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Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory
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We describe the dynamics of a single fermion in a dispersionless band coupled to the 2+1 dimensional
conformal field theory (CFT) describing the quantum phase transition of a bosonic order parameter with N

components. The fermionic spectral functions are expected to apply to the vicinity of quantum critical points
in two-dimensional metals over an intermediate temperature regime where the Landau damping of the order
parameter can be neglected. Some of our results are obtained by a mapping to an auxiliary problem of a CFT
containing a defect line with an external field which locally breaks the global O(N ) symmetry.
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I. INTRODUCTION

It is well known that the Wilson-Fisher conformal field
theory (CFT) describes the quantum phase transition of a
number of boson and insulating spin models [1–5]. In the
presence of the Fermi surface of metals, the order parameter
quantum fluctuations undergo Landau damping, and there
is a crossover to a low energy regime controlled by the
physics of the Fermi surface [6–15]. However, it is possible
that the magnitude of the Landau damping is parametrically
small [16–20], and then there is a significant intermediate
energy regime over which the fermions are coupled to the
“relativistic” (i.e., with dynamic critical exponent z = 1) order
parameter dynamics of the Wilson-Fisher CFT. It is this
intermediate energy regime [16,17] which is the focus of
attention of the present paper.

A key feature of the dynamics of fermions coupled to
Wilson-Fisher bosons is the renormalization group flow of
the fermion dispersion. When the fermions have a quadratic
dispersion, it is clear that there is a flow to a flat, dispersionless
fermion band [21]. For the case of fermions with a nonzero
Fermi velocity, vF , Fitzpatrick et al. [19] have recently argued
that the flow to a flat band with vF → 0 persists. So for a dis-
cussion of the intermediate energy regime noted above, we are
therefore led to consider the problem of a dispersionless band
of fermions interacting with bosonic degrees of freedom in two
spatial dimensions described by the Wilson-Fisher fixed point.

We can now make further simplifications for the field-
theoretic critical analysis of this limiting fermion-boson
problem. As we will be ignoring the Landau damping arising
from particle-hole loop diagrams of fermions, we may as well
take only a single fermion in the dispersionless band [21,22].
Furthermore, because this fermion is dispersionless, we are
free to localize it [22] at a single spatial point x = 0. We
are therefore led to consider the following partition function
of a single fermion ψ(τ ) coupled to the N -component order
parameter φα(x,τ ) (α = 1 . . . N) of the Wilson-Fisher theory
in d spatial dimensions (x) and one imaginary time (τ )
dimension (see also Fig. 1):

Z =
∫

Dψ(τ )Dφα(x,τ ) exp(−Sψ − Sφ),

Sψ =
∫

dτ ψ†
(

∂

∂τ
+ λ − γ0φ1(x = 0,τ )

)
ψ,

Sφ =
∫

ddx

∫
dτ

[
1

2
(∂τφα)2 + 1

2
(∂xφα)2

+ s

2
φ2

α + g0

4!

(
φ2

α

)2
]
. (1)

Note that the fermion ψ does not carry an O(N ) index, and
we have chosen it to couple only to the α = 1 component
of φα: thus the fermion breaks the O(N ) symmetry of the
Wilson-Fisher theory in its vicinity. Here λ is the energy of the
dispersionless band (which will be implicitly renormalized),
s is the coupling used to tune the bosonic sector across the
Wilson-Fisher fixed point, g0 is the relevant self-interaction of
the bosons, and γ0 is the relevant “Yukawa” coupling between
the fermion and bosons. Our basic result will be that when the
bosonic sector is at the quantum critical point in d < 3, the
fermion Green’s function obeys at real frequencies ω

G(ω) ∼ 1

(λ − ω)1−ηψ
. (2)

So there is no fermion quasiparticle pole, and we instead have
“non-Fermi liquid” behavior characterized by the universal
anomalous dimension ηψ .

When we move away from the strict flat band limit
and include a small dispersion for the fermions, then we
expect [18,19,23,24] that Eq. (2) is only modified by a
momentum dependence in the value of the threshold λ.
Thus for a Fermi surface with the incipient quasiparticle/hole
dispersion ε(k) which vanishes on the Fermi surface, we will
have for the quasiparticle-remnant Green’s function

Gqp(k,ω) ∼ 1

(ε(k) − ω)1−ηψ
, ε(k) > 0, (3)

and for the quasihole-remnant Green’s function

Gqh(k,ω) ∼ − 1

(−ε(k) + ω)1−ηψ
, ε(k) < 0. (4)

The Green’s function in Eq. (3) has a non-zero imaginary
part for ω > ε(k), while that in Eq. (4) has a non-zero
imaginary part for ω < ε(k). We will compute ηψ in an
expansion in ε = 3 − d. An unusual feature of our ε expansion
is that the Yukawa coupling γ0 is of order unity at the fixed
point which yields Eq. (2) (this is a significant difference from
Ref. [19] where a different model is considered in which the
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fixed point is at small γ0). This implies that our analysis must
be carried out to all orders in γ0, and we will show how this
can be accomplished. The coupling g0 is of order ε at the
fixed point (as usual), and so an expansion in powers of g0 is
permitted. Because of this novel structure in the ε expansion,
we find that we have to evaluate Feynman diagrams which
include up to four loop momenta to obtain results even to first
order in ε; such a computation yields

ηψ = (N + 8)

4π2

[
1 + (1.68269N2 + 17.4231N + 64.6922)

(N + 8)2
ε

+O(ε2)

]
(5)

The exact value of the coefficient of the ε term is given in
Eq. (42), where the values of the numbers C1,2,3 are specified
in Eqs. (18) and (40) in terms of digamma and zeta functions;
for the case N = 1 relevant to the Ising-nematic critical point,
the coefficient of the ε term is 1.0354.

