerical viewpoint, it is preferable to choose
this low-energy continuum model instead of a lattice model
for a first fRG study of the AF phase beyond mean field.
First, such an effective model may allow for a parametrization
of its renormalized coupling functions based on a gradient
expansion. In addition, the C4v symmetry of a 2D lattice model
such as the ones used in Refs. [23–28] is promoted to a full
circular symmetry, which imposes more severe restrictions on
the allowed terms in such a gradient expansion and simplifies
the integration over internal momenta in Feynman diagrams.
Altogether, this will lead to a considerable reduction of the
numerical effort undertaken in a numerical integration of the
flow equations.

In Ref. [12], the RG flow of this model has been analyzed
in the symmetric phase with momentum- and frequency-
independent couplings U1, U2, U3, and U4. This can be
regarded as a gradient-expansion approach in leading order.
Obviously, one has to go beyond this approximation in the
symmetry-broken phase since the violation of the SU(2) Ward
identity (10) would otherwise be horrendous. For the case
U1 = U2 = U3 = U4 ≡ U studied here, the mean-field gap
equation

� = 2U

∫
d ′k

�

k2
0 + εa(k)2 + �2

(16)

for antiferromagnetism has the same form as for the Hubbard
model at half-filling (see, for example, Ref. [29]) and the BCS
gap equation. For the AF case, the prime in the measure d ′k
indicates that the corresponding momentum integral only runs
over half the BZ. Since the two-pocket model has a constant
density of states ρ = ρ0 ≡ 1/(2π ) between εa = −ε0 and εa =
ε� ≡ �2/2 − ε0 and ρ = 0 outside this low-energy window,
the momentum integral can be performed analytically. This
yields

ρ0U

[
Arsinh

(
ε0

�

)
+ Arsinh

(
ε�

�

)]
= 1.

Clearly, there is no critical interaction strength, i.e., for any
positive value of U there will be a finite gap.

As an approximate solution at weak coupling U  1/ρ0,
we have

� ≈ 2
√

ε�ε0 exp

(
− 1

2ρ0U

)
.

Note that the two-pocket model is not safe against a variation
of the ultraviolet cutoff, as the gap grows with

√
ε� at

weak coupling. However, since our focus rather lies on the
methodology than on real materials, this lack of UV safety
does not really pose a problem.

B. Numerical implementation

Let us now turn to the implementation of the fRG flow
equations (6)–(9) for the two-pocket model. The circular
symmetry of this model will be exploited and all calculations
will be performed at zero temperature.

For the low-energy model considered, it seems appealing
to parametrize the momentum dependence instead of resorting
to a discretization in momentum space. This will considerably
lower the numerical effort spent on the integration of the flow
equations (6)–(9). In order to keep the momentum dependence
simple, a frequency cutoff seems preferable to other schemes.
An additive frequency regulator will turn out to be a good
choice in the following. As in Refs. [11,17,22], the infrared
cutoff λ is implemented by the replacement

ik0 → ik0 + Rλ(k0) = i sign(k0)
√

k2
0 + λ2 (17)

in the quadratic part of the bare action. One might also consider
a multiplicative regulator as in the � scheme of Refs. [18–20],
but that cutoff scheme would lead to more demanding loop
integrals on the right-hand sides of the fRG flow equations.

Note that the frequency dependence of the vertices and the
self-energy may not be easy to parametrize at finite scales.
In the following, a parametrization of the momentum depen-
dence is given, where the coefficients all remain frequency
dependent. This latter dependence is then discretized using a
logarithmic grid.

Let us first address the momentum dependence of the
exchange propagators. In the spirit of a gradient expansion
around ordering momenta, one may approximate the mo-
mentum dependence of each exchange propagator P (l) by
a Lorentzian, i.e.,

P (l) = 1

mP (l0)[1 + nP (l0) l2]
, (18)

with two frequency-dependent parameters. mP (l0) corre-
sponds to a bosonic mass and determines the height of the
Lorentz peak at l = 0 with width |nP (l0)|−1/2. In practice,
nP will be determined from a finite difference formula for
1/P (l). Due to the (continuous) rotation symmetry of the
model, corrections to this ansatz would appear as even-order
terms in |l| in the denominator.

Conversely, a frequency-dependent g-ology approach
would correspond to neglecting the l2 term in the denominator.
In a mixed fermion-boson fRG approach to superfluidity in the
attractive Hubbard model, however, gradient terms of radial
and Goldstone modes are reminiscent of the above Lorentz
decay [30,31]. Therefore, it seems prudent to at least include
the l2 term in Eq. (18). In order to keep the computational cost
low, we will restrict ourselves to this lowest nontrivial order
in a first attempt of a fRG study in the AF phase beyond the
mean-field picture.

In the following, the gap functions will be projected to zero
momentum, i.e., we work with a frequency-dependent gap

�(k0) = �(k)|k=0.

Note that k = 0 corresponds to considering the gap only at
the centers of the pockets. The Nambu indices play the role of
pocket indices, k therefore lives on half the BZ (the magnetic
BZ) and only varies within the pockets. Of course, also the
momentum dependence of the gap would be interesting to
study and resolving only its frequency dependence may seem
sloppy at first. Looking at the flow equation (9) for the
self-energy, one can, however, observe that the frequency and
momentum dependence is generated by the dependence of the
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FIG. 3. (Color online) Flow of the gap �(0) with the infrared
cutoff λ at zero frequency for U = 1.0 and �0 = 5.0×10−5. The
points labeled with “flow equation” are obtained from the integration
of Eqs. (6)–(9), while the points labeled with “Ward identity”
correspond to the value of the right-hand side of the WI (10) at
the respective scale. The curve labeled as “MF-like” corresponds to
a fit of the former data set to �λ(0) = √

α2 − λ2 below the critical
scale with the fit parameter α. See text for further explanation.

second and third arguments in the square brackets of E. Since
only terms up to order l2 in a gradient expansion are contained
in our parametrization of the exchange propagators and since
the self-energy is mainly driven by the radial vertex at l = 0, it
seems appropriate to neglect the momentum dependence of the
self-energy in a first step beyond MFT. This way, the integrand
in Eq. (9) remains independent of the angular integration
variable, which reduces the three-dimensional integral to a
two-dimensional one. Studying the momentum dependence
of the self-energy appears, however, worthwhile if one goes
beyond a Lorentzian profile in the exchange propagators.

In the following, numerical results for the fRG flow into the
SDW phase of the two-pocket model are presented. The system
parameters are chosen as ε0 = 3.0×10−2 and ε� = 0.58, if
not indicated otherwise. All calculations are performed at zero
temperature.

C. Scale dependence of the exchange propagators and the gap

Let us first consider the flow of the gap and the exchange
propagators at zero momentum and frequency. For a typical
choice of the model parameters, the scale dependence of
these quantities is depicted in Figs. 3 and 4, respectively. In
qualitative agreement with the mean-field picture (cf. Ref. [9]),
the gap opens at the critical scale, where the radial vertex
Mz(0) shows a pronounced peak. Below the critical scale,
the couplings saturate to their infrared values. In contrast
to the radial vertex, which has moderate infrared values, the
Goldstone vertex Mxy(0) becomes large for λ → 0.

Below the critical scale, the flow of the gap behaves
mean-field like. For the cutoff chosen in Eq. (17) and in
MFT, the scale dependence of the gap takes on the form
�λ = √

�2
λ=0 − λ2. Indeed, that scale dependence can also be

observed for the fRG gap below the critical scale in Fig. 3. We

hence conclude that the coupling between different interaction
channels below the critical scale has a negligible impact on the
infrared value of the gap.

If the seed field is varied, one finds that the increase of
the gap is steeper for smaller �0 and that the peak of the
radial vertex is then more pronounced. Moreover, the infrared
value of the Goldstone vertex increases with decreasing �0.
This behavior is also in qualitative agreement with the mean-
field results of Ref. [9], while the mean-field picture becomes
inadequate on a more quantitative level. One difference shall
already be outlined here: While the CDW and singlet-pairing
channels do not feed back on the other channels and the gap
at the mean-field level, they will be found to have a significant
impact on the flow in Sec. III E.

At l = 0, the corresponding exchange propagators N and
D = −N grow in the flow until the critical scale is reached.
Below, they decrease slightly, saturating to their infrared
values. Their absolute values are equal due to the pseudospin
SU(2) symmetry discussed in Appendix B 1 and they virtually
behave independently of the value of �0.

