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Optical spectroscopies are most often used to probe dynamical correlations in materials, but they are also a
probe of symmetry. Polarization anisotropies are of course sensitive to structural anisotropies, but have been much
less used as a probe of more exotic symmetry breakings in ordered states. In this paper, a Jones transfer matrix
formalism is discussed to infer the existence of exotic broken symmetry states of matter from their electrodynamic
response for a full complement of possible broken symmetries including reflection, rotation, rotation reflection,
inversion, and time reversal. A specific condition to distinguish the case of macroscopic time-reversal symmetry
breaking is particularly important as in a dynamical experiment like optics, one must distinguish reciprocity from
time-reversal symmetry as dissipation violates strict time-reversal symmetry of an experiment. Different forms
of reciprocity can be distinguished, but only one is a sufficient (but not necessary) condition for macroscopic
time-reversal symmetry breaking. I show the constraints that a Jones matrix develops under the presence or
absence of such symmetries. These constraints typically appear in the form of an algebra relating matrix elements
or overall constraints (transposition, unitarity, hermiticity, normality, etc.) on the form of the Jones matrix. I work
out a number of examples including the trivial case of a ferromagnet and the less trivial cases of magnetoelectrics
and vector and scalar spin “chiral” states. I show that the formalism can be used to demonstrate that Kerr rotation
must be absent in time-reversal symmetric chiral materials. The formalism here is discussed with an eye towards
its use in time-domain terahetrz spectroscopy in transmission, but with small modifications it is more generally
applicable.
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I. INTRODUCTION

Optical spectroscopies are used to study a wide range of
phenomena in the field of correlated materials [1]. Generally,
they have been used to probe the dynamical consequences of
broken symmetry states of matter, fluctuations of an ordered
state, and interactions between electrons. Experiments like
optical conductivity allow one to probe the relevant time
and energy scales that characterize a state. Typical examples
of its use in the correlated electron field include it as a
probe of the pseudogap state of high-temperature cuprate
superconductors [2], mass renormalizations in heavy-fermion
compounds [3,4], spectral weight redistribution in Mott insu-
lators [5,6], electron spin resonance of quantum magnets [7,8],
and superconducting fluctuations [9–12].

Although techniques like the Raman scattering [13] and
second-harmonic generation [14] have been applied to deter-
mining broken symmetries in ordered exotic states of matter,
optical spectroscopies—where one is measuring the dipole
excitations in linear response—have not been as commonly
applied to directly determine broken symmetries. Of course,
it is obvious that response functions of materials that depend
on electronic structure are sensitive to structural anisotropies
and so generally structural features manifest themselves as
anisotropies in dynamical response. Obvious examples are
the c-axis transverse Josephson plasmon observed in the
high-temperature cuprate superconductors [15] or the strongly
anisotropic in-plane response in quasi-2D organic supercon-
ductors [16]. In these cases, the states exhibit anisotropies that
are mirrored in structural features. However, it can also be the
case that symmetries are broken in ordered systems, which
are not directly tied to lattice anisotropies or structure. In
this case, it can be a delicate matter in determining exactly

what symmetries are broken in a particular ordered state.
A prominent example of this is the hidden ordered state in
URu2Si2 compound whose resolution has withstood 20 years
of measurements despite the fact it shows a dramatic signature
in the heat capacity [17]. The community should be motivated
to develop new experimental tools to probe broken symmetries
in correlated states of matter.

The use of optical probes for determining new broken sym-
metries has recently become more prominent with the observa-
tion of a spontaneous Kerr rotation (rotation of reflected light)
in a number of superconducting and correlated systems [18].
These experiments build on those from the early days of
the cuprate superconductor field where proposed parity (P)
and time-reversal symmetry (TRS) violating “anyon” phases
for the pseudogap would have specific optical anisotropies
[19–27]. In recent experiments, the Kerr rotation in Sr2RuO4
that onsets at the superconducting Tc has been interpreted as
being consistent with a TRS breaking p + ip′ superconducting
order parameter [28]. In the cuprates, a small but significant
signal was seen at a temperature close to (but slightly below)
that where the enigmatic pseudogap state of the cuprates
onsets [29–31]. It was originally attributed to a ferromagnetic-
type time-reversal symmetry (TRS) breaking [29], and later
proposed to be consistent with a chiral gyrotropic (TRS pre-
serving) or magnetoelectric (TRS breaking) effects [32–35].
As discussed below and elsewhere, it is a matter of current
debate whether or not a chiral material as such can exhibit
a Kerr rotation [26,36–41]. Another case where optics have
been used to find new correlated states of matter is in the
case of La2−xSrxCuO4, where a factor of two difference in
the a and b direction optical conductivities was found in
an underdoped crystal that had only a 1% difference in the
in-plane lattice constants [42]. Although this material was
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orthorhombic to start with (so additional 1D correlations
broke no additional symmetries) this electronic anisotropy was
interpreted as being due to the occurrence of unidirectional
“stripe” correlations on top of orthorhombicity because the
conductivity anisotropy onset was at approximately 80 K
despite the fact that the compound was orthorhombic at room
temperature, the spectral weight along the more conductive
direction was actually suppressed relative to the other (in
contrast to expectations from the overlap integral), and the
large scale of the effect. Even more recently, Lubashevsky
et al. [43] has found a small but significant polarization
rotation that derives from an anomalous linear dichroism
in thin films whose principle axes are not aligned along
those of the crystal symmetry directions. In YBa2Cu3Oy , the
effect has a temperature onset that mirrors the pseudogap
temperature T ∗ and is enhanced in magnitude in underdoped
samples. In x = 1/8 La2−xBaxCuO4, the effect onsets above
room temperature, but shows a dramatic enhancement near
a temperature scale known to be associated with spin- and
charge-ordered states. These features are consistent with a
loss of both C4 rotation and mirror symmetry in the electronic
structure of the CuO2 planes in the pseudogap state.

In the use of optical spectroscopies to determine broken-
symmetry states of matter, it is important to have a well-
developed formalism for extracting the relevant information
as it is easy for one symmetry to masquerade as another. For
instance, strong linear dichroism (absorption) can effectively
rotate the plane of polarization of light, in a manner that could
superficially be confused with a magnetic state with circular
birefringence (phase retardation). Both broken mirror and
time-reversal symmetries can give circular birefringence. It
is important to precisely determine what aspects of the optical
anisotropy correspond to TRS breaking as various kinds of
chiral and gyrotropic orders can give similar experimental
signatures. The frequency scale of the optical experiment is
also an important consideration. Ordered states are generally
defined in the ω → 0 limit. This means that low-frequency
optical measurements may be very useful in determining
the onset of a broken symmetry. In this regard, the time-
domain terahertz (THz) spectroscopy (TDTS) is a growing and
important area of investigation, with important recent advances
in THz polarimetry [44–50]. This technique generally satisfies
the constraint in which these probes have frequency scales
lower than the many frequency scales of interest. It has the
ability to measure complex response functions directly without
needing to resort to Kramers-Kronig transform. The fact that
complex transmission functions are measured and radiation
with well-defined polarization states used means that the
simpler Jones matrix formalism can be used to analyze data.
A challenge with TDTS is performing it in reflectance where
phase information is difficult to recover reliably.

