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We construct a low-energy effective field theory of fermions interacting via short-range interactions in a simple
two-band model of a Weyl semimetal on the cubic lattice and investigate possible broken-symmetry ground states
through a one-loop renormalization group (RG) analysis. Using the symmetries of the noninteracting Hamiltonian
to constrain the form of the interaction term leads to four independent coupling constants. We investigate the
stability of RG flows towards strong coupling and find a single stable trajectory. In order to explore possible
broken-symmetry ground states, we calculate susceptibilities in the particle-hole and particle-particle channels
along this trajectory and find that the leading instability is towards a fully gapped spin-density wave (SDW)
ground state. The sliding mode of this SDW couples to the external electromagnetic fields in the same way as
the Peccei-Quinn axion field of particle physics. We also study the maximally symmetric version of our model
with a single independent coupling constant. Possible ground states in this case are either gapless ferromagnetic
states where the spin waves couple to the Weyl fermions like the spatial components of a (possibly chiral) gauge
field, or a fully gapped spin-singlet Fulde-Ferrell-Larkin-Ovchinnikov superconducting state.
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I. INTRODUCTION

The consideration of topological aspects of the electronic
structure of solids has led to spectacular recent developments
in quantum condensed matter physics. In this context, topology
refers to the invariance of certain global properties of the
electronic structure under perturbations of the system that are
sufficiently small and may have to preserve certain symmetries,
but are otherwise arbitrary. The prime example of this is the
integer quantum Hall effect [1], where the quantization of the
Hall conductance, a global property of the band structure [2], is
insensitive to arbitrary perturbations. A more recent example
is the discovery of topological insulators in two and three
dimensions [3,4], where the quantization of a Z2 topological
invariant and associated electromagnetic response properties
is insensitive to perturbations that preserve time-reversal
symmetry. The quantization of a topological invariant of the
bulk band structure often implies the appearance of robust
gapless states on the boundary of the system that could be used
for the nearly dissipationless transport of information [5].

Given that integer quantum Hall systems and topological
insulators are both band insulators, one might wonder whether
such topological phenomena are limited to gapped systems.
The answer is no. The stability of the Fermi surface of a metal
against perturbations that preserve translation symmetry [6]
can be described by topological invariants [7,8]. A semimetal,
where the Fermi surface (in dimensions higher than one)
reduces to a discrete set of points, is an interesting case
intermediate between a metal and an insulator. In three
dimensions, a linear crossing of two nondegenerate bands is
stable against arbitrary weak translation symmetry preserving
perturbations (for a discussion of the effects of translation
symmetry breaking perturbations, see Ref. [9] and references
contained therein). Near the crossing point k = k0, the
effective Hamiltonian for these two bands is of the form [10]

h(k) = E0 + v0 · (k − k0) +
3∑

i=1

vi · (k − k0)σi, (1)

where v0, . . . ,v3 are real vectors and σ1,σ2,σ3 are the three
Pauli matrices. Because there are as many momentum di-
rections in three dimensions (3D) as there are independent,
anticommuting Hermitian 2×2 matrices, it is impossible to
add a (mass) term to Eq. (1) that would introduce a gap
between the two bands. The Hamiltonian (1) describes a single
chiral or Weyl fermion. Weyl fermions are either right-handed
or left-handed, where the handedness or chirality defined by
c = sgn[v1 · (v2×v3)] = ±1 is a topological invariant [7,10].
A known example of 3D Weyl fermion in nature is the nodal
Bogoliubov quasiparticle in the A phase of superfluid 3He [7].

Recent theoretical work suggests that electronic structures
with Weyl points of the type (1) occurring at the Fermi
level may be realized in solid-state systems. These Weyl
semimetals [11,12] have been predicted to occur as an
intermediate gapless phase between a trivial and a topological
insulator [13,14], in topological insulator multilayers [15–19],
and in magnetically doped topological insulators [20–22]; in
the phase diagram of pyrochlore iridates [10,23–25]; in the
ferromagnetic compounds HgCr2Se4 [26] and CdO/EuO [27];
and by applying a magnetic field [28] to a Dirac semimetal
[29–36], where two Weyl points coexisting at the same
momentum are protected by crystallographic symmetries.
Recent magnetoresistance studies in Bi1−xSbx [37], as well as
in the pyrochlore iridate Bi2Ir2O7 [38], report observations that
are consistent with the phenomenology of Weyl semimetals.
For a solid-state system on a lattice, the Nielsen-Ninomiya
theorem [39,40] implies that Weyl points must appear in pairs.
Such a system with an even number of Weyl points is stable
against perturbations that preserve translation symmetry.