After having discussed the flow of the exchange propagators
at l = 0, let us now turn to their dependence on momentum and
frequency. In the right panel of Fig. 4, the flow of the squares
nP of the inverse Lorentz widths of their momentum profiles is
depicted at l0 = 0. (Large values of nP correspond to narrow
peaks.) Comparison with the values of mP on the left panel of
Fig. 4 suggests as a rule of thumb that the momentum profile
of the exchange propagators around l = 0 is the more sharply
peaked the larger their values at l = 0 are.

Let us now have a look at the frequency dependence of
the exchange propagators P . For zero momentum, they are
given by mP (l0). The value of nP (l0), in contrast, describes the
momentum decay at some frequency l0. For P = Mxy,Mz,N ,
the parameters 1/mP and nP are depicted as a function of
frequency at various stages of the flow in Figs. 5, 6, and 7,
respectively. In the Goldstone and radial channels, 1/mMxy

and 1/mMz
decay monotonically as shown in the left panels

of Figs. 5 and 6. The form of these curves neither resembles a
Lorentzian nor an exponential. One may wonder whether a sign
change occurs in D and N in analogy to the superconducting
phase of the attractive Hubbard model, where the magnetic
exchange propagator changes sign at small frequencies [17].
From Fig. 7, one can, however, see that this is not the case
and that 1/mN decays with frequency in a way similar to the
Goldstone and radial channels. This is presumably due to the
pseudospin SU(2) symmetry [cf. Eq. (B5)] of the two-pocket
model discussed here.

The parametrization of the exchange propagators intro-
duced in Sec. III B also allows for a frequency-dependent
momentum decay length. In the right panels of Figs. 5
and 6, however, the product nP (l0) mP (l0) for the radial and
Goldstone vertices remains constant up to relatively high
frequencies. This is in agreement with the parametrization
of the exchange propagators in Ref. [17]. In that work,
real-valued exchange propagators P are described by a
frequency-dependent mass mP (l0) and a momentum function
FP (l) according to

P (l) = 1

mP (l0) + FP (l)
. (19)
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FIG. 4. (Color online) Flow of the parameters of the exchange propagators with the infrared cutoff λ at l = 0 for U = 1.0 and
�0 = 5.0×10−5.

In terms of a gradient expansion in momentum and frequency,
such a parametrization applies whenever mixed terms are of
minor importance.

In the present case, one may approximate FP (l) ≈
nP (0) mP (0) l2, which can save half the computation time.
For more refined momentum parametrizations, however, one
may gain a much larger factor by neglecting the frequency
dependence of the momentum decay in the spirit of Eq. (19).
According to Fig. 7, these approximations seem less ap-
plicable for the CDW and singlet-pairing channels, where
nN (l0) mN (l0) varies at frequencies of the order of the critical
scale. But, employing Eq. (19) also for these channels should
nevertheless affect the results for the gap and the fulfillment
of the WI only insignificantly.

In contrast to the exchange propagators, the gap � only
shows a negligible frequency dependence throughout the flow
in agreement with the RPA result in Sec. II E.

D. Fulfillment of the Ward identity

The violation of the WI (10) provides a measure for the
errors induced by the Katanin one-loop truncation and all
subsequent approximations. For the superconducting phase
of the attractive Hubbard model, the corresponding U(1) WI
has been used as a measure of the quality of the approach
pursued [17]. In the present case, having a look at the violation
of the SU(2) WI seems indeed rewarding since there are a
number of approximations involved and since it is not yet
clear how faithful they are on a more quantitative level.

In Fig. 8, the relative WI violation (� − �WI)/� is plotted
against the scale, where � is obtained from the fRG flow
equations and �WI denotes the corresponding value of the
right-hand side of Eq. (10). Obviously, perturbation theory
applies at high scales and the WI is only weakly violated in
that regime. Slightly above the critical scale, the curves in
Fig. 8 start to increase and develop a dependence on the value

FIG. 5. (Color online) Frequency dependence (left) of Mxy at l = 0 and (right) of the Lorentz width for its momentum decay for U = 1.0
and �0 = 5.0×10−5 at various stages of the flow, where l0 denotes the transfer frequency. The curves shown here are the spline interpolants
also used in the numerics.
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FIG. 6. (Color online) Frequency dependence (left) of Mz at l = 0 and (right) of the Lorentz width for its momentum decay at various
stages of the flow, where l0 denotes the transfer frequency. The parameters have been chosen as in Fig. 5.

of the seed field �0. Generically, � is larger than �WI and
the WI violation gets worse for smaller seed fields. For the
parameters of Fig. 8, the values of the WI violation (�25%)
suggest that the results obtained have at least the right order of
magnitude, while they are less faithful than in Ref. [17], where
the relative WI violation is smaller. Regarding the underlying
approximations, this suggests that the flow equations (6)–(9)
in Nambu-normal approximation are indeed applicable, while
this approach should be extended in an attempt to proceed in
a more quantitative direction.

The impact of different approximations on the WI can also
be assessed by looking at the dependence of its violation on
the interaction strength. In the Katanin scheme, the relative
WI violation is expected to grow as U 3 (cf. Refs. [17,22]).
As can be seen in Fig. 8, our results do not coincide with this
expectation. Instead, we find considerable contributions to the
WI violation that scale as U 2, also above the critical scale. This
can be regarded as a signature of the approximations made

within the one-loop truncation, for example, the projection
rule of Appendix B 3 and the omission of some interaction
terms.

So far, we have discussed the fulfillment of the WI by
looking at the values of the gap. But, there is another
property associated with the WI. In the infrared, the interaction
is dominated by the Goldstone vertex and therefore other
contributions on the right-hand side of the WI (10) seem
to be of minor importance. If the SU(2) and translational
symmetries are spontaneously broken, i.e., if the gap does
not vanish for �0 → 0, the Goldstone vertex must diverge as
Mxy(0) ∝ �−1

0 in this limit. In Fig. 9, the reciprocal value of
the Goldstone vertex is depicted for various values of the seed
field. Simply integrating the flow equations (upper curve in
Fig. 9) gives rise to points that agree well with their linear fit.
However, if 1/Mxy(0) is extrapolated to �0 → 0, one still
obtains a finite Goldstone vertex as a consequence of WI
violations.

FIG. 7. (Color online) Frequency dependence (left) of N at l = 0 and (right) of the Lorentz width for its momentum decay at various stages
of the flow, where l0 denotes the transfer frequency. The parameters have been chosen as in Fig. 5.
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FIG. 8. (Color online) Relative violation of the WI (10) as a function of the scale λ for various values of U and �0. The fRG results for the
gap are denoted by �, while �WI is obtained from the right-hand side of the WI (10). The interaction strength U = 1.0 in the left plot. In the
right panel, the relative WI violation is rescaled by U 3 and the scale λ by the corresponding critical scale λc.

The WI can now be enforced by determining � by iterating
Eq. (10) until convergence is reached at each iteration step
of the ordinary differential equation (ODE) solver. [Its scale
derivative needed in the loops, in contrast, is still obtained
from the flow equation (9).] The resulting infrared values
of 1/Mxy(0) constitute the lower curve in Fig. 9. Again, a
linear dependence on the seed field is found. But now, the
corresponding fit curve is much closer to the origin for a
vanishing seed field. This indicates that enforcing the WI
not only somehow projects the fRG flow on the hypersurface
in parameter space given by this identity, but also leads
to physically meaningful results. An even more promising
approach would constitute in applying an ODE solver with a
constraint [32] as in Refs. [11,17]. Since a number of steps in a
more quantitative direction still need to be undertaken before,
we refrain from this task here. (Except for Fig. 9, the WI is not

FIG. 9. (Color online) Dependence of the infrared values of the
Goldstone vertex Mxy(0) on the seed field �0 for gaps according to
the flow equation (9) and the WI (10) for U = 1.0. See text for further
explanation.

enforced in the figures of this work, i.e., the gap is obtained
from the flow equations.)

Let us note in passing that �0 cannot be chosen arbitrarily
small before the fermionic cutoff λ has been fully removed.
This is due to the singular behavior of box diagrams with
bosonic lines corresponding to the Goldstone vertex. The
discussion of these diagrams in Refs. [17,22] also applies for
the present case and the �0 flow proposed in those works
offers itself as a method for the removal of the seed field.
But, before such a flow is implemented, again a considerable
amount of work remains to be done in order to first reduce the
WI violation further.