In this paper, a formalism is discussed for inferring the
existence of exotic broken symmetry states of matter from
their electrodynamic response. This formalism is discussed
within the Jones transfer matrix approach and so is directly
applicable to time-domain THz spectroscopy in transmission,
but is more broadly applicable. I discuss the consequences
of discrete broken symmetries on ordered states of matter
including the presence and absence of reflections, rotations,
inversion, rotation reflections, and time-reversal symmetry

and the constraints they give on Jones matrices. These
constraints typically appear in the form of an algebra relating
matrix elements or overall constraints (transposition, unitarity,
hermiticity, normality, etc.) on the form of matrix. This
formalism is applied to other more exotic symmetry breakings
such as various forms of time-reversal symmetry breaking.
As usual, the utility of symmetries is that one can still
deduce quantitative and qualitative information even when the
underlying equations of motion are unknown.

II. GENERAL PROPERTIES OF JONES MATRICES

Due to its phase sensitivity, in TDTS one typically measures
the complex transmission function and uses the Jones calculus
to understand the interaction of light with a material system
being investigated. The complex amplitudes of the incident
Ei field to the transmitted fields Et for propagation in a
particular propagation direction can be related through a
frequency-dependent 2×2 “Jones” matrix. In the most general
case, the Jones matrix is comprised of four independent
complex values. In the basis of x-y linear polarization, it is

T̂ =
[
Txx Txy

Tyx Tyy

] [
Ei

x

Ei
y

]
=

[
Et

x

Et
y

]
. (1)

The above equation forms an eigenvalue-eigenvector prob-
lem, where the Jones matrix has eigenvalues

κ± = 1
2 [Txx + Tyy ±

√
(Txx − Tyy)2 + 4TxyTyx] (2)

and (unnormalized) eigenvectors[
1

κ+−Txx

Txy

]
,

[
1

κ−−Txx

Txy

]
. (3)

If light is sent through the system under test with a well-
defined linear polarization state in, for instance, the x direction,
then the Faraday rotation (rotation of transmitted light) may be
measured through the relation tan(θF ) = Txy/Txx . In principle,
this is a complex quantity with real part of arctan(θF ) equal to
the Faraday rotation itself and the imaginary part of arctan(θF )
equal to the ellipticity. See Ref. [45] for further details.

For plane waves, the spatial and temporal dependence of the
waves in free space is given in the usual way by multiplying
these complex field amplitudes by a factor ei(kz−ωt). More
complicated cases but still within the paraxial approximation
can be treated by letting the complex amplitudes acquire a
dependence on x and y. We envision a plane wave incident
on a slab made of a particular material. This slab has various
symmetries that it inherits from both the particular point groups
of the material as well the slab’s macroscale structure. For most
of our analysis, I assume the slab itself has the most generic
shape that can be assumed without losing generality, which is
a flat cylindrical solid with rotation R̂z(θ ), R̂y(π ), and mirror
Mxy , Myz, and Mzx symmetries. Where specified I will also
address the case where Mxy symmetry is lost by additional
features such as in the presence of a thin film on a substrate.
The presence of a substrate does not effect the consideration of
symmetries that include only a single surface, such as Mxz or
R̂z(π/2), but can be important with symmetry considerations
that involve “backside” transmission (for example Mxy).
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Alternative to the Jones formalism the 4×4 matrix for-
malism of Berreman can be used [51]. In this method, one
explicitly treats the time and spatially varying magnetic field
as well. Although there are disadvantages of the expanded
dimensionality of the matrix, such a method can be useful in
computing explicit optical properties of materials as one does
not have to resurrect the two suppressed field variables with
auxiliary equations when matching fields at boundaries. It is
particularly useful in calculating the properties of stratified
media. Still when only matters of symmetry are concerned the
Jones matrix formalism is sufficient and I rely on it almost
exclusively in the discussion below.

In TDTS, a time limited pulse is sent through this slab and
its amplitude and phase are measured. The electric field of a
time-domain pulse Ex(t) can be written as a superposition of
Fourier components in the usual way. For x polarized light,

Ex(t) = 1√
2π

∫ ∞

−∞
dωeiωtEx(ω). (4)

Here, Ex(t) is the purely real electric field propagating through
the system, and Ex(ω) describes the amplitude of the complex
Fourier components that comprise Ex(t). One can apply the
Jones calculus to each of these Fourier components separately.
Going forward, I will mostly replace the entries Tij in Eq. (1)
with entries A,B,C,D for convenience, e.g.,[

Txx Txy

Tyx Tyy

]
=

[
A B

C D

]
. (5)

It is useful to be able to transform the T̂ matrix into bases
of different polarization states. Let Ẽi and Ẽt be the electric
field vectors in a transformed basis. They are related to the
electric fields in the original basis through the transformation
matrix Ei = �̂Ẽi and Et = �̂Ẽt . The transmission matrix in
the transformed basis is then ˜̂T = �̂−1T̂ �̂.

One such matrix of practical importance is that of the
transformation to a circular base in terms of left and right
circularly polarized light:

�̂ = 1√
2

[
1 1

i −i

]
, �̂−1 = 1√

2

[
1 −i

1 i

]
. (6)

The transmission matrix in the circular basis in terms of the
x-y matrix elements is then

T̂circ = 1

2

[
A + D + i(B − C) A − D − i(B + C)

A − D + i(B + C) A + D − i(B − C)

]
, (7)

which connects the transmission amplitudes of R- and L-hand
polarized light. Other transformation matrices exist which
represent other symmetry operations. These will be discussed
below.

III. CONSTRAINTS ON JONES MATRICES
FROM POINT SYMMETRIES

Neumann’s principle states that the symmetry transforma-
tions of any intrinsic physical property of the crystal must
include, at least, the symmetry transformations of the point
group of that crystal [52]. Therefore the symmetries that states
of matter possess impose symmetry requirements on their
Jones matrices and hence an algebraic relations among their

elements. Conversely, observed symmetries of Jones matrices
and the algebraic relations between their elements (or the lack
thereof) can tell us about symmetries that states of matter
possess or break. In this discussion, it is important to keep in
mind that since Neumann’s principle is usually only applied to
intrinsic properties, its application to a macroscopic property
like a Jones matrix formally requires that the system has a
generic shape that itself has all relevant symmetries. For the
most general case, one can consider a flat cylindrical solid
with rotation R̂z(θ ), R̂y(π ) and mirror Mxy , Myz, and Mzx

symmetries. In practice, since in a TDTS measurement one
measures a normalized transmission (e.g. transmission through
a sample mounted to an aperture divided by transmission
through a bare aperture), sample shape does not matter
appreciably. It may be appreciable only for samples where
one lateral dimension is smaller or of order the wavelength
and near field effects become relevant.