The theoretical description of Weyl semimetals in terms of
the single-particle Hamiltonian (1) does not take into account
the electron-electron interactions that are always present to
some degree in real materials. This is justified to a first
approximation: because of the fast vanishing of the density
of states ρ(ε) ∝ ε2 of a Weyl semimetal at the Fermi energy
ε = 0, short-range interactions are perturbatively irrelevant
and Coulomb interactions are marginally irrelevant. The effect
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of weak interactions can thus be treated in perturbation theory,
and leads, for example, to finite or logarithmic renormal-
izations of transport properties [41–44]. On the other hand,
sufficiently strong interactions can lead to a quantum critical
point at finite interaction strength where the Weyl semimetal
is destroyed. The most likely scenario is that of spontaneous
symmetry breaking. Previous theoretical studies have consid-
ered specific examples of broken-symmetry states that may
occur as a result of strong density-density interactions in a
Weyl semimetal, including excitonic and charge-density wave
(CDW) ground states [45–47], as well as superconducting
ground states [48,49]. These studies begin with a particular
microscopic interaction on the lattice that is projected onto
the low-energy subspace of Weyl points. The resulting low-
energy continuum field theory of interacting Weyl fermions
is then studied in the mean-field approximation, assuming
a particular decoupling channel. However, constructing a
low-energy effective theory requires a somewhat arbitrary
choice of high-energy cutoff �, and an effective theory with
cutoff � can in principle be obtained from an effective theory
with a different cutoff �′ > � by integrating out all degrees
of freedom with energies between � and �′. This procedure
will generate interaction terms that were absent in the initial
projection of the microscopic interaction onto the low-energy
subspace. In principle, one should therefore include in the
low-energy effective theory all interaction terms that are
consistent with the symmetries of the problem.

The first question is whether one should use the symmetry
group of the microscopic Hamiltonian on the lattice, or
the (larger) symmetry group of the noninteracting Weyl
fermion Hamiltonian, e.g., Eq. (1). If the interaction strength
is comparable to the bandwidth, such that in perturbation
theory the interaction will cause significant mixing between
the low-energy Weyl fermions and high-energy states, it is
preferable to use the lattice symmetry group. However, if the
interaction strength is small compared to the bandwidth, in
perturbation theory the low-energy Weyl fermions interact
mostly with each other without significant mixing with high-
energy states, and it is sensible to constrain the interaction
terms by the symmetry group of the noninteracting Weyl
fermions. Furthermore, the lattice symmetry group is material
specific, whereas the low-energy symmetry group is (almost)
universal. Given the diversity of materials that have been
predicted to realize the Weyl semimetal, it is useful to focus on
those symmetries that are common to the low-energy subspace
of many Weyl semimetals, rather than on those that differ from
material to material.

In this paper we develop a minimal low-energy description
of interacting fermions in a model of Weyl semimetal based
on a small set of low-energy symmetries, and investigate its
possible broken-symmetry ground states via the renormaliza-
tion group (RG) method. Starting from a simple model of a
Weyl semimetal on the cubic lattice with two Weyl points [50],
we construct a low-energy effective theory for noninteracting
Weyl fermions and determine its symmetry group (Sec. II).
We restrict ourselves to short-range interactions. Although
long-range Coulomb interactions are expected to dominate in
potential solid-state realizations of Weyl semimetals where
the fermions are charged electrons, besides its academic
interest the study of short-range interactions is relevant to

other potential realizations of Weyl semimetals where the
fermions are electrically neutral, such as ultracold atomic
gases in optical lattices with artificial gauge fields [51,52]
or Weyl superconductors [53]. We determine the most general
short-range interaction term that is consistent with the sym-
metry group of the noninteracting low-energy Hamiltonian
(Sec. III). These symmetry considerations as well as the
use of Fierz identities reduce the number of independent
coupling constants from 136 to four. We then perform a
one-loop RG analysis that determines the flow of coupling
constants in this four-dimensional parameter space (Sec. IV).
We find a single stable (Gaussian) fixed point, corresponding
to the noninteracting Weyl semimetal, as well as four critical
points, six bicritical points, and four tricritical points. We are
interested in broken-symmetry states that correspond to stable
fixed points at infinity. In order to explore possible broken-
symmetry ground states at strong coupling, we investigate
the stability of trajectories towards strong coupling in the
four-dimensional space of coupling constants and find a
single stable trajectory. As in analogous studies of interacting
electrons on the honeycomb lattice [54], this analysis is
admittedly uncontrolled in that the perturbative RG flow is
extrapolated to strong coupling, but has the advantage over
previous mean-field studies of not requiring an a priori choice
of order parameter. We calculate susceptibilities along the
stable trajectory and determine the leading symmetry-breaking
instability (Sec. V), which is a spin-density wave (SDW)
with wave vector equal to the momentum-space separation
of the Weyl points (Sec. VI). The single-particle spectrum
in this state is fully gapped. As the Hamiltonian has no
spin rotation symmetry, the only Goldstone mode of this
generally incommensurate SDW is the sliding mode. The
electromagnetic response of the state is unusual in that this
sliding mode couples to external electric and magnetic fields
like the pseudoscalar axion field of particle physics [55], which
was also found to occur if the Weyl semimetal develops CDW
order [47]. In Sec. VII, we consider a model with additional
symmetries that has a single independent coupling constant.
Depending on the sign of the flow to strong coupling, we find
gapless ferromagnetic states or fully gapped Fulde-Ferrell-
Larkin-Ovchinnikov [56,57] (FFLO) superconducting states.