Another notable feature of Eq. (5) is that ηψ does not vanish
as ε → 0. However, it is not the case that the problem in
ε = 0 (i.e., in d = 3) is characterized by the universal η in
Eq. (5). The ε = 0 case will be briefly mentioned in the body
of the paper, and it has a nonuniversal ηψ dependent upon bare
couplings. Thus the ε = 0 physics is different from the ε → 0
limit. This subtlety is related to the requirement noted above
of having to compute results to all orders in γ0. In a similar
vein, note that the value of ηψ appears to diverge as N → ∞
at fixed ε in Eq. (5). This is not expected to be correct, and
the divergence is expected to be absent because the ε → 0 and
N → ∞ limits to not commute: Eq. (5) is only valid as ε → 0
at fixed N . We will consider other aspects of the N → ∞
limit at fixed nonzero ε in Sec. IV, and find there that a large
N solution exists only for ε > 1/2.

Our analysis of Z will be aided by its connection to an
auxiliary problem in which the fermion ψ is eternally present at
x = 0; this connection is similar to that between the traditional
x-ray edge and Kondo problems, and was pointed out in
Ref. [22] for a closely related problem. With the fermion
present, the Yukawa coupling in Eq. (1) becomes equivalent
to a local field acting on the α = 1 component of the order
parameter along a defect line at x = 0 and all τ . So we are led
to consider

Zd =
∫

Dφα(x,τ ) exp

(
−Sφ − γ0

∫
dτφ1(x = 0,τ )

)
.

(6)

This partition function Zd is characterized by the same
couplings γ0 and g0 as Z , and they will have identical beta
functions in the two problems [22]. Indeed, the beta functions
are easier to compute in theZd formulation, and we will exploit
this feature. However, the exponent ηψ can only be computed
in the Z formulation, which we have to use to compute the
overlap between quantum states in which the fermion is present
and absent.

The physics of the Zd formulation is similar to that of
numerous other analyses of defect lines in CFTs [23–30]. In
the Zd formulation we can examine the behavior of the boson
correlations as they approach the defect line at x = 0; in Zh,
these would correspond to φα correlations near the fermion

long after it has been created. The coupling γ0 flows to a
fixed-point value, and so there is a strong local field that acts
on φα at x = 0; this suggests that in the operator product
expansions the bulk φα operator can be replaced by the constant
unit operator near the defect line [27]. In this situation we
expect that [27]

〈φα(x,τ )〉 ∼ δα,1

x(d−1+η)/2
, (7)

where η is the bulk anomalous dimension of the Wilson-Fisher
theory. We will find results consistent with Eq. (7) in an ε

expansion computation in Sec. II, and a large N computation
in Sec. IV.

The outline of the remainder of the paper is as follows.
Section II will present a computation of the beta functions
in the line defect model Zd . The ε expansion for the fermion
anomalous dimension ηψ associated withZ appears in Sec. III.
Finally, in Sec. IV we return toZd and analyze it in the large-N
expansion in general d.

II. LINE DEFECT IN THE WILSON-FISHER THEORY

A number of earlier works have considered line defects in
the 2+1 dimensional CFT described by the Wilson-Fisher
fixed point [21–25,29,30]. However, none of these works
considered the case of interest to us here as described by Zd

in Eq. (6): a local field acting at x = 0 which locally breaks
the O(N ) symmetry of the bulk theory.

Our analysis of Zd begins by recalling the well known [31]
renormalization of the bulk theory, which remains unmodified
by the presence of the impurity. We define renormalized fields
and couplings by

φα =
√

ZφRα, g0 = μεZ4

Z2Sd+1
g. (8)

Here μ is a renormalization momentum scale, and

Sd = 2

�(d/2)(4π )d/2
(9)

is a phase space factor. The renormalization constants Z, Z4

were computed long ago [31]; their values in the minimal
subtraction scheme to order g2 are

Z = 1 − (N + 2)g2

144ε
+ O(g3),

Z4 = 1 + (N + 8)g

6ε
+

(
(N + 8)2

36ε2
− (5N + 22)

36ε

)
g2

+O(g3). (10)

We now compute the “boundary” renormalizations associ-
ated with the defect line. First we define the renormalization

γ0 = με/2Zγ√
ZS̃d+1

γ, (11)

where Zγ is the new impurity renormalization, and the phase
space factor S̃d+1 is defined below in Eq. (14). To evaluate Zγ ,
we first compute the expectation value of φ1 to second order in
bare perturbation theory in g0, but to all orders in the boundary
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FIG. 1. (Color online) Spacetime representation of the theory Z .
The Wilson-Fisher CFT degrees of freedom extend over all spacetime.
The fermion is created at time 0 and annihilated at time τ . While the
fermion is present, a local field γ0 acts on the CFT degrees of freedom
at x = 0 along the direction α = 1.