E. Comparison to mean-field theory

The present analysis represents a first step beyond the
mean-field picture in a fRG approach to antiferromagnetically
ordered phases. The corresponding flow equations (6)–(9)
reproduce the mean-field result in RPA (see Sec. II E). The fRG
flow behaves RPA-like in the sense that the coupling between
different channels induces only finite renormalizations, in
analogy to the fRG flow of the attractive Hubbard model
into the superfluid phase [17]. Let us have a look at these
renormalizations for the two-pocket model here. In Fig. 10, the
ratio �/�MF of the gaps obtained from fRG and mean-field
theory is plotted against the interaction strength U . Note that
the fRG values � calculated for nonvanishing seed fields
are only upper estimates for the gap. For all data points
depicted, a reduction of the gap through the coupling of
different channels can be observed. The present data suggest
that �/�MF increases with the interaction strength U . A
similar increase has also been found for the superconducting
gap of the attractive Hubbard model in Ref. [17].

Clearly, a reduction of the mean-field gap may also
partly occur if U 2 terms in the gap equation (16) were
added. Such a self-consistency equation for the gap may
be obtained in different ways [29,33,34]. While methods of
this kind have been used for the two-dimensional Hubbard
model in Refs. [33,34], such considerations have not yet
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FIG. 10. (Color online) Ratio of the fRG and mean-field gaps
� = �λ=0(0) and �MF as a function of U . See text for further
explanation.

been undertaken for the two-pocket model to the authors’
knowledge.

The renormalizations of the RPA result contained in the
fRG values of � are caused by diagrams with bosonic
lines inside closed loops on the right-hand sides of the flow
equations (6)–(9). The importance of these vertex-correction
and box diagrams may manifest itself in different ways.

(i) The frequency dependence of the vertex may affect the
results. In static approximation, the WI could then be more
strongly violated.

(ii) The feedback of the CDW and singlet-pairing channels
on the other interaction channels and the gap, which is absent
at the RPA level, may play a role. The WI should be more
strongly violated if the corresponding exchange propagators
N and D are neglected.

Let us therefore first have a look at the impact of the
frequency dependence, i.e., compare the flow with a frequency-
dependent vertex to the flow in static approximation. As
already mentioned above, the fulfillment of the WI can be
regarded as a hallmark of the quality of the approximations
employed. In Fig. 11, the relative WI violation (� − �MF)/�
is depicted for a frequency-dependent vertex and in static ap-
proximation for U = 1.0. Apparently, relaxing the frequency
dependence enhances the violation of the WI. As for the
infrared values of the gap, the static approximation yields
�st = 8.52×10−3 for �0 = 4.4×10−5, while � = 9.23×10−3

is obtained with a frequency-dependent vertex. One may
hence conclude that taking the frequency dependence of
the vertex into account makes the present approach more
powerful. Furthermore, the reduction of the mean-field gap
is overestimated in static approximation. Also, these findings
are in agreement with those for the superfluid phase of the
two-dimensional attractive Hubbard model.

Finally, let us discuss the importance of the feedback of
the singlet-pairing and CDW channels on the fRG flow of the
other quantities. The corresponding exchange propagators D

and N are neglected for this purpose and the flow is then run for
U = 1.0 and �0 = 5.0×10−5. In Fig. 12, the flows with and

FIG. 11. (Color online) Violation of the WI (10) as a function
of the scale λ for a frequency-dependent vertex (dy) and in static
approximation (st). The fRG results for the gap are denoted by �,
while �WI corresponds to the right-hand side of the WI (10). The
model parameters ε0 = 3.0×10−2 and U = 1.0 are kept fixed, while
�0 is varied.

without the singlet-pairing and CDW channels are compared.
One can observe that without these contributions the critical
scale is slightly enhanced. In their absence, the Goldstone
vertex grows more strongly slightly above the critical scale.
This enhanced growth of the Goldstone vertex goes along
with a strong violation of the WI. The value 1.60×10−2 for
the gap in the absence of D and N considerably exceeds
the fRG result � = 9.25×10−3 in their presence, wrongly
predicting an enhancement compared to the mean-field result
�MF = 1.16×10−2. Altogether, this invalidates the omission
of the CDW and singlet-pairing channels as a sensible approx-
imation. Regarding the violation of the WI, these channels
seem to be more essential than the time-reversal breaking,

FIG. 12. (Color online) Comparison of the flows with and with-
out the CDW and singlet-pairing channels for U = 1.0 and �0 =
5.0×10−5. The exchange propagators Mxy(0) and Mz(0) are depicted
as functions of the scale λ.
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s±-wave and non-momentum-conserving terms omitted in
the flow equations (6)–(9), which a posteriori justifies the
underlying approximations.

One may wonder why the CDW and singlet-pairing
channels seem to play such an essential role. At the RPA level,
the flow of these two channels does not feed back on other
scale-dependent quantities (see Sec. II E). If they are neglected,
however, vertex-correction and box diagrams give rise to a
strong enhancement of the mean-field result, which strongly
violates the WI. Once the CDW and singlet-pairing channels
with exchange propagators N and D are included, however,
we only observe a rather moderate reduction of the mean-field
gap. This suggests that there are counteracting tendencies in
the vertex-correction and box diagrams, which account for the
effects beyond the mean-field picture.

In the flow equation (7) for Mxy , the linear combination
P2 = Mz/2 + 3D/2 of exchange propagators appears inside
the loops of these diagrams. Let us now recall that D = −N

takes on negative values, while Mz is positive. Consequently,
a partial cancellation of these contributions in P2 indeed
reduces the impact of effects beyond the mean-field picture. At
scales slightly above the critical scale, where Mz(l) � −3D(l)
for small l, vertex-correction and box diagrams only give
negligible contributions to the flow of the Goldstone vertex.
If D is however neglected, the impact of these diagrams is
exaggerated. This in turn gives rise to a strong growth of the
Goldstone vertex, which results in a quite severe violation of
the WI. Summarizing, the inclusion of the CDW and singlet-
pairing channels appears to be essential for renormalizations
of the mean-field result, while they can be neglected at the
RPA level.

IV. SUMMARY

In this work, we have continued fermionic fRG flows into
an antiferromagnetic phase beyond the mean-field level. It
complements previous studies of superconductivity within
a purely fermionic framework [6,10,11,16,17,22] and of
partially bosonized flows for various types of ordering [35–38].
In an antiferromagnet, the (discrete) translational symmetry
and the (continuous) SU(2) spin symmetry are broken simul-
taneously. We have presented a physically meaningful channel
decomposition of the fRG flow equations in the AF phase. Of
course, this decomposition and the symmetry considerations
made here may also be useful in other theoretical approaches
where the vertex and the Green’s functions in the symmetry-
broken state constitute important building blocks.

We have argued that, in order to reduce the computational
effort, one may neglect two-particle interaction terms that
break the discrete time-reversal and translational symmetries.
On the one-particle level, in contrast, these two symmetries
are still broken. An exchange parametrization is employed
and only plain s-wave form factors have been retained. In
our implementation, we have parametrized the momentum
dependence of the exchange propagators by a Lorentzian
in a gradient-expansion spirit, and we have discretized their
frequency dependence.

Despite all these approximations, the mean-field gap
equation can be exactly reproduced from the resulting fRG
flow equations in RPA, and, consequently, the full flow allows

us to gain insight into effects beyond the mean-field picture.
At that level, we have solved the fRG flow numerically, and
our results agree with our expectation. In the present (perfectly
nested) test case, only finite renormalizations compared to RPA
are found. For these corrections to MFT, the inclusion of the
CDW and singlet-pairing channel turns out to be crucial. The
size of the gap is reduced by the contributions beyond RPA
in a similar way as the superconducting gap of the attractive
Hubbard model [17]. The frequency dependence of the gap is
found to be negligibly weak. The feedback of the frequency
dependence of the exchange propagators on the zero frequency
couplings, in contrast, considerably improves the fulfillment
of the WI.

This gives rise to WI violations that are small enough not
to spoil our results on a qualitative level, which justifies our
approximate parametrization a posteriori. In order to obtain
more precise quantitative predictions for AF gaps, future work
may be geared to improving the fulfillment of the WI. Most
likely, this can be accomplished by including the normal
parts of the self-energy and the frequency dependence of the
fermion-boson vertices.