An advantage of the present approach is that it considers
only symmetries and the directly measured experimental
quantities, e.g., ratios of transmitted electric fields to reference
fields. The difficulty with applying symmetry constraints to
the intrinsic material constants (for instance the dielectric
function) and then calculating the transmission is that this
may involve a number of complications and model dependent
assumptions. If one were to calculate from the material
constants, then for a particular symmetry, one must write down
the constrained form of the dielectric tensor ε̂, the magnetic
permeability tensor μ̂, and the magnetoelectric susceptibility
tensor α̂. Then one must apply the boundary conditions
and Fresnel equations properly in their full generality (e.g.,
accounting for magnetoelectric effects) to get the transmission
matrix. This is obviously much more involved than in the
current approach. Moreover, for many complex materials, the
precise issue of electromagnetic boundary conditions can be
complicated. For instance, there is still ongoing discussion
about the proper extension of the Fresnel equations to chiral
materials [26,36–41]. In the present approach, one avoids
all this and concentrates on the experimentally measured
quantities directly. The precise form of ε̂, μ̂, or α̂ does not
matter, nor does the nature of the boundary conditions. The
approach here borrows in part from a formalism for quasi-2D
metamaterial structures [53]. Important differences to the
present case of bulk broken-symmetry states of matter will
be discussed.

In general, the simplest examples come from rotation and
reflection symmetries. Rotation by an angle φ is represented
by the transformation matrix

R̂z(φ) =
[

cosφ sinφ

−sinφ cosφ

]
. (8)

If a material possesses a R̂z(π/2) rotation symmetry (C4)
around the z axis, its Jones matrix will be invariant under a π

2
rotation. Applying the relevant rotation matrix to Eq. (5) gives

R̂z(π/2) =
[

0 1

−1 0

]
,

˜̂T = R̂−1
z (π/2)T̂ R̂z(π/2) =

[
D −C

−B A

]
. (9)
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Hence the Jones matrix for a material with R̂z(π/2) symmetry
must have the form

C4(z) =⇒ T̂ =
[

A B

−B A

]
. (10)

If the material has a R̂z(2π/3) rotation symmetry (C3) as, for
instance, encountered in rotations of cubic structures along
their [111] direction or in the corundum structure of materials
like Cr2O3 around the c axis, one has a Jones matrix of the
form

C3(z) =⇒ T̂ =
[

A B

−B A

]
. (11)

R̂z(π ) rotation symmetry (C2) imposes no constraints on the
Jones matrix

R̂z(π ) =
[−1 0

0 −1

]
,

C2(z) =⇒ ˜̂T = R̂z(π )−1T̂ R̂z(π ) =
[
A B

C D

]
. (12)

If an mirror symmetry exists with respect to the xz plane

M̂xz =
[

1 0

0 −1

]
,

˜̂T = M̂−1
xz T̂ M̂xz =

[
A −B

−C D

]
, (13)

and therefore the Jones matrix for a material with M̂xz

reflection symmetry (where M̂xz is the matrix for reflections
across the xz plane) must be

M̂xz,yz =⇒ T̂ =
[
A 0

0 D

]
. (14)

An identical form of the Jones matrix arises from Myz

reflection symmetry as indicated above. The T̂ matrix is
diagonal if there exists any mirror plane parallel to the z axis
and either the x̂ or y axis. One can see by the constraints in
Eqs. (10) and (14) that if a state has both R̂z(π/2) rotation
symmetry and a mirror symmetry along x or y axes then
off-diagonal elements vanish and diagonal elements must be
equal.

By simple rotation of Eq. (14) one can show that if a mirror
plane exists in any direction that contains the z axis then the
T̂ matrix will have the form

M̂nz =⇒ T̂ =
[
A′ B ′

B ′ D′

]
, (15)

where the elements are not independent, but are related
by the trigonometric relations A′ = Acos2φ + Dsin2φ, D′ =
Asin2φ + Dcos2φ, and B ′ = (A − D)sinφ cosφ, where φ is
the rotation of the mirror plane with respect to the laboratory
axes. Equation (14) is a special case of (15) when a mirror
plane is aligned along either x or y principle axis and the
off-diagonal elements are zero.

Additional constraints can be made for materials that pos-
sess time-reversal symmetry such that their optical response
can be said to be reciprocal. Effects are nonreciprocal if they

have opposite signs for the two states of a crystal that are related
to each other by time-reversal. Reciprocity and time-reversal
symmetry is discussed in detail below. In the remainder of
this section, I assume reciprocity which should be valid for all
nonmagnetic materials. As will be shown below, the backwards
transmission through a Jones matrix for a reciprocal material
is equal to transpose of the Jones matrix through the forward
direction, e.g.,

T̂
b,−z =

[
A C

B D

]
, (16)

where the T̂
b,−z

refers to transmission through the “backside”
of the materials with wave propagation in the −z direction and
the underline here and below represents the presence of TRS.
Most useful for the typical experimental situation is the case
where instead of considering backwards transmission through
the sample, one considers forward transmission, but through
a sample that has been rotated by π around the y axis. In this
case, the Jones matrix is

T̂
b,+z =

[
A −C

−B D

]
, (17)

where now T̂
b,+z

refers to transmission through the backside
of the materials with wave propagation in the +z direction.
The minus signs in the off-diagonal part accounts for the
fact that in the reference plane of the sample x → −x when
performing the R̂y(π ) rotation. Note that this expression is
true only for reciprocal systems. We denote time-reversal
invariance in this sense by the symbol 1. For the most
generic case, the forward going Jones matrix does not carry
enough information to constrain the backwards propagation
of the material completely. I will discuss nonreciprocal and
time-reversal symmetry-broken systems in more detail below.
However, for materials which are reciprocal, mirror symmetry
in the xy plane and Eq. (17) gives important constraints on
the Jones matrices. A mirror operation across the xy plane is
equivalent to a R̂y(π ) rotation followed by a mirror reflection
across the yz plane. Therefore

˜̂T = M̂−1
yz R̂y(π )−1T̂ R̂y(π )M̂yz =

[
A C

B D

]
, (18)

which gives a form for the T̂ matrix, that is,

1,M̂xy =⇒ T̂ =
[
A B

B D

]
. (19)

Note that this expression is strictly invalid for thin films
mounted to substrates as the substrate will violate the M̂xy

symmetry. In principle, the breaking of mirror symmetry by a
substrate can be weak, but specific cases have to be analyzed
individually. Comparing Eqs. (15) and (19), one can see that
the presence of a mirror symmetry along any direction gives
the same symmetric form for the Jones matrix (for a system
with a TRS symmetric reciprocal response).

If a crystal has a 3D center of inversion (P symmetry) and
TRS then the Jones matrix also has the form of Eq. (19) as
inversion is equivalent to a reflection across the xy plane and
R̂z(π ) rotation around z. However, I have already shown in
Eq. (12) that symmetry under R̂z(π ) does not constrain the
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Jones matrix, therefore the constraint that reflection symmetry
across xy gives is the same as inversion.