coupling γ0. All Feynman diagrams to this order are shown in
Fig. 2. These diagrams are most conveniently evaluated by go-
ing back and forth between propagators in real and momentum
space. The bulk real space propagator for the φ field is

D0(x,τ ) =
∫

ddkdω

(2π )d+1

e−i(kx+ωτ )

ω2 + k2

= S̃d+1

(x2 + τ 2)(d−1)/2
. (12)

We also repeatedly use the Fourier transform (and its inverse)∫
ddx

e−ikx

xa
= Sd,a

kd−a
, (13)

(a)

(b)

(c)

(d)

(e)

FIG. 2. Feynman diagrams for 〈φ〉 to order g2
0 . The full line is the

bulk φ propagator under Sφ , the filled square is the bulk coupling g0,
and the filled circle is the boundary coupling γ0.

where

Sd,a ≡ 2d−aπd/2�((d − a)/2)

�(a/2)
, S̃d = Sd,2

(2π )d
(14)

The diagrams in Fig. 2 yield for the expectation value of the
renormalized field

〈φR1(k)〉 = 1√
Z

[(a) + (b) + (c) + (d) + (e)] , (15)

where

(a) = γ0

k2
,

(b) = −g0γ
3
0

6

S̃3
dSd,3d−6

k8−2d
,

(c) = (N + 2)g2
0γ0

18

S̃3
d+1Sd+1,3d−3

k8−2d
, (16)

(d) = (N + 8)g2
0γ

3
0

36

S̃2
d+1S̃

3
dSd+1,2d−2Sd,2d−4Sd,7−2dSd,4d−9

(2π )dk11−3d

(e) = g2
0γ

5
0

12

S̃5
dSd,3d−6Sd,8−2dSd,5d−12

(2π )dk14−4d
.

Now we express Eq. (15) in terms of the renormalized
couplings in Eqs. (8) and (11), expand the resulting expression
in powers of g (but not γ ), and demand that all poles in ε

cancel at each order in g. This yields the following value of
Zγ in the minimal subtraction scheme:

Zγ = 1 + π2gγ 2

6ε

+ g2

(
π2γ 2(2N + 16 + 9π2γ 2)

216ε2
+ C1γ

2 + C2γ
4

ε

)
+O(g3), (17)

where the numerical constants C1,2 are

C1 = π2

216
[−3 − 2γE + ln(4) − ψ(1/2) + ψ(3/2)] ,

C2 = π4

24
[ψ(1/2) − ψ(3/2)] ,

(18)

with γE the Euler-Mascheroni constant and ψ the digamma
function.

With all renormalization constants determined, we can now
compute the beta functions for the couplings g and γ :

β(g) = −εg + (N + 8)

6
g2 − (3N + 14)

12
g3 + O(g4),

β(γ ) = −ε

2
γ + π2

3
γ 3g

+
(

(N + 2)

144
γ + 3(N + 8)C1γ

3 + 4C2γ
5

)
g2

+O(g3). (19)

All poles in ε cancel in this computation, verifying the
renormalizability of the theory. Note that at g = 0, the flow of
γ is just given by its naive scaling dimension; in the context
of the fermion theory in Eq. (1), this is a consequence of
an exact cancellation between fermion self-energy and vertex
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corrections which is described in Appendix A (Refs. [18,19]
examined models which did not have this cancellation).
However, once the bulk interactions associated with the scalar
field are included, there is a nontrivial flow of γ .

These betafunctions have the infrared attractive fixed point

g∗ = 6

(N + 8)
ε + 18(3N + 14)

(N + 8)3
ε2 + O(ε3),

γ ∗2 = (N + 8)

4π2

[
1 −

(
19N + 86

2(N + 8)2
+ 54C1

π2
+ 18C2

π4

)
ε

+O(ε2)

]
. (20)

Note that γ ∗ remains finite as ε → 0, as we emphasized
in Sec. I. However, precisely in ε = 0, analysis of Eq. (19)
shows that g approaches the fixed point g∗ = 0, while γ does
not approach a fixed point. Consequently, the ε → 0 limit is
distinct from the ε = 0 case.

We can now reinsert these fixed point values into our
expansion in Eq. (15) for 〈φ〉; at the critical point we find
that the results at order ε2 are compatible with Eq. (7), which
implies the following expression for the expectation value in
momentum space:

〈φR1(k)〉 = N 2πγ ∗

k2−ε/2

(
k

μ

)η/2

, (21)

where

η = (N + 2)

2(N + 8)2
ε2 + O(ε3) (22)

is the bulk scaling dimension of φ. Equation (15) yields that

N = 1 − 1.0844693ε

+
(

0.579032 − 0.235508
(N + 2)

(N + 8)2

)
ε2 + O(ε3).