We have seen that the renormalization of the mean-field
gap is predominantly due to the coupling of different inter-
action channels above the critical scale. A recently proposed
fusion [39] of fRG in the symmetric phase and MFT should
therefore be applicable. In the superconducting phase, the
authors of Ref. [39] have observed good agreement with
symmetry-broken fRG flows. For a lattice model, a quantitative
comparison should also be carried out for the antiferromag-
netic case, and the outcome of this work suggests positive
results. In the long run, the method used here should be applied
also to the Hubbard model and other model Hamiltonians of
interest. In addition, our channel decomposition in the general
form presented in Sec. II may also be useful for instability
analyses of models that have a collinear Uz(1) instead of a
full SU(2) spin symmetry.2 By dropping the Nambu indices,
it can also be applied to problems without breaking of the
translational symmetry, e.g., with just a spin-splitting term. In
this context, the Kane-Mele-Hubbard model [40–42] might be
an interesting candidate.
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APPENDIX A: CHANNEL DECOMPOSITION

In the fRG flow equations, a direct and unbiased discretiza-
tion of the coupling functions V↑↓, V↑, and V↓ defined in
Sec. II A would either require further approximations, such as

2Recently, models without the full SU(2) spin symmetry have
increasingly attracted research interest. For example, a fRG study has
been carried out for the Kitaev-Heisenberg model on the honeycomb
lattice [21], which, however, does not even have a Uz(1) spin
symmetry.
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projection to the Fermi surface and to zero frequency, or result
in even more prohibitive numerical effort than in the SU(2)
symmetric case. Therefore, a so-called channel decomposition
of the interaction as pioneered in Refs. [18,43] seems appro-
priate. Recently, such a decomposition was proposed [16] and
implemented [17] for singlet superconductors. We now present
such a channel decomposition for AF phases, where not only
the SU(2) symmetry, but also the translational symmetry is
broken.

1. Formal decomposition

As we have already discussed in Ref. [9], the three coupling
functions from Sec. II B can now be decomposed as follows.
Renormalizations of equal-spin interactions W↑ and W↓ can
be regarded as a sum �SCσ of triplet and anomalous pairing
terms and a spin-dependent particle-hole term �Kσ , which
enter according to

Wσ (K1,K2,K3,K4) = δ̃{ki }
[
U {s}

σ (k1,k2,k3)

+�
{s}
SC,σ (k1 + k2,k1,k3)

−�
{s}
K,σ (k1 − k3,k1,k2)

+�
{s̃}
K,σ (k3 − k2,k1,k2)

]
.

In this equation, Uσ stems from the bare interaction and {s̃}
denotes (s1,s2,s4,s3). The particle-hole part �K,σ contains S2

z

and n2 (CDW) contributions as well as terms of Szn form,
where n represents the charge density. In contrast to Wσ , the
single-channel coupling functions �... depend strongly on one
momentum and frequency argument and weakly on the other
two. This way, the discretization effort is reduced from N3

to N .
The coupling function W↑↓ with bare values U↑↓ is

renormalized by a particle-particle part �SC,↑↓, which may
contain triplet, singlet, and anomalous pairing terms, and
magnetic contributions �plane corresponding to S2

x + S2
y or

SxSy and �axis, which contains S2
z , CDW, and Szn terms

W↑↓(K1,K2,K3,K4) = δ̃{ki }
[
U

{s}
↑↓ (k1,k2,k3)

+�
{s}
SC,↑↓(k1 + k2,k1,k3)

+�
{s}
plane(k3 − k2,k1,k2)

−�{s}
axis(k1 − k3,k1,k2)

]
.

In Ref. [9], we have derived fRG flow equations for the
single-channel coupling functions �... and the self-energy �,
which we recapitulate in the following. A dot then denotes
the derivate with respect to the infrared cutoff λ. Note that the
following flow equations hold irrespective of the precise form
of the regularization scheme.

In the particle-particle channels, one obtains

�̇
{s}
SC,σ (l,q,q ′) = 1

2

∑
{s ′

i }

∫
d ′p W

s1,s2,s
′
1,s

′
3

σ (q,l − q,p+, − p−) W
s ′

4,s
′
2,s3,s4

σ (−p−,p+,q ′,l − q ′) L
{s ′

i }
σ,σ (p+, − p−), (A1)

�̇
{s}
SC,↑↓(l,q,q ′) = −

∑
{s ′

i }

∫
d ′p W

s1,s2,s
′
1,s

′
3

↑↓ (q,l − q,p+, − p−) W
s ′

2,s
′
4,s3,s4

↑↓ (p+, − p−,q ′,l − q ′) L
{s ′

i }
↑,↓(p+, − p−), (A2)

where p± = p ± l/2. The flow in the particle-hole channels is governed by

�̇
{s}
K,↑(l,q,q ′) = −

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↑ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s

′
3,s3

↑ (q,p−,p+,q − l) L
{s ′

i }
↑,↑(p−,p+)

−
∑
{s ′

i }

∫
d ′p W

s2,s
′
4,s4,s

′
1

↑↓ (q ′,p+,l + q ′,p−) W
s1,s

′
2,s3,s

′
3

↑↓ (q,p−,q − l,p+) L
{s ′

i }
↓,↓(p−,p+), (A3)

�̇
{s}
K,↓(l,q,q ′) = −

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↓ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s

′
3,s3

↓ (q,p−,p+,q − l) L
{s ′

i }
↓,↓(p−,p+)

−
∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s

′
1,s4

↑↓ (p+,q ′,p−,l + q ′) W
s ′

2,s1,s
′
3,s3

↑↓ (p−,q,p+,q − l) L
{s ′

i }
↑,↑(p−,p+), (A4)

�̇
{s}
plane(l,q,q ′) = −

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s3,s

′
1

↑↓ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s

′
3,s4

↑↓ (q,p−,p+,q − l) L
{s ′

i }
↓,↑(p−,p+),

�̇{s}
axis(l,q,q ′) =

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s

′
1,s4

↑↓ (p+,q ′,p−,q ′ + l) W
s1,s

′
2,s

′
3,s3

↑ (q,p−,p+,q − l) L
{s ′

i }
↑,↑(p−,p+)

+
∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↓ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s3,s

′
3

↑↓ (q,p−,q − l,p+) L
{s ′

i }
↓,↓(p−,p+). (A5)
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Expressed in Nambu space, the flow equations for the self-energy read as

∂λ�
s1s2
↑ (k1,k2) = −

∑
s ′

1s
′
2

∫
d ′p S

s ′
1s

′
2

↑ (p) W
s1,s

′
2,s

′
1,s2

↑ (k1,p,p,k2) +
∑
s ′

1s
′
2

∫
d ′p S

s ′
1s

′
2

↓ (p) W
s1,s

′
2,s2,s

′
1

↑↓ (k1,p,k2,p),

∂λ�
s1s2
↓ (k1,k2) = −

∑
s ′

1s
′
2

∫
d ′p S

s ′
1s

′
2

↓ (p) W
s1,s

′
2,s

′
1,s2

↓ (k1,p,p,k2) +
∑
s ′

1s
′
2

∫
d ′p S

s ′
1s

′
2

↑ (p) W
s ′

2,s1,s
′
1,s2

↑↓ (p,k1,p,k2),

where the single-scale propagator defined in Eq. (3) is equal
to the scale derivative

Sss ′
σ (k) = ∂λG

ss ′
σ (k)|�=const

of the one-particle propagator with the self-energy held
constant.

2. Improved parametrization

In the present form, this channel decomposition would
already allow for a reduction of computational effort if all
three momentum and frequency variables were discretized.
This would, however, rather constitute an approximation
simplifying the numerics than a decomposition into physically
meaningful channels. Namely, �K and �axis both contain S2

z

and CDW contributions. In a physically meaningful channel

decomposition that allows for sensible further approximations,
however, S2

z and CDW contributions should appear in different
channels. In the following, this will be accomplished by
decomposing the single-channel coupling functions into spin-
normal and spin-anomalous contributions and then linearly
recombining the spin-normal parts.