Rotation-reflection symmetry with an improper axis z can
be handled through a combination of normal rotation [Eq. (9)
for R̂z(π/2)] and the M̂xy operation [Eq. (18)]. For S4 and 1
one gets the completely isotropic matrix

1,S4(z) =⇒ T̂ =
[
A 0

0 A

]
. (20)

Rotation-reflections with an in-plane improper axis (x or y)
and 1 give

1,S2(x) =⇒ T̂ =
[
A B

B D

]
. (21)

Structures that cannot be mapped onto their mirror images by
rotations and translations are chiral [54,55]. Chirality itself
generally does not put constraints on Jones matrices, but states
that are chiral can be consistent with other symmetries that
constrain the Jones matrices. For instance, chiral reciprocal
materials with TRS can have a R̂x(π ) symmetry

˜̂T = R̂−1
x (π )T̂ R̂x(π ) =

[
A −C

−B D

]
, (22)

such that

1,C2(x) =⇒ T̂ =
[

A B

−B D

]
. (23)

Note that Eqs. (19) and (23) are only compatible with
each other for vanishing off-diagonal elements. Therefore
considering that circular optical activity is only possible when
off-diagonal elements of the T̂ matrix are antisymmetric, one
can see that to generate circular optical activity it is insufficient
to break reflection symmetries only in the xz and yz planes,
one must also break reflection symmetry in the xy plane. TRS
chiral material can also exhibit a R̂z(π/2) symmetry giving the
constraint on the Jones matrix in Eq. (10). Chirality typically
introduces antisymmetric components to the dielectric tensor
through an expansion first order in the light wave vector k. This
is consistent with the fact that in these TRS materials one can
switch the sign of the off-diagonal components by considering
transmission through the backside in which k → −k. Also
note that no reference to the “screw axis” direction was made
to derive Eq. (23), showing that even when transmission is
perpendicular to the screw axis, chiral materials can show
optical activity [although it will be of a complicated elliptical
variety without C4(z) symmetry].

Note that translational invariance itself imposes no con-
straints on Jones matrices. In the context of our current
treatment, this must be the case because plane waves are
invariant in the direction perpendicular to their propagation
direction. However, more generally, it is only the point groups
(crystallographic or magnetic) that determine the macroscopic
symmetries properties of materials [56]. Although at first
glance trivial, this point is important when considering the
properties of materials with space groups that have more
complicated symmetries with glide or screw symmetries. In
these cases, it is only the magnetic point group part of the
global symmetry that imposes a constraint.

Note that domain structures can average out polarization
anisotropies. In order to see a broken symmetry optically, the
symmetries must be broken globally over the entire beam spot.
Residual strain or stray field may provide an effective aligning
field. Alternatively, external fields need to be used to create
monodomain samples. These issues may be more pronounced
in TDTS with its inherently long wavelengths and larger beam
size.

IV. TIME-REVERSAL AND RECIPROCITY

In any discussion on the constraints on Jones matrices
from time-reversal symmetry, it is important to define exactly
what is meant by time-reversal symmetry as fortunately (or
not) time marches inexorably in a single direction in all real
experiments. For plane waves traveling in the +z direction
the electric field can be written as E0e

i(kz−ωt), where E0

is the two component vector in the x and y directions.
Time reversal is trivially accomplished letting t → −t in this
expression. One can alternatively accomplish the equivalent of
the time-reversal operation by the dual operation of complex
conjugation of the amplitude E → E∗ and letting k → −k.
This can be seen simply by the fact that the physical electric
field is E0 cos(ωt) = 1

2 (E0e
iωt + E∗

0e−iωt ). Reversing the sign
of the time (t → −t) in this real physical electric field is
mathematically equivalent to taking the complex conjugation
of E0. That complex conjugation is necessary for the effective
time-reversal operation can alternatively be see in the fact
that it takes both it and the inversion of the wave vector to
reverse the sign of Poynting’s vector describing energy flow
in an optical system. Heuristically, conjugation can also be
seen to be necessary to phase advance a time reversed wave
sufficiently such the phase accumulated during time-reversed
propagation is exactly canceled to reconstruct the initial wave
with its initial phase relation.

Even time reversed waves from the dual operation of
complex conjugation and wavevector inversion will not exactly
reconstruct an original wavefront if a system has absorption or
scattering (e.g., reflection). Absorption and the generation of
heat violates time-reversal invariance through the second law
of thermodynamics. Since all real materials will show some
dissipation (or reflection) at frequencies of interest, a strict
form of time-reversal symmetry breaking of an optical process
is generally not of interest to us. This demonstrates that one
must formulate a more applicable definition to be sensitive to
time-reversal symmetry breaking in the state of matter itself.
This can be found in the concept of reciprocity [27,57–61].
A system may be reciprocal if one can switch source and
detector (with the possibility of additional constraints) and get
the same result. The importance of the reciprocity condition
is in the fact that it is applicable even in the presence of
absorption or scattering when other treatments lack “true”
time-reversal symmetry. As in our discussion on point group
symmetries, discrete time-reversal invariance (formulated in
terms of reciprocity) puts certain important constraints on
Jones matrices. These were already exploited above in the
discussion of how the Jones matrix behaves under R̂x(π ) or
M̂xy operations in nonmagnetic materials.

A system can be said to be reciprocal if a response has
the same sign for the two states of a material that are related
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to each other by time reversal (e.g., time even). A system is
nonreciprocal if a response or component of the T̂ matrix has
the opposite sign for the time reversed state (time odd). For
further analysis, we need a relation for the Jones matrix of
a system in which the sense of time is reversed. Although
related formulations have been made previously [27,59,61], a
particularly simple treatment exists for the case of coherent
polarized waves that can be treated with this Jones formalism.
Consider the situation when a wave Ei is incident on a
sample with a Jones matrix T̂ . The resulting wave must be
analyzed by its projection on a reference wave Er . Channeling
Onsager [62], microscopic time-reversal invariance mandates
that if both the sense of time in the experiment and the sample
are reversed then the result must be the same, e.g.,

Er†T̂ Ei = Ei∗†(T̂ b,−z)Er∗, (24)

where now the initial wave is the time-reversed Er∗, T̂
b,−z

is the Jones matrix for light propagation in the −z direction
through the backside of a time-reversed system, and the wave is
analyzed by its projection on the time-reversed wave Ei∗. Here
† signifies the Hermitian adjoint and the overbar represents the
operation of time reversal. One can reverse the order of the
inner product on the right side of this equation and take its
complex conjugate to get

Er†T̂ Ei = Er†(T̂ b,−z)T Ei. (25)

Relabeling the sense of time of the system on both sides of
this equation, one gets

T̂ = (T̂ b,−z)T . (26)

This gives the general result that the time-reversed Jones
matrix equals the transpose of the Jones matrix for light
propagating through the system’s backside. If the system has

macroscopic TRS, then T̂ = T̂ and one arrives at the result
used in Sec. III that for a system that has a reciprocal response
and hence macroscopic TRS (1), the backside transmission is
the transpose of the front side transmission:

1 =⇒ T̂ = (T̂ b,−z)T , (27)

where again the underline reminds us that this is a relation for
the Jones matrix of a sample that has TRS.

A condition related to the above for the interaction of
an electromagnetic wave on a finite size scatterer based
on a definition with incoming wave and a projection on a
reference wave was first formulated by de Hoop [59,61] and
is the most general expression of reciprocity. The condition
above is a representation in the Jones matrix formalism. This
de Hoop reciprocity distinguishes a form of time-reversal
symmetry most applicable to real systems and experiments.
It is a sufficient (but not necessary) condition to say a state
breaks TRS if it violates de Hoop reciprocity. Not all TRS
breaking states will show optical nonreciprocity. It is necessary
to break TRS macroscopically, which generally means that
the combination of the time-reversal operation and a lattice
translation is not a symmetry operation [22].