(23)

III. FERMION ANOMALOUS DIMENSION

We now examine the theory Z in Eq. (1).
In the conventional renormalization scheme, the renormal-

izations of Sφ remain the same as those of the bulk theory as
described in Sec. II, while for the fermion sector we introduce
the wave function renormalization

ψ = √
ZψψR (24)

and the renormalization of the “Yukawa” coupling

γ0 = με/2Z̃γ

Zψ

√
ZS̃d+1

γ. (25)

Note that this renormalization scheme differs from that in
Eq. (11). However, we expect the RG flow of the underlying
coupling to be the same in the two theories, and so we conclude
that [22]

Z̃γ = ZψZγ . (26)

We explicitly verify this identity at low orders in Appendix A.
We are primarily interested here in the wave function renor-

malization of the fermion, Zψ . We proceed by introducing a

“gauge-transformed” fermion field ψ ,

ψ(τ ) = ψ(τ ) exp

(
γ0

∫ τ

0
dτ1φ1(x = 0,τ1)

)
. (27)

Now ψ is a free fermion, and so correlators of ψ can be
evaluated using the exact expression

G(τ ) = G0(τ )

〈
exp

(
γ0

∫ τ

0
dτ1φ1(x = 0,τ1)

)〉
Sφ

, (28)

where G0 is the free fermion correlator

G0(τ ) = e−λτ θ (τ ). (29)

The two-point correlators of φ1(x = 0,τ ) given by

D0(x,τ ) =
∫

ddk dω

(2π )d+1

e−i(kx+ωτ )

ω2 + k2

= S̃d+1

(x2 + τ 2)(d−1)/2
. (30)

So at order g0 we have for the fermion Green’s function

G(τ ) = G0(τ ) exp

(
γ 2

0

2

∫ τ

0
dτ1

∫ τ

0
dτ2 D0(0,τ1 − τ2)

)
.

(31)

It is physically more transparent to momentarily impose a
short-distance cutoff, a, in D0,

D0(x,τ ) → S̃d+1
(1 − e−(x2+τ 2)/a2

)

(x2 + τ 2)(d−1)/2
, (32)

and evaluate Eq. (31) in d = 3 for large τ > 0:

G(τ ) = G0(τ ) exp

(
γ 2

0 S̃4

2

[
2
√

πτ

a
− 2 ln

(τ

a

)
+ · · ·

])
.

(33)
The leading term in the exponential is absorbed into a
renormalization of the fermion energy λ, while the second
term yields the anomalous dimension of the fermion,

ηψ = γ 2 + O(g). (34)

As γ does not approach a fixed point value for ε = 0, there
is no universal anomalous dimension in d = 3. However, for
ε > 0, there is a fixed point as we noted below Eq. (19), and
ηψ is therefore universal.

Determination of theO(g) term will be carried out using the
dimensional regularization method. In this method, Eq. (31)
yields

G(τ )

G0(τ )
= exp

(
γ 2

0 S̃d+1

2

∫ τ

0
dτ1

∫ τ

0
dτ2

1

|τ1 − τ2|2−ε

)

= exp

(
−γ 2Z2

γ

Z

(τμ)ε

ε(1 − ε)

)
. (35)

Now demanding that poles cancel in the Green’s function of
the renormalized field ψR we obtain

Zψ = exp

(
−γ 2

ε

)
+ O(g), (36)
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and this leads to an anomalous dimension in agreement with
Eq. (34),

ηψ = β(γ )
d ln Zψ

dγ
= γ 2 + O(g). (37)

At next order in g, evaluation of Eq. (28) shows that

G(τ ) = G0(τ ) exp

(
γ 2

0

2

∫ τ

0
dτ1

∫ τ

0
dτ2 D0(0,τ1 − τ2)

)
×

{
1 − g0γ

4
0

24

∫
ddx

∫ ∞

−∞
dτ0

×
[∫ τ

0
dτ3 D0(x,τ3 − τ0)

]4 }
+ O(g2), (38)

where we have dropped “tadpole” contributions which vanish
in dimensional regularization. The order g term above is
computed in Appendix B, and from this we obtain the order g

correction to Eq. (36): this requires a three-loop computation
and leads to

Zψ = exp

(
−γ 2

ε

) [
1 − gγ 4

(
2π2

9ε2
+ C3

ε

)
+ O(g2)

]
,

(39)

where from Eq. (B13) we have (ψ is the digamma function)

C3 = 1
18 [6ζ (3) + π2 {1 + ln(64) + 3ψ (1/2) − ψ (3/2)}].

(40)

We also computed Zψ in a more conventional Dyson
formulation in frequency space: the computations of the
frequency-dependent self-energy of the fermion is described
in Appendix C, and yields a result for Zψ in perfect agreement
with Eq. (39).

Now the fermion anomalous dimension is

ηψ = β(γ )
d ln Zψ

dγ
+ β(g)

d ln Zψ

dg

= γ 2 + 3C3 gγ 4 + O(g2). (41)

Note that the poles in ε have all canceled in Eq. (41): this is a
highly nontrivial check of our computation. We now insert the
fixed-point values of the couplings in Eq. (20) and obtain our
main result,

ηψ = (N + 8)

4π2

[
1 −

(
19N + 86

2(N + 8)2

+ 9(12π2C1 + 4C2 − π2C3)

2π4

)
ε + O(ε2)

]
; (42)

the values of the numbers C1,2,3 above are specified in Eqs. (18)
and (40) in terms of digamma and zeta functions.

IV. LARGE N ANALYSIS OF DEFECT LINE

This section returns to the defect line model in Eq. (6) and
analyzes it in the limit of large N for general d.