II. NONINTERACTING HAMILTONIAN

In this section we derive the low-energy effective field
theory for the simplest type of Weyl semimetal with broken
time-reversal symmetry, which has two Weyl points related
by inversion symmetry. We determine the symmetries of
the resulting Lagrangian, which are then used in Sec. III to
constrain the form of the short-range interaction terms.

A. Lattice model and low-energy effective theory

The starting point of our analysis is a simple two-band
model on the 3D cubic lattice at half-filling [50],

H0 =
∫

d3k

(2π )3
c
†
kαhαβ(k)ckβ, (2)

where c
†
kα (ckα) creates (annihilates) a fermion with mo-

mentum k = (kx,ky,kz) and spin α = ↑,↓, the integration is
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over the first Brillouin zone (−π,π )3, and the 2×2 Bloch
Hamiltonian matrix is

h(k) = t(σ1 sin kx + σ2 sin ky) + tz(cos kz − cos Q)σ3

+ m(2 − cos kx − cos ky)σ3, (3)

where σ1,σ2,σ3 are the three Pauli matrices, and t,tz,m are real
parameters. Because time-reversal symmetry (TRS) flips the
spin of the fermion σ → −σ as well as its momentum k →
−k, H0 manifestly breaks TRS. This Hamiltonian describes
a Weyl semimetal with two Weyl points at P± = (0,0, ± Q),
where we assume that Q �= 0,π . At half-filling, the chemical
potential μ is zero, and the Fermi surface consists of the two
Weyl points alone.

Although the physics at energies far from the Weyl points
will in general depend on the details of the lattice model
one chooses, the physics at energies near the Weyl points
only depends on a few parameters. To capture these simple
low-energy properties, we derive an effective continuum field
theory valid for energies close to the Fermi energy, i.e., near
the Weyl points. To do this, we expand the fermion operator
near the Weyl points,

crα �
(∫

|k−P+|<�

d3k

(2π )3
+

∫
|k−P−|<�

d3k

(2π )3

)
eik·rckα

= eiP+·r
∫

|p|<�

d3p

(2π )3
eip·rcp+P+,α

+ eiP−·r
∫

|p|<�

d3p

(2π )3
eip·rcp+P−,α

= eiQzψRα(r) + e−iQzψLα(r), (4)

where crα = ∫
d3k

(2π)3 e
ik·rckα annihilates a fermion on lattice site

r, � is a large-momentum cutoff such that � 	 |Q|, and we
define the slow chiral or Weyl fermion fields,

ψRα(r) =
∫

|p|<�

d3p

(2π )3
eip·rcp+P+,α, (5)

ψLα(r) =
∫

|p|<�

d3p

(2π )3
eip·rcp+P−,α, (6)

and their Fourier components ψRα(p) = cp+P+,α and ψLα(p) =
cp+P−,α , with |p| < �. Substituting the expansion (4) in the
Hamiltonian (2) and expanding h(k) near the Weyl points as
well, we obtain

H0 �
∫

|p|<�

d3p

(2π )3
[ψ†

R(p)hR(p)ψR(p) + ψ
†
L(p)hL(p)ψL(p)],

(7)

where ψR = (ψR↑,ψR↓) and ψL = (ψL↑,ψL↓) are two-
component Weyl spinors, and the 2×2 Weyl Hamiltonians
hR,hL are

hR(p) = t(σ1px + σ2py) − tz sin Qσ3pz, (8)

hL(p) = t(σ1px + σ2py) + tz sin Qσ3pz, (9)

to leading order in p. The chirality c, given by c = sgn[v1 ·
(v2×v3)] for a Hamiltonian of the form h ∼ ∑