Considering the above condition for de Hoop reciprocity,
a measure of time-reversal symmetry breaking is then the
quantity |Txy − T b,−z

yx |, where T b,−z
yx refers to transmission

through the backside of the materials with wave propagation
in the −z direction. As discussed above, more relevant to the
usual experimental situation is the case where the waves are
propagating in the +z direction, but through a film that has
been rotated around the y axis by π . In that case, the measure
of symmetry breaking becomes |Txy + T b,+z

yx | where the T b,+z
yx

refers to backside transmission but in a sample that has been
flipped. Examples of states that violate this condition of de
Hoop reciprocity are discussed in Sec. VI.

In some systems, it is possible to control the sense of the
direction of time by cooling in a magnetic field (for a state
like a ferromagnet) or dual magnetic and electric fields (for a
magnetoelectric-like Cr2O3). It is then a sufficient condition
to say a state violates TRS if the equality

Er†T̂ Ei = Er†T̂ Ei (28)

is not satisfied. One can see that with this expression and
Eq. (26) that a necessary, but not sufficient condition for TRS
will be an invariance of the off-diagonal components of T̂ with
the time-reversal operation.

It is instructive to consider more restricted definitions of
reciprocity. For instance, consider the constraints implied by
the hypothetical case where a time-reversed wave exactly
reconstructs the initial wave. Considering incoming and
outgoing waves related by

T̂ Ei = Et . (29)

If time-reversed version of the final wave can exactly
reconstruct the initial wave and de Hoop reciprocity holds
then

T̂ T Et∗ = Ei∗ (30)

is true where the complex conjugation of Ei and Et time
reverses the wave amplitudes à la the discussion above. Taking
the complex conjugate of Eq. (30) and substituting Eq. (29)
into it for Et gives

[T̂ T ]∗T̂ Ei = Ei, (31)

which can only be true if T̂ is unitary. This form of reciprocity
is not particularly significant from a practical perspective
because unitary matrices are norm preserving and hence
preclude absorption or reflections. Even purely dielectric
media will induce reflections at interfaces, which destroys the
unitary condition. However, this condition does satisfy the
simplest considerations for time-reversal symmetry and hence
is important from a conceptual point of view. One can call this
form of time-reversal symmetry unitary reciprocity [61].

Another form of reciprocity can be determined by consider-
ing a situation where the initial wave Ei is time-reversed, but
made to propagate through the system from the “backside.”
The system could be said to be reciprocal in a restricted sense
when the final waves in either case are time reversed versions
of each other. If the system is reciprocal in the sense of de
Hoop and also reciprocal in this more restricted sense, then
a time reversed wave with polarization state Ei∗ results in a
backside transmitted wave Et∗ via

T̂ T Ei∗ = Et∗. (32)
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Taking the complex conjugate of this expression gives

[T̂ T ]∗Ei = Et . (33)

Equations (29) and (33) can only both be true if T̂ = ˆ(T T )∗,
e.g., T̂ is Hermitian. Hence one can call this kind of
transmission properties Hermitian reciprocity [61]. Note that
one should not confuse non-Hermiticity in the transmission
matrix (or scattering matrices in general) with non-Hermiticity
in the dielectric function. Non-Hermitian dielectric tensors
are generally associated with bulk absorption, whereas non-
Hermiticity in the T̂ matrix (or scattering matrices more
generally) are associated with phase delay. The most obvious
example of an optical component that violates Hermitian
reciprocity is a quarter wave plate that turns linearly polarized
light into circularly polarized light.

Very asymmetric transmissions for forward and backward
transmission will be obtained in the case where eigenpo-
larizations are nonorthogonal and the Jones matrix is non-
diagonalizable [63–65]. For this to be the case, the Jones matrix
needs to be non-normal, e.g., T̂ T̂ † �= T̂ †T̂ , where † signifies
the Hermitian adjoint. A diagonalizable T̂ matrix for a sample
that obeys de Hoop reciprocity will be similar for forward
and backward going transmissions with identical transmission
eigenvalues. In contrast, one can see by inspection of Eqs. (2)
and (3) that although the eigenvalues of a nondiagonalizable
transposed backwards going Jones matrix are not different
from the forward ones, the eigenvector associated with a
particular eigenvalue will change its character. It is a sufficient
condition for the T̂ matrix to be normal that Txy = ±Tyx .
Symmetric transmission of the kind found in normal Jones
matrices we can call diagonal reciprocity.

A simple example of an optical component that breaks
diagonal reciprocity and results in such very asymmetric
transmission is the composite optical component of a linear
polarizer combined with a quarter-wave plate that is at 45◦ to
the axis of the polarizer. Independent of the initial polarization
such a device produces linearly polarized light in transmission
in one direction and circularly polarized light in the other.
The Jones matrix for such a composite device with the linear
polarizer on the input side would be

1√
2

[
1 i

1 i

]
. (34)

Using Eqs. (1) and (2), one can see that this matrix
is nonnormal with nonorthogonal eigenpolarizations that
are linear (45◦) and circular (L) polarized light associated
with eigenvalues 1 + i and 0, respectively. Note that upon
consideration of the backwards going T̂ matrix one has the
same pair of eigenvalues 1 + i and 0, but that their association
has in a sense swapped, e.g., they are associated with circular
(R) and linearly (45◦) polarized light respectively. Such a
device is still reciprocal in the sense of de Hoop as the forward
going transmission matrix is equal to the transpose of the
backwards going one. This shows the central importance of
the de Hoop condition as such a device obviously does not
break time-reversal symmetry defined in any useful sense.

Based on our considerations of Sec. III, the highest-
symmetry materials that break diagonal reciprocity can have
is C2 around z. Generally, one finds that axes of dominant

dichroism and birifrigence have to be nonaligned so that
this kind of asymmetry may be most apparent in very
anisotropic materials at frequencies of strong absorption. Wave
propagation of polarized light, but not the explicit symmetry
properties, in crystals with nonorthogonal eigenpolarizations
has been investigated previously [66–69]. Nonreciprocity of
this kind has been also called eigenwave nonreciprocity in
the literature and identified with a TRS breaking of a certain
fashion [70]. However, it is important to emphasize that
although materials that are nonreciprocal in this sense may
have very asymmetric interaction with light in time and space,
they do not themselves violate TRS. For instance, effects of this
kind are purported to exist in zinc-blende type semiconductors,
which break inversion, but obviously not TRS [71]. Because
they are not constrained by any useful symmetry, materials
that show a violation of diagonal reciprocity will typically
have eigenstates that depend strongly on frequency.

Yet another (very) restricted form of reciprocity encoun-
tered in a typical experimental geometry when one “flips”
a sample to perform a transmission experiment from the
backside. If again de Hoop reciprocity is obeyed, then the
transmission matrix can be arrived at by using Eq. (27) for
backside transmission and performing a x → −x transforma-
tion from the π rotation around around the y axis a la Eq. (17)

R̂−1
x (π )T̂ R̂x(π ) =

[
A −C

−B D

]
. (35)

If this Jones matrix is identical to the forward going one then
one will have the following constrained form for the forward
going Jones matrix: [

A B

−B D

]
. (36)

A comparison with Eq. (23) shows that chiral states that
obey de Hoop reciprocity are also reciprocal in this sense.
Materials that have only a mirror symmetry [Eq. (15)], will
only be considered reciprocal in this sense if they are “flipped”
along a mirror axis. I call this reciprocity naive reciprocity.