We formulate the large N limit using a theory with a
fixed-length constraint

∑N
α=1 φ2

α = constant. This constraint
is implemented by a Lagrange multiplier λ. After suitable
rescalings of fields and couplings for a useful large N limit,
the action for Zd in Eq. (6) is modified to

Sd =
∫

ddx

∫
dτ

1

2g

[
(∂τφα)2 + (∂xφα)2 + iλ

(
φ2

α − N
)]

− γ0

√
N

∫
dτφ1(x = 0,τ ). (43)

We are now using the coupling constant g to tune the bulk
theory across its quantum critical point.

We now parametrize

φα = (
√

Nσ,π1,π2, . . . ,πN−1) (44)

and integrate out the π fields. Then action becomes

Sd =
∫

ddx

∫
dτ

N

2g
[(∂τσ )2 + (∂xσ )2 + iλ(σ 2 − 1)]

− γ0N

∫
dτσ (x = 0,τ )

+ N − 1

2
Tr ln

[−∂2
τ − ∂2

x + iλ
]
. (45)

So in the large N limit involves determination of the saddle
point of Eq. (45) with respect to the space-dependent fields
σ (x) and λ(x).

In the absence of the external field, γ0 = 0, the critical point
is at [3] g = gc, where

1

gc

=
∫

dωddk

(2π )d
1

ω2 + k2
. (46)

At the critical point, the saddle point value iλ = 0.
In the presence of a field, we expect a saddle point with

iλ = �2(x) and σ = σ (x), with �(x),σ (x) → 0 as |x| → ∞.
The saddle-point equations determining these functions are[−∇2

x + �2(x)
]
σ (x) = γ0gcδ

d (x) (47)

and

σ 2(x) + gcG(x,τ ; x,τ ) = 1 (48)

where G is the Green’s function obeying[−∇2
x − ∂2

τ + �2(x)
]
G(x,τ ; x ′,τ ′) = δd (x − x ′)δ(τ − τ ′).

(49)

It is useful to write Eq. (48) as

σ 2(x) + gc [G(x,τ ; x,τ ) − G0(x,τ ; x,τ )] = 0, (50)

where G0 = G|�≡0 = 1/gc. For d < 3 the difference G − G0

is ultraviolet (u.v.) finite. There is, however, a u.v. divergence
associated with the Dirac delta in the first equation, which will
become manifest later.
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Now we introduce the orthonormal and complete set of
eigenfunctions[−∇2

x + �2(x)
]
ψn(x) = q2

nψn(x), (51)

and we express σ and G in terms of these

G(x,τ ; x ′,τ ′) =
∫

dω

2π

∑
n

1

q2
n + ω2

ψn(x)ψ�
n(x ′)eiω(τ−τ ′),

(52)

σ (x) = γ0gc

∑
n

1

q2
n

ψn(0)ψ�
n(x ′). (53)

Guided by rotational and scale invariance, we assume that

�2(x) = v

x2
. (54)

It is advantageous to expand the eigenfunctions ψn over the
orthonormal spherical harmonics Y�m of the d − 1 sphere:

ψn(r,�) = ψq�(r)Y�m(�), (55)

where the radial wavefunction ψq� satisfies the eigenvalue
equation[

−∂2
r − d − 1

r
∂r + �(� + d − 2) + v

r2

]
ψq�(r) = q2ψq�(r).

(56)

The regular solution can be written in terms of Bessel
functions:

ψq� = r
1−d

2
√

qrJν�
(qr),

ν� =
√

�(� + d − 2) + v + (d/2 − 1)2, (57)

and it is normalized∫ ∞

0
dr rd−1ψq�(r)ψq ′�(r) = δ(q − q ′). (58)

Substituting in (52) we have

G(r,�,τ ; r,�,0) = 1

Ad−1

∫
dω

2π

∫ ∞

0
dq

∑
�

degd�

× 1

q2 + ω2
[ψq�(r)]2eiωτ , (59)

σ (r) = γ0gc

Ad−1

∫ ∞

0
dq

∑
�

degd�

1

q2
ψq�(ε)ψq�(r), (60)

where τ and ε are u.v. regulators, Ad is the area of the d

sphere, and degd� is the degeneracy of the eigenspace of L2

with eigenvalue �(� + d − 2). In obtaining this result we used
the identity

∑
m

|Y�m(�)|2 = degd�

Ad−1
,

d Ad−1 degd�

2 2π 1 if � = 0,2 otherwise
3 4π 2� + 1

d
dπ

d
2

�
(

d
2 + 1

) (
d+�−1
d−1

) − (
d+�−3
d−1

) (61)

The integrals over ω and q can be done analytically,

G(r,�,τ ; r,�,0) = 1

Ad−1rd−1

∑
�

degd� Q�

(
τ 2

4r2

)
, (62)

σ (r) = γ0gc

2Ad−1rd−2

∑
�

degd�

1

ν�

(ε

r

)ν�

, (63)

where

Q�(z) = 1

2
√

π

�
(
ν + 1

2

)
� (ν + 1)

(4z)−ν− 1
2 F

×
(

ν + 1

2
,ν + 1

2
,2ν + 1; −1

z

)
(64)

= 1

16π
− 1

4π
ln(z) − 1

2π
Hν− 1

2
+ O(z), (65)

where Hn is the harmonic number. The u.v. and infrared
(i.r.) divergent term ln(z) cancels when taking the difference
between G and G0. Then it is safe to take the limit τ → 0, and

we have

G(r,�,0; r,�,0) − G0(r,�,0; r,�,0)

= − Wd

2πAd−1rd−1
,

Wd =
∑

�

degd�

[
Hν�− 1

2
− Hν̄�− 1

2

]
, (66)

where ν̄� is given by (57) with v = 0. The sum over � is
convergent for d < 3 and it is positive if v > 0.