i vi · pσi [10],
is cR = sgn(−t2tz sin Q) = −cL and thus opposite for each

Weyl point. Defining v‖ = t and vz = −tz sin Q, Eq. (7) can
be written as

H0 =
∫

d3p

(2π )3

†(p)(v‖p‖ · �‖ + vzpz�3)
(p), (10)

where |p| < � is assumed. We define the four-component
Dirac spinor,


 =
(

ψR

ψL

)
, (11)

with p‖ = (px,py) and �‖ = (�1,�2). We define the five
Hermitian gamma matrices

�1 = τ0 ⊗ σ1, �2 = τ0 ⊗ σ2, �3 = τ3 ⊗ σ3,

�4 = τ1 ⊗ σ3, �5 = τ2 ⊗ σ3, (12)

where τ1,τ2,τ3 are Pauli matrices acting in the space of Weyl
points, and τ0 is the 2×2 identity matrix. These matrices obey
the SO(5) Clifford algebra {�a,�b} = 2δab, a,b = 1, . . . ,5.
For future use we define the ten additional Hermitian matrices

�ab = 1

2i
[�a,�b], a,b = 1, . . . ,5, a < b, (13)

that also square to the identity, and form a complete set
of generators of the so(5) Lie algebra [58]. The set of 15
traceless Hermitian matrices �a,�ab generates the su(4) Lie
algebra, and denoting the 4×4 identity matrix by �0, the set
of 16 Hermitian matrices �0,�a,�ab is a complete basis for all
4×4 Hermitian matrices. This latter fact will be useful in our
construction of short-range interaction terms in Sec. III.

The low-energy effective Hamiltonian (10) is the massless
Dirac Hamiltonian in 3 + 1 dimensions, and the energy
spectrum is gapless with linearly dispersing positive (+)
and negative (−) energy branches E±(p) = ±

√
v2

‖p2
‖ + v2

zp
2
z

meeting at p = 0. In the following sections, we determine
the symmetries of this effective Hamiltonian. We denote
symmetry operators acting in the many-body Hilbert space by
script letters S and finite-dimensional, unitary representation
matrices by regular letters S.

B. Discrete symmetries

1. Parity symmetry

There must exist an inversion or parity symmetry that
interchanges the two Weyl points. We therefore define a unitary
parity operator P that obeys P2 = 1 by its action on the Weyl
spinors (5) and (6),

PψR(r)P−1 = P̃ψL(−r), (14)

PψL(r)P−1 = P̃ψR(−r), (15)

where the 2×2 representation matrix P̃ must satisfy P̃ 2 = 1.
One can directly check that H0 commutes with P if hR(p) =
P̃ T hL(−p)P̃ and hL(p) = P̃ T hR(−p)P̃ , which is satisfied
by the choice P̃ = σ3. Parity therefore acts on the Dirac
spinor (11) as

P
(r)P−1 = P
(−r), (16)
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where the 4×4 representation matrix P , which also obeys
P 2 = 1, is

P = τ1 ⊗ σ3 = �4. (17)

2. Antiunitary symmetry

The original lattice model (2) breaks the physical TRS.
However, the effective Hamiltonian (10) commutes with the
antiunitary operator T that satisfies T 2 = −1 and is defined
by

T 
(r)T −1 = T K
(r), (18)

where K denotes complex conjugation of c numbers and the
4×4 representation matrix T , which obeys T 2 = −1, is

T = τ0 ⊗ iσ2 = i�2. (19)

This antiunitary symmetry does not interchange the two Weyl
points, but flips the spin of a fermion near a given Weyl point.

3. Particle-hole symmetry

It is known in the context of relativistic quantum field theory
that the free massless Dirac fermion in 3 + 1 dimensions
is invariant under charge conjugation. Likewise, assuming
that the Hamiltonian (10) is normal ordered H0 ≡ :H0: with
respect to the creation and annihilation operators 
†,
, it
commutes with a unitary particle-hole symmetry operator C
that obeys C2 = 1 and is defined by

C
(r)C−1 = C[
†(r)]T , (20)

where the 4×4 representation matrix C, which obeys C2 = 1,
is

C = τ0 ⊗ σ2 = �2. (21)

The particle-hole symmetry does not interchange the two Weyl
points.

C. Continuous symmetries

The Hamiltonian (10) is manifestly invariant under transla-
tion symmetry T (R)
(r)T (R)−1 = 
(r + R), where T (R) is
the unitary operator for translation in real space by the vector
R, and under the U (1) global symmetry G(α)
(r)G(α)−1 =
e−iα
(r), where G(α) is the unitary operator for position and
time-independent gauge transformations by a phase α. The
interaction terms we will consider are also manifestly invariant
under these symmetries, hence the latter will not constrain the
form of the former.