Let us first decompose �axis into its spin-normal and spin-
anomalous parts

�
{s}
axis±(l,p,q) = 1

2

[
�{s}

axis(l,p,q) ± �{s̄}
axis(−l,q,p)

]
,

where {s̄} = (s2,s1,s4,s3). With the shorthand notation

L{s}
σ1,σ2

(p,q) = ∂λ

[
Gs1,s2

σ1
(p) Gs3,s4

σ2
(q)

]
for the loops, their scale derivatives can be cast into the
form

�̇
{s}
axis±(l,q,q ′) = 1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s

′
1,s4

↑↓ (p+,q ′,p−,q ′ + l) W
s1,s

′
2,s

′
3,s3

↑ (q,p−,p+,q − l) L
{s ′

i }
↑,↑(p−,p+)

± 1

2

∑
{s ′

i }

∫
d ′p W

s2,s
′
4,s4,s

′
1

↑↓ (q ′,p+,q ′ + l,p−) W
s1,s

′
2,s

′
3,s3

↓ (q,p−,p+,q − l) L
{s ′

i }
↓,↓(p−,p+)

+ 1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↓ (p+,q ′,q ′ + l,p−) W
s1,s

′
2,s3,s

′
3

↑↓ (q,p−,q − l,p+) L
{s ′

i }
↓,↓(p−,p+)

± 1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↑ (p+,q ′,q ′ + l,p−) W
s ′

2,s1,s
′
3,s3

↑↓ (p−,q,p+,q − l) L
{s ′

i }
↑,↑(p−,p+). (A6)

Likewise, one may introduce spin-normal and spin-anomalous coupling functions

�
{s}
K±(l,p,q) = 1

2

[
�

{s}
K,↑(l,p,q) ± �

{s̄}
K,↓(l,p,q)

]
for the K channels. Their scale derivative can be obtained by adding or subtracting the flow equations (A3) and (A4), respectively.
The corresponding flow equations now read as follows:

�̇
{s}
K,±(l,q,q ′) = −1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↑ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s

′
3,s3

↑ (q,p−,p+,q − l) L
{s ′

i }
↑,↑(p−,p+)

∓ 1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s4,s

′
1

↓ (p+,q ′,l + q ′,p−) W
s1,s

′
2,s

′
3,s3

↓ (q,p−,p+,q − l) L
{s ′

i }
↓,↓(p−,p+)

− 1

2

∑
{s ′

i }

∫
d ′p W

s2,s
′
4,s4,s

′
1

↑↓ (q ′,p+,l + q ′,p−) W
s1,s

′
2,s3,s

′
3

↑↓ (q,p−,q − l,p+) L
{s ′

i }
↓,↓(p−,p+)

∓ 1

2

∑
{s ′

i }

∫
d ′p W

s ′
4,s2,s

′
1,s4

↑↓ (p+,q ′,p−,l + q ′) W
s ′

2,s1,s
′
3,s3

↑↓ (p−,q,p+,q − l) L
{s ′

i }
↑,↑(p−,p+), (A7)
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S2
z and CDW contributions are spin normal and can be obtained as

�{s}
z (l,p,q) = �

{s}
K+(l,p,q) − �

{s}
axis+(l,p,q) , �

{s}
CDW(l,p,q) = �

{s}
K+(l,p,q) + �

{s}
axis+(l,p,q),

respectively, as illustrated in Fig. 1. With the shorthand notations

W
{s}
±σ (k1,k2,k3,k4) = W

{s}
↑↓ (k1,k2,k3,k4) ± W {s̃}

σ (k1,k2,k4,k3), (A8)

the flow equations of these new single-channel coupling functions read as follows. Once again, the prime in the measure d ′p
indicates that the respective momentum integral only runs over the magnetic BZ:

�̇
{s}
CDW(l,q,q ′) = −1

2

∑
{s ′

i }

∫
d ′p L

{s ′
i }

↑,↑(p−,p+) W
s ′

2,s1,s
′
3,s3

−↑ (p−,q,p+,q − l) W
s ′

4,s2,s
′
1,s4

−↑ (p+,q ′,p−,q ′ + l)

− 1

2

∑
{s ′

i }

∫
d ′p L

{s ′
i }

↓,↓(p−,p+) W
s1,s

′
2,s3,s

′
3

−↓ (q,p−,q − l,p+) W
s2,s

′
4,s4,s

′
1

−↓ (q ′,p+,q ′ + l,p−) (A9)

and

�̇{s}
z (l,q,q ′) = −1

2

∑
{s ′

i }

∫
d ′p L

{s ′
i }

↑,↑(p−,p+) W
s ′

2,s1,s
′
3,s3

+↑ (p−,q,p+,q − l) W
s ′

4,s2,s
′
1,s4

+↑ (p+,q ′,p−,q ′ + l)

− 1

2

∑
{s ′

i }

∫
d ′p L

{s ′
i }

↓,↓(p−,p+) W
s1,s

′
2,s3,s

′
3

+↓ (q,p−,q − l,p+) W
s2,s

′
4,s4,s

′
1

+↓ (q ′,p+,q ′ + l,p−). (A10)

In the more physical parametrization presented here, the single-channel coupling functions W↑, W↓, and W↑↓ are decomposed
as follows:

W↑(K1,K2,K3,K4) = δ̃{ki }
[
U

{s}
↑ (k1,k2,k3) + �

{s}
SC,↑(k1 + k2,k1,k3) − 1

2�
{s}
CDW(k1 − k3,k1,k2)

− 1
2�{s}

z (k1 − k3,k1,k2) − �
{s}
K−(k1 − k3,k1,k2) + 1

2�
{s̃}
CDW(k3 − k2,k1,k2)

+ 1
2�{s̃}

z (k3 − k2,k1,k2) + �
{s̃}
K−(k3 − k2,k1,k2)

]
,

W↓(K1,K2,K3,K4) = δ̃{ki }
[
U

{s}
↓ (k1,k2,k3) + �

{s}
SC,↓(k1 + k2,k1,k3) − 1

2�
{s}
CDW(k1 − k3,k1,k2)

− 1
2�{s}

z (k1 − k3,k1,k2) + �
{s}
K−(k1 − k3,k1,k2) + 1

2�
{s̃}
CDW(k3 − k2,k1,k2)

+ 1
2�{s̃}

z (k3 − k2,k1,k2) − �
{s̃}
K−(k3 − k2,k1,k2)

]
,

where �K− enters with different signs in W↑ and W↓, and

W↑↓(K1,K2,K3,K4) = δ̃{ki }
[
U

{s}
↑↓ (k1,k2,k3) + �

{s}
SC,↑↓(k1 + k2,k1,k3) + �

{s}
plane(k3 − k2,k1,k2)

− 1
2�

{s}
CDW(k1 − k3,k1,k2) + 1

2�{s}
z (k1 − k3,k1,k2) − �

{s}
axis−(k1 − k3,k1,k2)

]
.

The scale dependence of �CDW, �z, �K−, and �axis− is
governed by the flow equations (A9), (A10), (A7), and (A6). In
contrast, the single-channel coupling functions �SC,σ , �SC,↑↓,
and �plane still flow according to Eqs. (A1), (A2), and (A5).
In a way similar to the above extraction of CDW and S2

z

contributions, �plane can be decomposed into (spin-normal)
S2

x + S2
y and (spin-anomalous) SxSy terms. Also, singlet-,

triplet-, and anomalous-pairing terms could be extracted from
�SC,↑, �SC,↓, and �SC,↑↓. For the symmetries of the perfectly
nested case, however, only the more important singlet-pairing
contributions will be retained in Appendix B 2.

In summary, the channel decomposition presented here
paves the road to an efficient (approximate) parametrization
of the interaction resulting in numerically tractable flow
equations as in Sec. II D, where an exchange parametrization
will be employed. The group-theoretic view on exchange

parametrizations presented in Ref. [44] also applies to the
above flow equations for collinear spin ordering.

APPENDIX B: DERIVATION OF THE fRG FLOW
EQUATIONS IN EXCHANGE PARAMETRIZATION

1. Symmetries in the presence of perfect nesting

In an attempt to go beyond a mean-field approach, one
is left with the full channel-decomposed flow equations of
Appendix A 2. Due to the Nambu-index dependence of the
coupling functions, a direct discretization of their arguments
would still be far too costly. Therefore, additional symmetries,
such as the one stemming from a perfectly nested dispersion,
should be exploited in the parametrization of the coupling
functions. In this section, we will therefore discuss these
symmetries for a general action of the form (1) before
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incorporating them into the parametrization. A bare action
of the type of Eq. (1) usually corresponds to a Hermitian
Hamiltonian. This translates to the constraints

Cσ (k,k′) = Cσ (k̂′,k̂)∗, (B1)

f (ξ1,ξ2,ξ3,ξ4) = f (ξ̂4,ξ̂3,ξ̂2,ξ̂1)∗ (B2)

on the coupling functions of the action A in Eq. (1), where
k̂ = (−k0,k) and ξ̂ = (k̂,σ ). Note that this Osterwalder-
Schrader positivity [45,46] (OSP) is referred to as particle-hole
symmetry in Refs. [18–20], which should not be confused with
the particle-hole symmetry of the Hubbard model at perfect
nesting as defined in Ref. [47].

In the positivity constraint (B1) for the quadratic part of
action, the Pauli principle is already included. The one for the
quartic part, however, is complemented by the Pauli-principle
constraint

f (ξ1,ξ2,ξ3,ξ4) = −f (ξ2,ξ1,ξ3,ξ4) = −f (ξ1,ξ2,ξ4,ξ3).