Concerning σ , the dominant contribution as ε → 0 is given
by � = 0:

σ (r) = γ0gc

2ν0Ad−1rd−2

(ε

r

)ν0

. (67)

It is now apparent that the u.v. regulator ε can be adsorbed in
a redefinition of γ0.

Both σ and G − G0 have a power law dependence on r . A
solution to the saddle point equations is possible only if the
two power laws match. This fixes the coefficient v:

ν0 = 3 − d

2
, i.e., v = 5 − 2d

4
. (68)

035131-6



SPECTRAL FUNCTION OF A LOCALIZED FERMION . . . PHYSICAL REVIEW B 90, 035131 (2014)

(a)

(τ0, x)
τ1

−τ/2

τ/2

(b)

τ1

−τ/2

τ/2

FIG. 3. Feynman diagrams for the vertex renormalization. The
dashed line is the fermion propagator

For consistency we need v > 0 and hence d < 5/2. The
fixed point bare coupling γ0 is given by

γ 2
0 = (3 − d)2Ad−1Wd

2πε3−dgc

, (69)

and we have

σ =
√

Wdgc

2πAd−1

1

r
d−1

2

, �2(r) = 5 − 2d

4

1

r2
. (70)

So our final result for σ (r) is consistent with Eq. (7) because
the bosonic η = 0 in the present large N limit.

It is also interesting to note that the large N limit provides a
consistent scaling solution only for d < 5/2. So evidently,
there is no solution when both ε = 3 − d and 1/N are

small: this feature is consonant with our earlier observation
that the ε → 0 and N → ∞ limits do not commute.

V. CONCLUSIONS

The main potential applicability of the present theory is to
the Ising-nematic quantum critical point of metals [18–20].
For suitable microscopic parameters, there can be an extended
intermediate regime where the Landau damping of the bosonic
order parameter can be ignored, and the boson correlations
have dynamic critical exponent z = 1. In this regime, if
the Fermi velocity vF scales to zero, then the problem of
determining the fermion spectrum reduces to that considered
in the present paper.

The flow of vF to small values in this intermediate regime
appears in a one-loop renormalization group analysis [19]. An
important direction for future research is examine the flow of
vF beyond the one-loop level.
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APPENDIX A: VERTEX RENORMALIZATION

This appendix will compute the leading renormalizations of the Yukawa vertex, Z̃γ , and verify the identity in Eq. (26).
The needed Feynman diagrams are shown in Fig. 3, and they will be evaluated in real space and time.
From the diagram in Fig. 3(a), the vertex renormalization factor is

Va(τ ) = −γ 2
0 g0S̃

3
d+1

∫
ddx

∫ ∞

−∞
dτ0

1

{[x2 + (τ0 + τ/2)2][x2 + (τ0 − τ/2)2]}(d−1)/2

[∫ τ/2

−τ/2
dτ1

1

[x2 + (τ0 − τ1)2](d−1)/2

]

= − μ2ε

τ 1−2ε

γ 2gS̃2
d+1

Sd+1

∫
ddx

∫ ∞

−∞
dτ0

1

{[x2 + (τ0 + 1/2)2][x2 + (τ0 − 1/2)2]}(d−1)/2

[∫ 1/2

−1/2
dτ1

1

[x2 + (τ0 − τ1)2](d−1)/2

]
.

(A1)

From the ∼1/τ behavior of Va(τ ) at small ε, we see that we will obtain a pole in ε in its Fourier transform Va(ω). So, at leading
order in ε we may evaluate all other terms at ε = 0, and obtain

Va(τ ) = − μ2ε

τ 1−2ε

γ 2g

2π2

∫
d3x

∫ ∞

−∞
dτ0

1

[x2 + (τ0 + 1/2)2][x2 + (τ0 − 1/2)2]

[∫ 1/2

−1/2
dτ1

1

[x2 + (τ0 − τ1)2]

]
= − μ2ε

τ 1−2ε

π2γ 2g

3
. (A2)

So after a Fourier transform

Va(ω) = (μ/ω)2ε

[
−π2gγ 2

6ε
+ · · ·

]
. (A3)

Similarly, from the diagram in Fig. 3(b), the vertex renormalization is

Vb(τ ) = γ 2
0

S̃d+1

τ d−1

∫ τ/2

−τ/2
dτ1 = με

τ 1−ε
γ 2. (A4)
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So the Fourier transform is

Vb(ω) = (μ/ω)ε
[
γ 2

ε
+ · · ·

]
. (A5)

Combining Eqs. (A3) and (A5), we obtain the vertex renormalization to order g and γ 2

Z̃γ = 1 − γ 2

ε
+ π2γ 2g

6ε
+ · · · . (A6)

This is in agreement with Eqs. (17), (26), and (36). Notice that the vertex renormalization Vb exactly cancels with the wave
function renormalization in Zψ at this order. This is linked to our ability to solve the problem via the “gauge” transformation in
Eq. (27).