1. Rotation symmetry

Because of the anisotropy in the velocities v‖ �= vz, the
Hamiltonian (10) does not have a full SO(3) rotation symmetry
but rather an SO(2) symmetry under rotations about the axis
joining the two Weyl points (here the z axis). Because the spin
and orbital angular momenta are mixed by the Hamiltonian,
this SO(2) symmetry corresponds to the conservation of
total angular momentum in the z direction, Jz = Lz + 1

2σ3,
where Lz = −i ∂

∂ϕ
is the orbital angular momentum with ϕ

the azimuthal angle in the xy plane. We have [R(θ ),H0] = 0

where the unitary rotation operator R(θ ) is defined by

R(θ )
(r)R(θ )−1 = R(θ )
(Rθr), 0 � θ < 2π. (22)

The 4×4 representation matrix R(θ ) is

R(θ ) = e−iθ�12/2, (23)

and Rθ is an SO(2) rotation matrix that acts only on the x and
y coordinates,

Rθ =

⎛
⎜⎝

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞
⎟⎠ . (24)

The rotation symmetry does not interchange the two Weyl
points.

2. Chiral symmetry

The free massless Dirac fermion in 3 + 1 dimensions is
invariant under a U (1) chiral symmetry that describes the fact
that in the absence of electromagnetic fields, the currents of
right-handed and left-handed Weyl fermions are separately
conserved. Mathematically, we have [Rχ (φ),H0] = 0 where
the unitary chiral symmetry operator Rχ (φ) is defined by

Rχ (φ)
(r)Rχ (φ)−1 = Rχ (φ)
(r), φ � 0 < 2π, (25)

where the 4×4 representation matrix Rχ (φ) is

Rχ (φ) = e−iφ�45/2. (26)

D. Additional chiral symmetries

The noninteracting Hamiltonian H0 has additional chiral
symmetries besides the U (1) chiral “charge” symmetry of
Sec. II C 2. Indeed, because H0 only contains block-diagonal
� matrices, the right-handed and left-handed Weyl fermions
are completely decoupled, and we can, in principle, define
separate antiunitary symmetries TR,TL, particle-hole symme-
tries CR,CL, and rotation symmetries RR(θ ),RL(θ ) for each of
those. Alternatively, we can define chiral versions T̃ ,C̃,R̃(θ ) of
the symmetries T ,C,R(θ ) we have already discussed that are
additional symmetries of H0. A chiral antiunitary symmetry
T̃ with T̃ 2 = −1 can be defined as in Eq. (18) but where T̃ =
τ3 ⊗ iσ2 = −i�13. Likewise, a chiral particle-hole symmetry
C̃ with C̃2 = 1 can be defined as in Eq. (20) but with C̃ = τ3 ⊗
σ2 = −�13. Independent rotations of two Weyl points, which
form the group SO(2)R×SO(2)L, can be divided into normal
SO(2)R+L rotations generated by τ0 ⊗ σ3 = �12 (Sec. II C 1),
and chiral SO(2)R−L rotations generated by τ3 ⊗ σ3 = �3.
However, these additional chiral symmetries will not be
respected by most lattice-scale interactions, as we now discuss.

III. SHORT-RANGE INTERACTIONS AND SYMMETRIES

The simplest type of interactions one can consider adding
to the noninteracting Hamiltonian discussed in the previous
section are short-range interactions. In the lattice model (2),
the first choice that comes to mind is the on-site Hubbard
interaction,

V = U
∑

r

nr↑nr↓ = U

2

∑
r

c†rαcrαc
†
rβcrβ, (27)
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where we have ignored a one-body term that can be absorbed in
a redefinition of the chemical potential. In the low-energy limit,
we can substitute the expression (4) for the fermion operator
into Eq. (27). Because ψR and ψL are slow fields with Fourier
components much less than |Q|, terms containing e±2iQz will
average out to zero in the integral over r. We obtain

V � U

2

∫
d3r

(
ρ2

R + ρ2
L + 2ρRρL + 2ψ

†
RαψLαψ

†
LβψRβ

)
,

(28)

where we define the chiral density operators ρR = ψ
†
RαψRα

and ρL = ψ
†
LαψLα . This effective Hubbard interaction respects

all the symmetries of the noninteracting Hamiltonian, except
the additional chiral symmetries enumerated in Sec. II D. We
expect this to be a generic feature of interactions: Because
lattice-scale interactions are capable of scattering particles
between Weyl points, we do not expect to be able to define
separate right and left symmetries once interactions are
incorporated. We thus ignore the additional chiral symmetries,
operating on the assumption that these are broken by interac-
tions. We discuss in Sec. VII the toy model that results if the
additional chiral symmetries are respected by the interactions.