In a fRG framework, symmetries can only be exploited if
they can be formulated in terms of symmetry constraints on the
coupling functions, Eqs. (B1) and (B2) being examples thereof.
It therefore seems worthwhile to look for such a constraint on
the coupling functions that arises from perfect nesting. This
constraint could then be used in a further parametrization of the
coupling functions. As for the Hubbard model with hopping
only between nearest neighbors, we find for the two-pocket
model of Sec. III A that

Cσ (k,k′) = −C∗
−σ (k + Q,k′ + Q), (B3)

f (ξ1,ξ2,ξ3,ξ4) = f ∗(ξ̃1,ξ̃2,ξ̃3,ξ̃4), (B4)

where ξ̃i = (−σi,ki + Q). In the language of Refs. [47,48],
this corresponds to flipping the components of the pseu-
dospinors

s
p(k) =

(
ψs

↑(k)

ψ̄−s
↓ (−k)

)
. (B5)

This symmetry constitutes a subgroup of the “hidden” SU(2)
pseudospin symmetry. On the one-particle level, pseudospin-
flip invariance already implies a pseudospin SU(2) symmetry.
For two-particle and higher-order interaction terms, this is no
longer the case. Since a general pseudospin rotation mixes
ingoing and outgoing fields, fully exploiting this hidden
symmetry in the parametrization of the interaction represents
a challenging task, which we leave for future work.

The symmetry constraints (B3) and (B4) still hold in the
presence of a nonvanishing antiferromagnetic seed field �.
But, as soon as the two-pocket model of Sec. III A was doped
away from perfect nesting, Eq. (B3) would be violated as
well. Once they are met by the bare action, the constraints in
Eqs. (B3) and (B4) will, however, be preserved by the fRG
flow equations. For the spin-independent coupling functions,
the second of these constraints translates to

V↑(k1,k2,k3,k4) = V ∗
↓ (k1 + Q,k2 + Q,k3 + Q,k4 + Q),

V↑↓(k1,k2,k3,k4) = V ∗
↑↓(k2 + Q,k1 + Q,k4 + Q,k3 + Q),

while the first one implies a form

C↑(k) = �(k) τ 1 + [ik0 − εs(k)] τ 0 − εa(k) τ 3,

C↓(k) = −�∗(k) τ 1 + [ik0 + ε∗
s (k)]τ 0 − ε∗

a (k) τ 3 (B6)

of the quadratic part of the action in Nambu space with spinors
according to Eq. (5). In the following, we will refer to this
symmetry as a particle-hole symmetry (PHS).

In Eq. (B6), the normal self-energy enters with its Nambu-
index symmetric and antisymmetric parts in εs and εa, respec-
tively. For a bare action with a perfectly nested dispersion,
εs = 0 and hence the Nambu-symmetric part of the self-energy
is created, if it is nonvanishing at all, during the flow. In Nambu
space, this corresponds to a propagator of the form

G↑(k) = 1

k2
0 + 2ik0εs(k) − εs(k)2 + εa(k)2 + �(k)2

×
(−ik0 + εs(k) − εa(k) −�(k)

−�(k) −ik0 + εs(k) + εa(k)

)
(B7)

for spin up and likewise for spin down with the substitutions
�(k) → −�∗(k), εs(k) → −ε∗

s (k), and εa(k) → ε∗
a (k).

This general pseudospin-flip-symmetric form of the propa-
gator differs from the one in the mean-field case. For one thing,
the bare dispersion in εa gets renormalized by contributions
of the normal self-energy, which depend on momentum and
frequency. Also, the anomalous part � of the self-energy
may show such a dependence. Furthermore, contributions εs

to the normal self-energy appear that are symmetric under
a Nambu-index flip. As can be seen from the denominator
of Eq. (B7), a nonvanishing value of εs might give rise to
a Fermi surface reconstruction since it may cause zeros of
the denominator in the presence of an antiferromagnetic gap.
Keeping track of this effect may, however, require a good
momentum resolution of the self-energy within an unbiased
discretization scheme. In this work, we will therefore have to
refrain from such tasks.

In the following, other symmetries will turn out to be useful.
Let us recall that we consider a bare action equivalent to a
model Hamiltonian. Under frequency inversion k0 → −k0, the
coupling functions both in the quadratic and the quartic parts
of the action are then mapped to their complex conjugates, i.e.,

Cσ (k̂,k̂′) = C∗
σ (k,k′),

V↑(k̂1,k̂2,k̂3,k̂4) = V ∗
↑ (k1,k2,k3,k4) ,

V↑↓(k̂1,k̂2,k̂3,k̂4) = V ∗
↑↓(k1,k2,k3,k4).

This symmetry is as well preserved in the fRG flow. The point-
group symmetries give rise to the constraints

Cσ (RÔk,RÔk′) = Cσ (k,k′),

V↑(RÔk1,RÔk2,RÔk3,RÔk4) = V↑(k1,k2,k3,k4),

V↑↓(RÔk1,RÔk2,RÔk3,RÔk4) = V↑↓(k1,k2,k3,k4),

where RÔ denotes the representation matrix corresponding
to the element Ô in the point group G. (For a more general
discussion of point-group symmetries in multiband models,
see Ref. [49].) Here and throughout, we will assume that the
parity operation [50] k → −k is contained in G.
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Before we proceed further, let us briefly elaborate on
the behavior under time reversal, which corresponds to the
transformation

ψσ (x) → iσ ψ̄−σ (−τ,R) , ψ̄σ (x) → iσψ−σ (−τ,R)

(cf. Refs. [16,50,51]). For the coupling functions, this trans-
lates to

C−σ (k′T ,kT ) → Cσ (k,k′),

V↑
(
kT4 ,kT3 ,kT2 ,kT1

) → V↓(k1,k2,k3,k4),

V↑↓
(
kT4 ,kT3 ,kT2 ,kT1

) → V↑↓(k1,k2,k3,k4),

where kT = (k0, − k). One can observe that, in the presence of
OSP and parity invariance, the time-reversal operation acts on
the interaction just as a spin flip. Clearly, a finite AF gap �(k)
breaks time-reversal invariance in the quadratic part of the
action and consequently also in the renormalized interaction.

Note, however, that, in the absence of such a gap, SU(2) in-
variance would impose stronger constraints on the interaction
than time-reversal symmetry, as the full SU(2) spin symmetry
contains more than spin-flip invariance. As an approximation,
one may hence enforce spin-flip invariance in the interaction
without completely eliminating the signatures of the SU(2)
breaking. This approximation will be further discussed in
Appendix B 2.

2. Time-normal approximation

Typically, the bare interaction is time-reversal invariant. In
the presence of OSP and parity inversion, this is equivalent to
spin-flip invariance, i.e.,

U
{s}
↑ (k1,k2,k3) = U

{s}
↓ (k1,k2,k3),

U
{s}
↑↓ (k1,k2,k3) = U

{s̄}
↑↓ (k2,k1,k1 + k2 − k3)

holds, where s̄ = (s2,s1,s4,s3). In order to avoid confusion
with a full SU(2) invariance in the interaction, we will
henceforth speak of time-reversal invariance instead of spin-
flip invariance. This distinction is physically important, as
time-reversal symmetry is a discrete one, while a SU(2)
symmetry is continuous.

At the mean-field level, time-reversal breaking interactions
are absent. Such terms are, however, generated during the
RG flow if the interaction is not of reduced-mean-field type
(see Appendix A 2). In a first attempt to enter the AF phase
within a fRG framework beyond mean field, neglecting the
time-reversal breaking interactions may be a decent approx-
imation. In the following, we will call this the time-normal
approximation.

As laid out in Ref. [52], time-reversal breaking contribu-
tions to the interaction with zero momentum and frequency
transfer can be shown to vanish in random-phase approxima-
tion in the case of the Hubbard model at half-filling. For the
two-pocket model of Sec. III A, it appears unlikely that such
terms should play a major role. Note that the time-normal
approximation does not involve any approximations at the one-
particle level, where the time-reversal symmetry is still broken.

As will become clear in the following, the fRG flow in time-
normal approximation still shows features that are not included
in the mean-field picture. It seems an appealing strategy to first

study these new features and to include time-reversal breaking
contributions to the interaction in a further step. While the
former is the subject of the remainder of this work, the latter
will be left for future studies.

In time-normal approximation, the remaining spin-
symmetry group for the interaction is Gt = Uz(1)×Z2, which
has a preferred axis, but no preferred orientation along this
axis. The Z2 symmetry rules out such a preferred orientation.
It stems from the spin-flip invariance enforced by omitting
contributions to the renormalized interaction that would violate
the conditions

W
{s}
↑ (k1,k2,k3,k4) = W

{s}
↓ (k1,k2,k3,k4),

W
{s}
↑↓ (k1,k2,k3,k4) = W

{s̄}
↑↓ (k2,k1,k4,k3).