APPENDIX B: THREE-LOOP INTEGRAL

This appendix will examine the following integral obtained from the O(g) term in Eq. (38)

24 I(ε) ≡ 1

Sd+1S̃
2
d+1

∫
ddx

∫ ∞

−∞
dτ0

[∫ τ/2

−τ/2
dτ3 D0(x,τ3 − τ0)

]4

= τ 3ε
2(2π )dSd S̃

2
d+1

Sd+1

∫ ∞

0
x2−εdx

∫ ∞

0
dτ0

[∫ 1/2

−1/2
dτ3

1

(x2 + (τ3 − τ0)2)1−ε/2

]4

= τ 3εAε

∫ ∞

0
x−2+3εdx �(x), (B1)

where

Aε ≡ 21−ε �2(1 − ε/2)�(2 − ε/2)√
π�(3/2 − ε/2)

(B2)

and

�(x) =
∫ ∞

0
dτ0 [�(x,τ0)]4 , (B3)

with

�(x,τ0) = (1 − 2τ0)

2x
2F1

(
1

2
,1 − ε

2
,
3

2
, − (1 − 2τ0)2

4x2

)

+ (1 + 2τ0)

2x
2F1

(
1

2
,1 − ε

2
,
3

2
, − (1 + 2τ0)2

4x2

)
.

(B4)

We can now write

�(x) = x

∫ ∞

−1/(2x)
dσ

[
σφε(σ ) −

(
1

x
+ σ

)
φε

(
1

x
+ σ

)]4

,

(B5)
where we introduced the variable σ = (2τ0 − 1)/(2x) and
defined

φε(σ ) ≡ 2F1

(
1

2
,1 − ε

2
,
3

2
, − σ 2

)
. (B6)

We are interested in the behavior of �(x) as x → 0 at fixed,
finite ε. For this, we need the large |σ | expansion

φε(σ ) = Bε |σ |−1 − 1

(1 − ε)
|σ |−2+ε + O(|σ |−4+ε), (B7)

where

Bε ≡
√

π�(1/2 − ε/2)

2�(1 − ε/2)
. (B8)

Now we can write for �(x) as x → 0

�(x) ≈ x

∫ ∞

−1/(2x)
dσ

[
σφε(σ ) − Bε + (1/x + σ )−1+ε

(1 − ε)

]4

≈ x

∫ ∞

−1/(2x)
dσ [σφε(σ ) − Bε]4 + 4x

(1 − ε)

∫ ∞

−1/(2x)
dσ [σφε(σ ) − Bε]3 (1/x + σ )−1+ε

≈ x

∫ 0

−1/(2x)
dσ [σφε(σ ) − Bε]4 + x

∫ ∞

0
dσ [σφε(σ ) − Bε]4 − 32B3

ε x

(1 − ε)

∫ 0

−1/(2x)
dσ (1/x + σ )−1+ε

≈ 8B4
ε − 32B3

ε 2−ε

ε(1 − ε)
x1−ε + x

∫ 0

−1/(2x)
dσ

(
[σφε(σ ) − Bε]4 − 16B4

ε + 32B3
ε

(1 − ε)
(−σ )−1+ε

)
+ x

∫ ∞

0
dσ [σφε(σ ) − Bε]4 − 32B3

ε (1 − 2−ε)

(1 − ε)ε
x1−ε ≈ 8B4

ε − 32B3
ε

ε(1 − ε)
x1−ε + Dε x, (B9)
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where

Dε =
∫ 0

−∞
dσ

(
[σφε(σ ) − Bε]4 − 16B4

ε + 32B3
ε

(1 − ε)
(−σ )−1+ε

)
+

∫ ∞

0
dσ [σφε(σ ) − Bε]4

= 4π3

ε
+ [−6γE + 4 ln(2) − 6ψ(1/2)] π3 + 6πζ (3) + O(ε), (B10)

where ψ is the digamma function. We have verified numerically that the small x expansion for G(x) in Eq. (B9) holds accurately
for small values of ε.

We can now insert the expansion (B9) in Eq. (B1) and obtain the singular terms in I(ε) as ε → 0:

I(ε) = Aε

24

(
− 32B3

ε

2ε2(1 − ε)
+ Dε

3ε

)
= − π2

9ε2
+ E

ε
, (B11)

where

E = 6ζ (3) + π2 [−5 + ln(64) + 3ψ (1/2) − ψ (3/2)]

18
= −3.310360722 . . . . (B12)

Now we use the lower order result for G(τ ) in Eq. (35), insert the above result for I(ε) in Eq. (38), and evaluate at τμ = 1, and
keep only poles in ε, to obtain

G(τ )

G0(τ )
= exp

(
− γ 2Z2

γ

ε(1 − ε)

)
[1 − gγ 4I(ε) + O(g2)]

= exp

(
−γ 2

ε

) [
1 − gγ 4

{
2π2

9ε2
+ 1

ε

(
E + π2

3

)}
+ O(g2)

]
= exp

(
−γ 2

ε

) [
1 − gγ 4

(
2π2

9ε2
− 0.020492588211

ε

)
+ O(g2)

]
. (B13)

Demanding cancellation in poles for the renormalized fermion ψR , we obtain Eq. (39).