Although these more restrictive formulations such as
unitary, Hermitian, and diagonal reciprocity may have utility
in analyzing experimental results, the most interesting cases
of nonreciprocity will occur in situations when the most
generic condition of de Hoop reciprocity is violated. This
will be the case for instance in situations where time-reversal
symmetry is broken in the form of ferromagnetism, p-wave
superconductivity (likely present in Sr2RuO4 [72]), magneto-
electrics [34,73–75], chiral spin liquids [76,77], or in some
proposed recent [33–35] or older [19–27,78] models for the
pseudogap state of the high-temperature superconductors.

V. BREAKING OF SYMMETRIES

As established in Secs. III and IV, particular symmetries
establish algebraic properties of or constraints on the Jones
matrices. It it is then straightforward to determine what
combination of matrix elements are a measure of what
particular symmetry breaking. The methodology is clear.
Given a symmetry and the set of constrained Jones matrices
for forward and reversed propagation that results from it, by
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inspection one establishes what sum or difference of matrix
elements will yield identically zero if a particular symmetry
is present. If one establishes that the particular quantity is
nonzero, this is a sufficient condition to establish that that
symmetry is broken.

As a first example of this consider a tetragonal initially
nonmagnetic material that goes undergoes a symmetry break-
ing transition. In the high-symmetry state, the material has all
mirror symmetries and symmetry under R̂z(π/2) rotation. The
Jones matrix is then the simplest possible, e.g.,

T̂ =
[
A 0

0 A

]
. (37)

If the phase transition is to a nonmagnetic orthorhombic
phase such that R̂z(π/2) symmetry is broken, but the x and
y mirror planes are maintained the Jones matrix will have
the form of Eq. (14) with diagonal components unequal and
off-diagonal components still zero. Therefore a measure of the
orthorhombic order parameter is the quantity |Txx − Tyy |. This
relation rests on the assumption that the laboratory x-y frame
coincides with the orthorhombic axes. It is useful to have a
more general relation. Inspection of Eq. (15) and the relations
that follow for the matrix elements in an arbitrary primed
reference frame x ′-y ′, show that the quantity |Tx ′x ′ − Ty ′y ′ +
2iTx ′y ′ | will be sensitive to the symmetry breaking |Txx − Tyy |
in the orthorhombic reference frame.

If the phase transition is to a nonmagnetic chiral phase such
that all mirror symmetries are broken, but R̂z(π/2) symmetry is
preserved then the Jones matrix will have the form of Eq. (10)
with equal diagonal components and off-diagonal components
of identical magnitude and opposite sign. Therefore a measure
of the chiral order parameter is the quantity |Txy − Tyx |. This
quantity will be finite if a different transmission coefficient
is experienced for R and L circularly polarized light, but
zero otherwise. For instance, it will be zero for a linearly
birefringent material that gives an effective rotation of a plane
of polarized light if the polarized light is not incident along a
mirror symmetry.

If the transition is to a state that breaks macroscopic
time-reversal symmetry (for instance to a ferromagnetic or
magnetoelectric phase), the measure of macroscopic symmetry
breaking and the order parameter becomes |Txy − T b,+z

xy |,
where again the T b,+z

yx refers to backside transmission but in a
sample that has been flipped. Although it will also have a Fara-
day rotation, this quantity will be zero for a TRS chiral system.

VI. COMBINED SYMMETRIES AND EXAMPLES

The various point group symmetries (reflection, rotation,
rotation-reflection, inversion) and time-reversal symmetry can
be combined to get more insight into various broken symmetry
states. The simplest example of a TRS breaking state is a
ferromagnet with its magnetization vector pointing along the
propagation direction. Both the time-reversal operation and
a R̂x(π ) rotation give the same state with the magnetization
reversed. Using Eq. (26), the time reversed Jones matrix is

¯̂T +z =
[
T b,−z

xx T b,−z
yx

T b,−z
xy T b,−z

yy

]
. (38)

The Jones matrix under R̂x(π ) rotation is

T̂ b,+z = R̂−1
x (π )T̂ b,−zR̂x(π ) =

[
T b,−z

xx −T b,−z
xy

−T b,−z
yx T b,−z

yy

]
. (39)

In order that these expressions are equivalent, the Jones matrix
must have the form

T̂ =
[

A B

−B D

]
. (40)

If the material is cubic or tetragonal with A = D, the matrix
is diagonalizable in the circular representation, otherwise the
polarization eigenstates are elliptical. In either case, this is
consistent with a rotation of transmitted linearly polarized
light, e.g., a Faraday rotation.

A very interesting application of these methods is to
the case of magnetoelectrics. Consider the case of Cr2O3,
which is a material that forms in the corundum structure
with space group D6

3d . Below TN = 306 K it becomes an
commensurate antiferromagnet with the spins of the four
Cr+3 atoms per unit cell pointing along a threefold axis in
an up-down-up-down alternating manner with magnetic point
group 3̄′m′. This structure breaks both inversion (P ) and TRS
(T ), but the product of the two is a symmetry. There are
two degenerate ground states that are related to each other by
either inversion or time reversal. As pointed out originally by
Dzyaloshinskii [56], the magnetic symmetry of Cr2O3 allows
linear magnetoelectric effects [73–75,79–82], e.g., an electric
field can cause a magnetization (with proportionality αij )
and a magnetic field can cause a polarization. Such nonzero
magnetoelectric coefficients are a consequence of so-called
“PT” symmetry. They are indicative of inversion (P ) and TRS
(T ) symmetries broken separately, but preserved under the
combined PT symmetry. PT symmetric situations where the
P symmetry breaking is such as to support a chiral state, have
been called “false chiral” by [54].

Magnetoelectrics can admit a number of very interest-
ing phenomenon including nonreciprocal gyrotropic birefrin-
gence, whereby there is a symmetric contribution to the
dielectric tensor that rotates the axes of birefringence away
from the crystal symmetry directions [73,80]. The sign of
this contribution depends on the propagation vector and
therefore the speeds of propagation can be different for
counter-propagating beams. Some evidence for this effect
has been seen in transmission in continuous wave THz-range
spectroscopy in Cr2O3 [83] and related effects in reflection at
higher optical frequencies [74,75]. The case of transmission is
easier to analyze. Consider the transmission along a direction
perpendicular to the threefold axis and with the x-y reference
frame of the linearly polarized light aligned to the structural
axes. The T̂ matrix transformed under inversion P̂ is

T̂ b,+z = P̂ −1T̂ b,−zP̂ =
[
T b,−z

xx T b,−z
xy

T b,−z
yx T b,−z

yy

]
. (41)

The same state should be obtained under time reversal,

T̂ =
[
T b,−z

xx T b,−z
yx

T b,−z
xy T b,−z

yy

]
. (42)
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The T̂ matrix must therefore have the form

T̂ =
[
A B

B D

]
. (43)

No other symmetries further constrain this matrix and so only
equal off-diagonal entries are admitted, and hence it can be
diagonalized by a rotation. As I have already assumed in
my analysis that the coordinate axes themselves are aligned
along the principle structural axes of the system, this shows
that the optical axes of the linear dichroism/birefringence
can be rotated from the coordinate system. This is consistent
with the phenomena of gyrotropic birefringence. We can get
further insight into this system by realizing that the material
is invariant under a R̂y(π ) rotation. The form of the Jones
matrix is then of Eq. (39), which determines that the off-
diagonal components for forward and backwards propagation
are opposite to each other showing the sense of rotation
of the optical axes is opposite for front and back surfaces,
giving evidence for the nonreciprocal nature of this effect.
Moreover, since the T̂ matrix has the form of Eq. (43) R̂x(π )
symmetry one can probe the nonreciprocal nature of the state
by measuring Txy on a single surface alone. Note that presence
of TRS in the paramagnetic state constrains [through the
reciprocal condition Eq. (27)] the off-diagonal components
of the T̂ matrix to be zero above TN .