This Z2 invariance is, however, not enforced on the one-
particle level. [On the one-particle level, Gt would be equiv-
alent to SU(2) in the sense that a Gt symmetric one-particle
Green’s function is automatically SU(2) symmetric.]

In addition to the time-normal approximation, triplet- and
anomalous-pairing tendencies will be discarded here since they
appear to play a minor role in the presence of perfect nesting.
In other words, the single-channel coupling functions �SC,↑±,
�SC−, �K−, �axis−, and �xy− are neglected. The remaining
interaction terms read as

W↑(k1,k2,k3,k4){s}

= δ̃{ki }
[
U

{s}
↑ (k1,k2,k3) − 1

2�
{s}
CDW(k1 − k3,k1,k2)

− 1
2�{s}

z (k1 − k3,k1,k2) + 1
2�

{s̃}
CDW(k3 − k2,k1,k2)

+ 1
2�{s̃}

z (k3 − k2,k1,k2)
]
,

W
{s}
↑↓ (k1,k2,k3,k4)

= δ̃{ki }
[
U

{s}
↑↓ (k1,k2,k3) + �

{s}
singlet(k1 + k2,k1,k3)

+�
{s}
xy+(k3 − k2,k1,k2) − 1

2�
{s}
CDW(k1 − k3,k1,k2)

+ 1
2�{s}

z (k1 − k3,k1,k2)
]
,

and

W
{s}
↓ (k1,k2,k3,k4) = W

{s}
↑ (k1,k2,k3,k4).

Consequently, one now has W±↑ = W±↓ ≡ W± for the short-
hand notations introduced in Eq. (A8). It can easily be verified
that the time-normal approximation gives rise to

W
{s}
± (k1,k2,k3,k4) = W

{s̄}
± (k2,k1,k4,k3).

The flow equation for the single-channel coupling functions
in time-normal approximation can be cast into a simple form,
where the loops enter in the spin-symmetrized combinations

I {s ′}
eq (l,p) = 1

2 [G
s ′

1s
′
2

↑ (p − l/2) G
s ′

3s
′
4

↑ (p + l/2)

+G
s ′

1s
′
2

↓ (p − l/2) G
s ′

3s
′
4

↓ (p + l/2)],

I {s ′}
op (l,p) = 1

2 [G
s ′

1s
′
2

↑ (p − l/2) G
s ′

3s
′
4

↓ (p + l/2)

+G
s ′

1s
′
2

↓ (p − l/2) G
s ′

3s
′
4

↑ (p + l/2)],

J {s ′}
op (l,p) = 1

2 [G
s ′

1s
′
2

↑ (l/2 + p) G
s ′

3s
′
4

↓ (l/2 − p)

+G
s ′

1s
′
2

↓ (l/2 + p) G
s ′

3s
′
4

↑ (l/2 − p)].

035140-19



MAIER, EBERLEIN, AND HONERKAMP PHYSICAL REVIEW B 90, 035140 (2014)

For the singlet-pairing channel, one obtains the flow
equation

�̇
{s}
singlet(l,q,q ′) = −1

2

∑
{s ′}

∫
d ′p J̇ {s ′}

op (l,p)

×W
s1,s2,s

′
1,s

′
3

↑↓ (q,l − q,l/2 + p,l/2 − p)

×[
W

s ′
2,s

′
4,s3,s4

↑↓ (l/2 + p,l/2 − p,q ′,l − q ′)

+W
s ′

4,s
′
2,s3,s4

↑↓ (l/2 − p,l/2 + p,q ′,l − q ′)
]

and for the in-plane magnetic channel

�̇
{s}
xy+(l,q,q ′) = −

∑
{s ′}

∫
d ′p İ {s ′}

op (l,p)

×W
s ′

4,s2,s3,s
′
1

↑↓ (p + l/2,q ′,l + q ′,p − l/2)

×W
s1,s

′
2,s

′
3,s4

↑↓ (q,p − l/2,p + l/2,q − l).

For the CDW channel, the flow equation reads as

�̇
{s}
CDW(l,q,q ′) = −

∑
{s ′}

∫
d ′p İ {s ′}

eq (l,p)

×W
s ′

2,s1,s
′
3,s3

− (p − l/2,q,p + l/2,q − l)

×W
s ′

4,s2,s
′
1,s4

− (p + l/2,q ′,p − l/2,q ′ + l),

and for the S2
z channel one gets

�̇{s}
z (l,q,q ′) = −

∑
{s ′}

∫
d ′p İ {s ′}

eq (l,p)

×W
s ′

2,s1,s
′
3,s3

+ (p − l/2,q,p + l/2,q − l)

×W
s ′

4,s2,s
′
1,s4

+ (p + l/2,q ′,p − l/2,q ′ + l).

In the following, the self-energy will be decomposed into its
spin-symmetric and spin-antisymmetric parts

�
s1s2± (k) = 1

2 [�s1s2
↑ (k) ± �

s1s2
↓ (k)],

which flow according to

�̇
s1s2± (k) = −1

2

∑
s ′

1s
′
2

∫
d ′p [S

s ′
1s

′
2

↑ (p) ± S
s ′

1s
′
2

↓ (p)]

×W
s1s

′
2s2s

′
1∓ (k,p,k,p).

Expressed in terms of the quantities defined in Appendix B 1,
�+ contains Re εs, Im εa, and Im � and �− contains Re �,
Im εs, and renormalizations of Re εa.

3. Exchange parametrization

As in Refs. [18–20], one may now resort to an exchange
parametrization. The formalism presented here has been
adapted from Ref. [20], where the Hubbard model has been
studied in the symmetric phase.

Two slowly varying form factors are already encoded in the
Nambu indices. They can be attributed to the two irreducible
representations of the Z2 group, which correspond to basis
vectors that are even or odd under a Nambu-index flip. We
will refer to them as trivial and sign-changing form factors,

respectively. For the two-pocket model of Sec. III A, they
correspond to s wave or s± wave, respectively. For the Hubbard
model, the trivial form factor is of s wave and the sign-changing
one of dx2−y2 wave type.3 Although one may in principle
include more form factors, these two slowly varying ones
appear suitable for low-energy considerations.

In the present case, there is not only one unique way
to perform an exchange parametrization. In particular, the
dependence of the interaction on the Nambu indices can be
treated in various ways and the dependence on the weak
momenta and frequencies can either be taken into account
within a form-factor expansion as in Ref. [18] and subsequent
works, or it may be projected to a single point. In the
following, the latter strategy will be pursued. Moreover, it
appears sensible to first resort to an exchange parametrization
which does not contain approximations on the Nambu-index
dependence. Such approximations can then still be devised at
a later stage in agreement with the symmetries of the system.
On a formal level, a single-channel coupling function �P is
approximated by the product of fermion-boson vertices gα(q,l)
and exchange propagators P

{s}
αβ (l), i.e.,

�
{s}
P (l,q,q ′) ≈

∑
αβ

gα(q,l) gβ(q ′,l) P
{s}
αβ (l).

The indices α and β correspond to bosonic flavors here.
In the following, only fermion-boson vertices with a trivial
momentum and frequency dependence will be taken into
account. Since α and β then take on only one value, they will
be suppressed from the notation in the following. Normalizing
the momentum- and frequency-independent fermion-boson
vertices to unity then gives

�
{s}
P (l,q,q ′) ≈ P {s}(l),

i.e., for each combination of Nambu indices, the coupling
function of a particular channel can then be attributed to a
bosonic propagator. The above-mentioned trivial and sign-
changing form factors then come into play if the exchange
propagators are parametrized further, which will be addressed
in the following.

More precisely, one may choose

�
{s}
singlet(l,q,q ′) ≈ D{s}(l) = Ppp

[
�

{s}
singlet

]
(l)

with the projection rule

Ppp[�](l) = �(l,l/2,l/2)

for particle-particle channels. Note that the weak momentum
and frequency arguments of � are chosen in such a way
that unique symmetry constraints on the exchange propagators
result from the respective constraints on �. (For further details,
see Ref. [52].) For the particle-hole channels, the bosonic
propagators are defined likewise according to

�
{s}
CDW(l,q,q ′) ≈ N {s}(l) = Pph

[
�

{s}
CDW

]
(l),

�
{s}
xy+(l,q,q ′) ≈ M {s}

xy (l) = Pph
[
�

{s}
xy+

]
(l),

�{s}
z (l,q,q ′) ≈ M {s}

z (l) = Pph
[
�{s}

z

]
(l).