While the Hubbard interaction is a natural first guess,
we want to study the most general possible interaction
Hamiltonian, subject to some symmetry constraints that we
will shortly discuss. To this end, we note that each term in
Eq. (28) is of the form

∫
d3r[
†(r)M1
(r)][
†(r)M2
(r)]

where M1 and M2 are constant 4×4 Hermitian matrices. We
are interested in the most general short-range interaction term,
which will contain all possible such terms (the requirement that
M1 and M2 be Hermitian comes solely from the requirement
that V be a Hermitian operator). As mentioned before, any
Hermitian 4×4 matrix can be expanded in the basis of the
16 Hermitian matrices �A ∈ {�0,�a,�ab}. Therefore the most
general short-range interaction term is

V =
∫

d3r gAB(
†�A
)(
†�B
), (29)

where gAB is a real symmetric 16×16 matrix that has
(16×17)/2 = 136 independent entries. However, the number
of independent interactions can be drastically reduced by de-
manding that V be invariant under the symmetries of the non-
interacting Hamiltonian H0, discussed in Secs. II B and II C.
To implement this program we follow an approach used
previously to study interacting electrons in graphene [54,59].

A. Parity symmetry

Under parity P , a typical interaction term∫
d3r(
†�A
)(
†�B
) transforms as

P
∫

d3r(
†�A
)(
†�B
)P−1

=
∫

d3r[
†(−r)P −1�AP
(−r)]

× [
†(−r)P −1�BP
(−r)]

=
∫

d3r[
†(r)P −1�AP
(r)][
†(r)P −1�BP
(r)],

(30)

hence invariance under parity requires that either both �A and
�B are even under parity ([P,�A] = [P,�B] = 0), or both �A

and �B are odd under parity ({P,�A} = {P,�B} = 0). Using
the � matrix identities listed in Appendix A, we find that
the eight matrices Ai ∈ {�0,�4,�12,�13,�15,�23,�25,�35},
i = 1, . . . ,8 are even under parity, while the remaining
eight matrices Bj ∈ {�1,�2,�3,�5,�14,�24,�34,�45}, j =
1, . . . ,8 are odd. The interaction Hamiltonian therefore
becomes

V =
∫

d3r[aij (
†Ai
)(
†Aj
) + bij (
†Bi
)(
†Bj
)],

(31)

where aij and bij are real symmetric 8×8 matrices with
(8×9)/2 = 36 independent couplings each, for a total of
2×36 = 72 independent couplings.

B. Rotation symmetry

Under rotation R(θ ), an interaction term transforms as

R(θ )
∫

d3r(
†�A
)(
†�B
)R(θ )−1

=
∫

d3r[
†(r′)R(θ )−1�AR(θ )
(r′)]

× [
†(r′)R(θ )−1�BR(θ )
(r′)]

=
∫

d3r ′[
†(r′)R(θ )−1�AR(θ )
(r′)]

× [
†(r′)R(θ )−1�BR(θ )
(r′)], (32)

where r′ = Rθr. Invariance under rotation requires that either
both �A and �B are scalars under rotations: [�12,�A] =
[�12,�B] = 0 [see Eq. (23)], or the interaction term has to be of
the “dot-product” form (
†ηi
)(
†η′

i
) or “cross-product”
form εij (
†ηi
)(
†η′

j
) where η = (η1,η2) is a pair of �

matrices that transform as a vector under rotations: [�12,ηi] =
±2iεij ηj and [�12,η

′
i] = ±2iεij η

′
j . We find that the eight �

matrices �0,�3,�4,�5,�12,�34,�35,�45 are scalars, while the
remaining eight form four vectors:

α = (�1,�2), β = (�13,�23),

γ = (�14,�24), δ = (�15,�25), (33)

such that [�12,αi] = 2iεijαj , and similarly for β,γ ,δ.
However, we have to respect the structure (31) already

imposed by parity symmetry. The four scalars �0,�4,�12,�35

are even under parity, while the other four �3,�5,�34,�45

are odd. For the vectors, we find that β and δ are even
under parity, while α and γ are odd. We denote the even-
parity scalars by �

(e)
i = {�0,�4,�12,�35}, i = 1, . . . ,4, the

odd-parity scalars by �
(o)
i = {�3,�5,�34,�45}, i = 1, . . . ,4,

the even-parity vectors by �
(e)
i = {β,δ}, i = 1,2, and the

odd-parity vectors by �
(o)
i = {α,γ }, i = 1,2. (In the pre-

vious sentence, {,} does not denote the anticommutator
but simply a set.) With this notation, the interaction term
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becomes