For transmission along the c axis, the form of Eq. (43) is
still valid because it was based on the combined symmetry
PT without regards to propagation direction. However, Cr2O3

has a threefold axis along z and hence its T̂ matrix must be
compatible with the constraints of the C3 symmetry given in
Eq. (11) for propagation along z. This gives a T̂ matrix with
zero off-diagonal components and identical diagonal ones.
Although its been shown that magnetoelectrics like Cr2O3

show a nonreciprocal Kerr rotation effect in reflection [73–75],
symmetry constraints determine that the transmission of a
single crystal slab is invisible to such nonreciprocal effects,
e.g., no Faraday effect is exhibited [84]. Microscopically,
one can consider that the light suffers a rotation of order α

(where α is the mangetoelectric coefficient) upon crossing the
front surface in transmission, propagates through the sample
with E and H fields at a small angle deviating from 90◦ by
α, and then undergoes a rotation with the same magnitude
at the back surface, but in the opposite direction. Note that
inversion symmetry breaking by a substrate will invalidate this
cancellation and it should be possible to see a Faraday rotation
φF ∝ (ns − 1)α in transmission for Cr2O3 on a substrate of
index of refraction ns [85]. An analysis of the reflection
coefficient (discussed below) for a TRS breaking state such
as this one show that it can exhibit a Kerr rotation.

Even more exotic states in the form of various chiral spin
liquid states can be analyzed [55]. A “vector spin chiral”
state is said to be exhibited when the quantity 〈Si × Sj 〉 �= 0,
while 〈Si〉 = 0 [86,87]. Such a state does not break TRS and
despite its accepted name, is not necessarily chiral in a rigorous
sense. By itself the finite expectation value is not enough to
determine whether such a state is chiral and hence specify
its electrodynamics. The related quantity 〈eij · Si × Sj 〉 �= 0,
where eij is a unit vector connecting sites i and j , does break
inversion and all mirror symmetries and so such an order

parameter has a definite handedness. By the considerations
of Sec. III, this state should have the transmission properties
of other chiral systems and can exhibit a Faraday rotation (but
not a Kerr rotation, see Sec. VII).

Other vector spin chiral states may or may not exhibit
polarization anisotropies depending on the details of their
ordering. For instance, a magnetic cycloid chain, consisting
of coplanar spins that rotate around a perpendicular axis
as one moves along an axis parallel to the spin plane has
〈Si × Sj 〉 �= 0, but is achiral. Two different senses of rotations
of the spins can be generated by the inversion operation, but
these states are not uniquely specified by 〈Si × Sj 〉, as they can
be interconverted by a R̂z(π ) rotation. Since we have already
shown that a R̂z(π ) rotations have no effect on transmission, a
cycloid order of this form cannot be detected optically.

A “scalar spin chiral” state is said to be exhibited when
the quantity 〈Si · Sj × Sk〉 �= 0, while 〈Si〉 = 0 [76–78]. A
state which exhibits this order with the same sign on a line
along the propagation direction (e.g., “ferro” ordering) breaks
time-reversal symmetry, but not inversion. It will show both
Kerr and Faraday reflection. As pointed out in Ref. [22],
states that exhibit an “antiferro” ordering (between say CuO2

planes in the cuprates as considered historically [26,78]) and
break inversion structurally will show a Kerr rotation (but not
Faraday) in a manner very similar to the case of Cr2O3.

VII. EXTENSION OF JONES MATRIX FORMALISM
TO OTHER GEOMETRIES AND EXPERIMENTS

With some modifications the above arguments can be
extended to other geometries and experiments. In reflection,
the loss of symmetry across the free surface means particular
consideration must be given. Although the point group
symmetry constraints applied to the transmission matrix when
only a single surface is considered apply equally to the normal
incidence reflection matrix, there can be additional issues that
arise due to the lack of symmetry at the interface [88]. More-
over, the de Hoop reciprocity relation for TRS I found above
was derived specifically for the case of transmission. Similar
constraints on reflection require different consideration.

A practical matter that arises when considering reflection,
is the long standing controversy regarding whether or not a
Kerr-like rotation can occur in reflection from a chiral TRS
media [26,37–41]. A straightforward application of Fresnel’s
equation using the bulk (antisymmetric) dielectric constant
predicts that a Kerr rotation should be observed if there is
finite dissipation [36]. However, it is clear that one cannot
simply export the bulk dielectric constants to the surface as
their antisymmetry arises from an expansion of the dielectric
constant in odd powers in the photon wave vector k. Such
an expansion cannot be strictly valid at a surface and one
must retain the full spatial dependence of the dielectric
constant. Moreover, in chiral systems, the issue of boundary
conditions is complicated by a certain freedom in choice of
ε and μ. Gyrotropy (e.g., dependence of dielectric constant
on k) can be included only in ε or in μ or both. There
is a disagreement within different calculational schemes, as
some observable quantities, such as reflectivity, turn out to
be dependent on these choices. For instance, an alternative
treatment, using essentially magnetoelectric-like “Casimir”
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material relations [37], finds that no rotation should be occur.
Other work says that both approaches are essentially valid and
correctly applying terms involving derivatives of the nonlocal
susceptibilities gives rotation in reflection [38]. Even more
recent work concludes that the differential reflection upon
normal incidence should vanish [39].

The present formalism, however, provides a simple proof
that materials that preserve TRS cannot exhibit a Kerr rotation.
First, one realizes that in the simplest normal incidence reflec-
tion geometry with source and detector spatially coincident,
the “forward” going reflection matrix must be the same as the
“backward” going reflection matrix. Switching the source and
the detector gives no change to any physical quantity, because
“forward” going and “backward” going are the same thing.
Therefore a similar treatment of de Hoop reciprocity leading
to Eq. (26) applied to the reflection matrix shows that the
time-reversed reflection matrix will be the transpose of the
reflection matrix for the forward direction in time, e.g.,

R̂ = R̂T . (44)

It follows that if the material has TRS and hence the
reflection matrix doesn’t change under the time-reversal

operation (e.g., R̂ = R̂), then the off-diagonal components
of the reflection matrix must be equal. Therefore a material
with TRS cannot exhibit a Kerr rotation as that necessitates
antisymmetric off-diagonal components in the reflection
matrix. A somewhat related, but much more involved proof,
for generic geometry can be found in Ref. [26]. The absence
of a Kerr effect except in the presence of TRS breaking
is relevant for the interpretation of recent experiments on
cuprate superconductors that have seen a Kerr rotation onset in
underdoped compounds [29–31]. Such experiments have been
interpreted as being consistent with the onset of a chiral phase,
but this appears to not be a possible explanation (at least at the
level of linear response and in thermal equilibrium). See also
Hosur et al. [32,40], and Cho et al. [41] for further discussion.