3In the latter case of the Hubbard model, the magnetic Brillouin
zone should be centered around (0,π ) for simplicity.
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The projection rule

Pph[�](l) = �(l,l/2, − l/2)

for the particle-hole channels differs from Ppp by a minus sign
in the last argument of �, which ensures compatibility with
the symmetries.

Note that in contrast to Refs. [18–20], not only the
weak frequency dependencies, but also the weak momentum
dependencies are projected to a single point through the above
projection rule. For this work, this seems to be an adequate
choice since the two-pocket model of Sec. III A can be regarded
in the light of a gradient expansion around the centers of hole
and electron pockets. The physics of the Hubbard model at van
Hove filling is dominated by the vicinity of the saddle points
(0,π ) and (π,0) of its dispersion and therefore the projection
rule presented here may also be applicable in that case. For
l = 0, the weak frequencies and momenta are only considered
in leading (zeroth) order in a gradient expansion around these
hot spots.

Of course, different projection rules can be applied
for lattice models, such as the form-factor expansion
rule of Refs. [18–20] or the Fermi surface projection of
Refs. [11,17,22]. These projection rules all comply with the
OSP, the PHS, and the Pauli principle.

Let us now assume that the bare interaction is time-reversal
invariant and only depends on the Nambu indices and not on
the momenta. Both the bare interactions of the Hubbard model
and of the two-pocket model considered in this work are of
this type. In terms of the above-defined exchange propagators,
the multichannel coupling functions W↑↓, W+, and W− in
time-normal approximation read as

W
{s}
↑↓ (k1,k2,k3) = U

{s}
↑↓ + D{s}(k1 + k2) + M {s}

xy (k3 − k2)

+ 1
2

[
M {s}

z (k1 − k3) − N {s}(k1 − k3)
]
,

W
{s}
+ (k1,k2,k3) = U

{s}
↑↓ − U

{s}
↑ + D{s}(k1 + k2)

+M {s}
xy (k3 − k2) + M {s}

z (k1 − k3)

− 1
2

[
N {s̃}(k3 − k2) + M {s̃}

z (k3 − k2)
]
,

W
{s}
− (k1,k2,k3) = U

{s}
↑↓ + U

{s}
↑ + D{s}(k1 + k2)

+M {s}
xy (k3 − k2) − N {s}(k1 − k3)

+ 1
2

[
N {s̃}(k3 − k2) + M {s̃}

z (k3 − k2)
]
,

where we have assumed that the bare interaction is featureless
in momentum space.

4. Nambu-normal approximation

At this level, a direct implementation of the fRG flow
equations with Nambu-index-dependent exchange propagators
would be quite costly. Therefore, we will resort to additional
approximations. First, let us point out that the Nambu-index
dependence of the interaction may as well be attributed to the
fermion-boson vertices instead of the exchange propagators.
On a formal level, this corresponds to a product ansatz for the
P {s}, i.e.,

D{s}(l) =
∑

m,m′=0,1

∑
n,n′=±

gm,n
s1s2

gm′,n′
s3s4

Dnn′
mm′(l),

M {s}
xy (l) =

∑
m,m′=0,1

∑
n,n′=±

gm,n
s1s4

gm′,n′
s3s2

(Mxy)nn′
mm′(l),

M {s}
z (l) =

∑
m,m′=0,1

∑
n,n′=±

gm,n
s1s3

gm′,n′
s2s4

Mz
nn′
mm′(l),

N {s}(l) =
∑

m,m′=0,1

∑
n,n′=±

gm,n
s1s3

gm′,n′
s2s4

Nnn′
mm′ (l).

The Nambu-index-dependent part of the fermion-boson ver-
tices can then be factorized as g

n,m
ss ′ = τm

ss ′ f n
s , where τm

ss ′ ac-
counts for the ordering momentum and where f s

n corresponds
to a form factor. More precisely, the trivial and sign-changing
form factors read as f s

+ = 1 and f s
− = s, respectively. Again

note that, strictly speaking, the assignment of τ 0 to ordering
momenta around 0 and of τ 1 to ordering momenta around
(π,π ) only holds in the sense of a gradient expansion.
In the following, let us assume the bare interaction to be
momentum conserving and featureless in momentum space,
i.e., to correspond to a Hubbard onsite term of strength U .

We now neglect interactions terms that conserve momen-
tum only up to Q. On the one-particle level, momentum
conservation then will of course still be violated. In addition,
we restrict ourselves to trivial form factors and neglect
contributions with τ 0

ss ′ in the particle-hole channel and with
τ 1
ss ′ in the particle-particle channel, which are presumably of

minor importance.
For a more detailed discussion of these approximations,

which we call Nambu normal, we refer to Ref. [52].
They finally yield the flow equations (6)–(9) and the Ward
identity (10).
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[15] S. Göttel, S. Andergassen, C. Honerkamp, D. Schuricht, and

S. Wessel, Phys. Rev. B 85, 214406 (2012).
[16] A. Eberlein and W. Metzner, Prog. Theor. Phys. 124, 471

(2010).
[17] A. Eberlein and W. Metzner, Phys. Rev. B 87, 174523 (2013).
[18] C. Husemann and M. Salmhofer, Phys. Rev. B 79, 195125

(2009).
[19] C. Husemann, K.-U. Giering, and M. Salmhofer, Phys. Rev. B

85, 075121 (2012).
[20] K.-U. Giering and M. Salmhofer, Phys. Rev. B 86, 245122

(2012).
[21] D. D. Scherer, M. M. Scherer, G. Khaliullin, C. Honerkamp,

and B. Rosenow, Phys. Rev. B 90, 045135 (2014).
[22] A. Eberlein, Ph.D. thesis, Universität Stuttgart, 2013.
[23] F. Wang, H. Zhai, and D.-H. Lee, Europhys. Lett. 85, 37005

(2009).
[24] F. Wang, H. Zhai, and D.-H. Lee, Phys. Rev. B 81, 184512

(2010). .
[25] R. Thomale, C. Platt, J. Hu, C. Honerkamp, and B. A. Bernevig,

Phys. Rev. B 80, 180505 (2009).
[26] C. Platt, C. Honerkamp, and W. Hanke, New J. Phys. 11, 055058

(2009).
[27] R. Thomale, C. Platt, W. Hanke, and B. A. Bernevig, Phys. Rev.

Lett. 106, 187003 (2011).
[28] C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang, and

W. Hanke, Phys. Rev. B 85, 180502 (2012).
[29] A. Georges and J. S. Yedidia, Phys. Rev. B 43, 3475 (1991).
[30] P. Strack, R. Gersch, and W. Metzner, Phys. Rev. B 78, 014522

(2008).
[31] B. Obert, C. Husemann, and W. Metzner, Phys. Rev. B 88,

144508 (2013).

[32] U. M. Ascher, H. Chin, and S. Reich, Numer. Math. 67, 131
(1994).

[33] P. Kopietz, Phys. Rev. B 48, 13789 (1993).
[34] T. Schauerte and P. G. J. van Dongen, Phys. Rev. B 65, 081105

(2002).
[35] H. C. Krahl, J. A. Müller, and C. Wetterich, Phys. Rev. B 79,

094526 (2009).
[36] H. C. Krahl, S. Friederich, and C. Wetterich, Phys. Rev. B 80,

014436 (2009).
[37] S. Friederich, H. C. Krahl, and C. Wetterich, Phys. Rev. B 81,

235108 (2010).
[38] S. Friederich, H. C. Krahl, and C. Wetterich, Phys. Rev. B 83,

155125 (2011).
[39] J. Wang, A. Eberlein, and W. Metzner, Phys. Rev. B 89, 121116

(2014).
[40] M. Hohenadler, T. C. Lang, and F. F. Assaad, Phys. Rev. Lett.

106, 100403 (2011).
[41] D. Zheng, G.-M. Zhang, and C. Wu, Phys. Rev. B 84, 205121

(2011).
[42] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A.

Muramatsu, and F. F. Assaad, Phys. Rev. B 85, 115132 (2012).
[43] C. Karrasch, R. Hedden, R. Peters, T. Pruschke, K.

Schönhammer, and V. Meden, J. Phys.: Condens. Matter 20,
345205 (2008).

[44] S. A. Maier, J. Ortloff, and C. Honerkamp, Phys. Rev. B 88,
235112 (2013).

[45] K. Osterwalder and R. Schrader, Commun. Math. Phys. 31, 83
(1973).

[46] C. Wetterich, Phys. Rev. B 75, 085102 (2007).
[47] C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 04, 759 (1990).
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