V =
∫

d3r

× [
g

(e)
ij

(

†�(e)

i 

)(


†�(e)
j 


) + g
(o)
ij

(

†�(o)

i 

)(


†�(o)
j 


)
+ gββ(
†β
)2 + gδδ(
†δ
)2 + gβ·δ(
†β
) · (
†δ
)

+ gαα(
†α
)2 + gγγ (
†γ
)2 + gα·γ (
†α
) · (
†γ
)

+ gβ×δ(
†β
) × (
†δ
) + gα×γ (
†α
) × (
†γ
)
]
,

(34)

where g
(e)
ij and g

(o)
ij are real symmetric 4×4 matrices with

(4×5)/2 = 10 independent couplings each, so that we have a
total of 2×10 + 8 = 28 independent couplings.

C. Antiunitary symmetry

Under the antiunitary symmetry T , an interaction term
transforms as

T
∫

d3r(
†�A
)(
†�B
)T −1

=
∫

d3r(
†T −1�∗
AT 
)(
†T −1�∗

BT 
), (35)

hence invariance under the antiunitary symmetry requires
that either both �A and �B are even (T �AT −1 = �∗

A and
T �BT −1 = �∗

B), or both �A and �B are odd (T �AT −1 = −�∗
A

and T �BT −1 = −�∗
B) under this symmetry. We find that the

six matrices �0,�5,�15,�25,�35,�45 are even, while the re-
maining ten matrices �1,�2,�3,�4,�12,�13,�14,�23,�24,�34

are odd. We subdivide the matrices �
(e)
i ,�

(o)
i ,�

(e)
i ,�

(o)
i of

Sec. III B into matrices that are even (+) or odd (−) under
T :

�
(e,+)
i = {�0,�35}, �

(e,−)
i = {�4,�12}, i = 1,2,

�
(o,+)
i = {�5,�45}, �

(o,−)
i = {�3,�34}, i = 1,2,

�(e,+) = δ = (�15,�25), �(e,−) = β = (�13,�23),

�
(o,−)
i = {α,γ } = {(�1,�2),(�14,�24)}, i = 1,2, (36)

where {,} does not denote the anticommutator but simply a
set. Respecting the structure of Eq. (34), the interaction term
becomes

V =
∫

d3r
[
g

(e,+)
ij

(

†�(e,+)

i 

)(


†�(e,+)
j 


)
+ g

(e,−)
ij

(

†�(e,−)

i 

)(


†�(e,−)
j 


)
+ g

(o,+)
ij

(

†�(o,+)

i 

)(


†�(o,+)
j 


)
+ g

(o,−)
ij

(

†�(o,−)

i 

)(


†�(o,−)
j 


)
+ gδ

(

†�(e,+)


)2 + gβ

(

†�(e,−)


)2

+ gαα(
†α
)2 + gγγ (
†γ
)2

+ gα·γ (
†α
) · (
†γ
) + gα×γ (
†α
) × (
†γ
)
]
,

(37)

where g
(e,±)
ij and g

(o,±)
ij are real symmetric 2×2 matrices with

(2×3)/2 = 3 independent couplings each, hence we have a
total of 4×3 + 6 = 18 independent couplings.

D. Particle-hole symmetry

Under particle-hole symmetryC, assuming that the bilinears
appearing in the interaction term are normal ordered, this
interaction term transforms as

C
∫

d3r :
†�A
: :
†�B
: C−1

=
∫

d3r :
†C−1�T
AC
: :
†C−1�T

BC
:, (38)

hence invariance under particle-hole symmetry requires that
either both �A and �B are even (C�AC−1 = �T

A and
C�BC−1 = �T

B ), or both �A and �B are odd (C�AC−1 = −�T
A

and C�BC−1 = −�T
B ) under this symmetry. We find that all

the � matrices that are even under T are also even under C, and
all those that are odd under T are also odd under C. Therefore
particle-hole symmetry does not further reduce the number of
independent couplings.