Most optical experiments do not measure complex trans-
mission coefficients directly. For experiments like Fourier
transform infrared reflectivity (FTIR) [1,2], Sagnac interfer-
ometry [18], or spectroscopic ellipsometry [89], the light
intensity is detected. In this case, one has to make use of the
Mueller-Stokes matrix formalism, where the optical resonse
is given by a real 4×4 “Mueller” matrix operating on a real
four-component “Stokes” vector. The Stokes vector is given
in terms of the electric field intensities in different directions
and polarizations, e.g.,⎡

⎢⎢⎢⎣
|Ex |2 + |Ey |2
|Ex |2 − |Ey |2

|E45◦ |2 − |E−45◦ |2
|El|2 − |Er |2

⎤
⎥⎥⎥⎦ . (45)

The Mueller matrix represents the intra- and interconversion
of these polarization states. The Mueller matrix formalism
is more general than the Jones formalism as its reliance on
measured intensities means that it can characterize noncoher-
ent unpolarized light. Most relevant experiments, however,
can utilize polarized light and in this case it is possible to
convert from the Jones to Mueller matrices for analysis. This
then suggests a method for analyzing the symmetry properties
of materials being probed by such a technique; analyze their
symmetry properties and apply the relevant constraints to
the simpler 2×2 Jones matrices first and then convert the
Jones matrices to Mueller matrices. This method should be
completely valid as long as the sample under test is not
depolarizing (which is typically the case).

The Jones-to-Mueller matrix conversion is performed by
calculating the light intensities from the electric fields. Fol-
lowing Azzam and Bashara [89] and starting from the Jones
formalism, which gives T̂ Ei = Et , I begin by calculating

Et ⊗ E∗
t = T̂ Ei ⊗ T̂ ∗E∗

i = (T̂ ⊗ T̂ ∗)(Ei ⊗ E∗
i ), (46)

where the Et ⊗ E∗
t and T̂ ⊗ T̂ ∗ are the direct products yielding

a 4-row vector and a 4×4 matrix, respectively. The E field
products yields the “coherence” vector

C = E ⊗ E =

⎡
⎢⎢⎢⎣

ExE
∗
x

ExE
∗
y

EyE
∗
x

EyE
∗
y

⎤
⎥⎥⎥⎦ . (47)

Therefore

Ct = (T̂ ⊗ T̂ ∗)Ci. (48)

By inspection of Eqs. (45) and (47), one can express the Stokes
vector in terms the coherency vector as

S = ÂC, (49)

where

Â =

⎡
⎢⎢⎢⎣

1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

⎤
⎥⎥⎥⎦ . (50)

Substituting into Eq. (48) the inverse of Eq. (49), we get

St = Â(T̂ ⊗ T̂ ∗)Â−1Si. (51)

Therefore in the Mueller matrix expression St = M̂Si , the
Mueller matrix M̂ is given by M̂ = Â(T̂ ⊗ T̂ ∗)Â−1. Using the
direct product expression for T̂ ⊗ T̂ ∗ and the transformation
Â and its inverse, one can express the Mueller matrix M̂ in
terms of the components of the Jones matrix [as defined in
Eq. (5)] as

⎡
⎢⎢⎢⎣

1
2 (AA∗ + BB∗ + CC∗ + DD∗) 1

2 (AA∗ − BB∗ + CC∗ − DD∗) Re(AB∗) + Re(CD∗) −Im(AB∗) − Im(CD∗)
1
2 (AA∗ + BB∗ − CC∗ − DD∗) 1

2 (AA∗ − BB∗ − CC∗ + DD∗) Re(AB∗) − Re(CD∗) −Im(AB∗) + Im(CD∗)

Re(AC∗) + Re(BD∗) Re(AC∗) − Re(BD∗) Re(AD∗) + Re(BC∗) −Im(AD∗) − Im(BC∗)

Im(AC∗) + Im(CD∗) Im(AC∗) − Im(CD∗) Im(AD∗) + Im(BC∗) Re(AD∗) − Re(BC∗)

⎤
⎥⎥⎥⎦ . (52)
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The symmetry constraints on the Jones matrices discussed in
Secs. III and IV can be directly applied to Eq. (52) and with a
great deal of algebra give constraints on the Mueller matrices.

VIII. CONCLUSIONS

In this work, I discuss a Jones transfer matrix formalism
for inferring the existence of exotic broken symmetry states
of matter from their electrodynamic response. This formalism
is directly applicable to time-domain THz spectroscopy in
transmission but is more broadly applicable. I discussed the
consequences of discrete broken symmetries on ordered states
of matter including the presence and absence of reflections,
rotations, inversion, rotation-reflection, and time-reversal sym-
metries and the constraints they give on Jones matrices.
These constraints typically appear in the form of an algebra
relating matrix elements or overall constraints (transposition,
unitarity, hermiticity, normality, etc.) on the form of matrix.

As usual, the utility of symmetries is that one can still
deduce quantitative and qualitative information even when the
underlying equations of motion are unknown. A number of
explicit examples were given that are of current relevance to
the study of correlated broken symmetry states of matter. One
important consequence of this formalism is the demonstration
that Kerr rotation must be absent in time-reversal symmetric
chiral materials.
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N. P. Armitage, Nat. Phys. 7, 298 (2011).

[11] L. S. Bilbro, R. Valdés Aguilar, G. Logvenov, I. Bozovic, and
N. P. Armitage, Phys. Rev. B 84, 100511 (2011).

[12] W. Liu, M. Kim, G. Sambandamurthy, and N. P. Armitage,
Phys. Rev. B 84, 024511 (2011).

[13] T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175 (2007).
[14] A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez,

Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert et al.,
Appl. Phys. Lett. 92, 121915 (2008).

[15] A. A. Tsvetkov, D. van der Marel, K. A. Moler, J. R. Kirtley, J.
L. de Boer, A. Meetsma, Z. F. Renk, N. Koleshnikov, D. Dulic,
A. Damascelli et al., Nature 395, 360 (1998).

[16] S. Kaiser, M. Dressel, Y. Sun, A. Greco, J. A. Schlueter, G. L.
Gard, and N. Drichko, Phys. Rev. Lett. 105, 206402 (2010).

[17] D. A. Bonn, J. D. Garrett, and T. Timusk, Phys. Rev. Lett. 61,
1305 (1988).

[18] A. Kapitulnik, J. Xia, E. Schemm, and A. Palevski, New J. Phys.
11, 055060 (2009).

[19] J. March-Russell and F. Wilczek, Phys. Rev. Lett. 61, 2066
(1988).

[20] B. I. Halperin, J. March-Russell, and F. Wilczek, Phys. Rev. B
40, 8726 (1989).

[21] B. G. Levi, Phys. Today 44(2), 17 (1991).
[22] I. E. Dzyaloshinskii, Phys. Lett. A 155, 62 (1991).
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