APPENDIX C: SELF-ENERGY RENORMALIZATION

This appendix will carry out a computation equivalent to that in Appendix B, but using a Dyson formulation of the fermion
propagator in frequency space. In this formulation, we introduce the self-energy, �, defined by

G(ω) = 1

−iω + λ − �(ω)
. (C1)

Then, at order γ 2, the self-energy is

�γ (τ ) = γ 2
0 θ (τ ) D0(τ )e−λτ . (C2)

So we have

�γ (ω) = μεγ 2Z2
γ

∫ ∞

0

dτ

τ 2−ε
e−(λ−iω)τ = με(λ − iω)1−εγ 2Z2

γ �(−1 + ε) = με(λ − iω)1−εγ 2Z2
γ

(
−1

ε
− 1 + γE + · · ·

)
.

(C3)

So in minimal subtraction, we have at order γ 2

Zh = 1 − γ 2

ε
, (C4)

which agrees with Eq. (36).
We now turn to the terms of order g, where we need to compute the three-loop self-energy term. This is given by the Feynman

diagram in Fig. 4 and leads to an expression very similar to that in Eq. (A1):

�g(τ ) = −γ 4
0 g0S̃

4
d+1

∫
ddx

∫ ∞

−∞
dτ0

1

{[x2 + (τ0 + τ/2)2][x2 + (τ0 − τ/2)2]}(d−1)/2

×
[∫ τ/2

−τ/2
dτ1

∫ τ/2

−τ1

dτ2
1

{[x2 + (τ0 − τ1)2][x2 + (τ0 − τ2)2]}(d−1)/2

]

= −γ 4
0 g0S̃

4
d+1

2

∫
ddx

∫ ∞

−∞
dτ0

1

{[x2 + (τ0 + τ/2)2][x2 + (τ0 − τ/2)2]}(d−1)/2

[∫ τ/2

−τ/2
dτ1

1

[x2 + (τ0 − τ1)2](d−1)/2

]2

.

(C5)
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The second expression differs from Eq. (A1) primarily by the square over the integral over τ1. Rescaling to pull out the τ

dependence, we now have

�g(τ ) = − μ3ε

τ 2−3ε

γ 4gS̃2
d+1

2Sd+1

∫
ddx

∫ ∞

−∞
dτ0

1

{[x2 + (τ0 + 1/2)2][x2 + (τ0 − 1/2)2]}(d−1)/2

[∫ 1/2

−1/2
dτ1

1

[x2 + (τ0 − τ1)2](d−1)/2

]2

.

(C6)

Now the Fourier transform to �g(ω) will yield a pole in ε from
the 1/τ 2−3ε term, just as in Eq. (C3). However the integrals
of x,τ0,τ1 yields an additional pole in ε, and so we cannot set
ε = 0 in the integrand yet. Evaluating the Fourier transform
and the integral over τ1, we obtain

�g(ω)

= −μ3ε(λ − iω)1−3ε γ 4gAε

∫ ∞

0
xεdx

×
∫ ∞

0
dτ0

[�(x,τ0)]2

{[x2 + (τ0 + 1/2)2][x2 + (τ0 − 1/2)2]}1−ε/2
,

(C7)

where

Aε ≡ Aε 2�(−1 + 3ε)

= − 2

3πε
+ · · · (C8)

has a simple pole at ε = 0. Now we write

�g(ω) = −μ3ε(λ − iω)1−3ε γ 4g Aε Bε, (C9)

where

Bε =
∫ ∞

0
x−3+3εdx Hε(x) (C10)

and

Hε(x) =
∫ ∞

−1/(2x)
dσ

[
σφε(σ ) −

(
1

x
+ σ

)
φε

(
1

x
+ σ

)]2

× 1

{[1 + (1/x + σ )2][1 + σ 2]}1−ε/2
. (C11)

(τ0, x)
τ1

−τ/2

τ/2

τ2

FIG. 4. Feynman diagrams for the fermion self-energy at order g.

We now need the expansion of Hε(x) at small x:

Hε(x → 0) = x2−ε

∫ ∞

−∞
dσ [σφε(σ ) − Bε]2 1

[1 + σ 2]1−ε/2

≡ x2−εDε (C12)

where

D0 = π3

3
. (C13)

Then we can construct the behavior of Bε at small ε from
Eqs. (C10) and (C11)

Bε = π3

6ε
+ 1.694 + O(ε). (C14)

The O(1) term above was obtained by numerical evaluation of
the integrals.

So we see from Eqs. (C9) and (C10) that the self energy
evaluates to

�g(ω) = −μ3ε(λ − iω)1−3ε γ 4g

[
− π2

9ε2
− 1.41144

ε
+ O(1)

]
.

(C15)

Combining this with the lower order result �γ in Eq. (C3) at
μ(λ − iω) = 1, while keeping only poles in ε, we obtain

�(ω) = (λ − iω)

[
γ 2Z2

γ �(−1 + ε)

+ γ 4g

(
π2

9ε2
+ 1.411

ε

)
+ O(g2)

]
= (λ − iω)

[
−γ 2

ε
− γ 4g

(
2π2

9ε2
− 0.0205

ε

)
+ O(g2)

]
.

(C16)

Note the excellent agreement of the renormalization factor
with the exact results in Eq. (B13).
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