E. Chiral symmetry

Under chiral symmetry Rχ (φ), an interaction term trans-
forms as

Rχ (φ)
∫

d3r(
†�A
)(
†�B
)Rχ (φ)−1

=
∫

d3r[
†Rχ (φ)−1�ARχ (φ)
]

× [
†Rχ (φ)−1�BRχ (φ)
]. (39)

The analysis is similar to rotation symmetry in Sec. III B.
The 16 � matrices divide into chiral scalars that com-
mute with �45 [see Eq. (26)], and chiral vectors ρ =
(ρ1,ρ2) that satisfy [�45,ρi] = ±2iεij ρj . We find that the
eight � matrices �0,�1,�2,�3,�12,�13,�23,�45 are chiral
scalars, and the remaining eight form four chiral vectors:
(�4,�5),(�14,�15),(�24,�25),(�34,�35). Respecting the struc-
ture of Eq. (37), the interaction term becomes

V =
∫

d3r

9∑
i=1

λiXi, (40)

where there are nine independent couplings λ1, . . . ,λ9, and the
nine quartic terms X1, . . . ,X9 are

X1 = (
†�0
)2,

X2 = (
†�34
)2 + (
†�35
)2,

X3 = (
†�4
)2 + (
†�5
)2,

X4 = (
†�12
)2,

X5 = (
†�45
)2,

X6 = (
†�3
)2,

X7 = (
†�14
)2 + (
†�24
)2 + (
†�15
)2 + (
†�25
)2,

X8 = (
†�13
)2 + (
†�23
)2,

X9 = (
†�1
)2 + (
†�2
)2. (41)
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F. Fierz identities

Although symmetries have reduced the number of inde-
pendent couplings to nine, not all nine couplings are actually
independent because the quartic terms (41) are not all linearly
independent. Linear relations between products of fermion
bilinears are known as Fierz identities. The Fierz identity
relevant for our purposes is [54]

(
†M
)(
†N
) = − 1
16 (Tr M�AN�B)(
†�B
)(
†�A
),

(42)

where M,N are arbitrary 4×4 Hermitian matrices, and the
sum over A and B is over all 16 � matrices. This identity is
proved in Appendix A of Ref. [54].

Using the Fierz identity, we can express the linear depen-
dence of the nine quartic terms in Eq. (41) by the equation
FX = 0 where we define the column vector X = (X1, . . . ,X9)
and the 9×9 Fierz matrix F by

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1 1 1 1 1

1 2 0 1 −1 −1 0 −1 1

1 0 2 1 −1 −1 0 1 −1

1 1 1 5 1 1 −1 −1 −1

1 −1 −1 1 5 1 −1 1 1

1 −1 −1 1 1 5 1 −1 −1

1 0 0 −1 −1 1 1 0 0

1 −1 1 −1 1 −1 0 2 0

1 1 −1 −1 1 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)

By performing Gaussian elimination on F , we find that there
are only four linearly independent quartic terms amongst the
nine. One possible choice of linearly independent quartic terms
is X1,X5,X6,X9, and the interaction term reduces to

V =
∫

d3r (λ1X1 + λ5X5 + λ6X6 + λ9X9) , (44)

where the new λi are linear combinations of the old. For
example, the effective Hubbard interaction (28) falls into this
category, with (λ1,λ5,λ6,λ9) = (U

4 ,U
4 ,0,−U

4 ).

IV. RENORMALIZATION GROUP ANALYSIS

Our goal is to explore the possible ground states of the
Hamiltonian H = H0 + V given by

H =
∫

d3r[
†(−iv‖�‖ · ∂‖ − ivz�3∂z)


+ λ1X1 + λ5X5 + λ6X6 + λ9X9], (45)

using RG methods. Models of massless Dirac fermions in
3 + 1 dimensions interacting via short-range four-fermion
interactions were first studied in the context of elementary
particle physics by Nambu and Jona-Lasinio [60]. In the
absence of interactions, H0 corresponds to the Gaussian fixed
point with dynamic critical exponent z = 1. The short-range
interaction term V is perturbatively irrelevant at the Gaussian
fixed point, meaning that this term can be neglected in

a first approximation for sufficiently small couplings and
at sufficiently low energies. However, for sufficiently large
couplings the system can spontaneously break a symmetry
in the particle-hole channel 〈
†M
〉 �= 0 or in the particle-
particle channel 〈
T N
〉 �= 0, where the Hermitian matrices
M,N describe the type of order that develops.

In this section we perform a one-loop RG calculation that
allows us to explore the possible symmetry-breaking orders at
strong coupling. We first derive RG equations that describe the
flow of the coupling constants as the energy scale is lowered
(Sec. IV B). We find a total of 15 fixed points, including
one stable (Gaussian) fixed point, four critical points, six
bicritical points, and four tricritical points (Sec. IV C). To
explore the possible broken-symmetry states, we focus on
the strong coupling regime and determine which asymptotic
flows to strong coupling are stable (Sec. IV D). In Sec. V, we
find the susceptibility that grows the fastest along a stable
asymptotic flow to strong coupling, which determines the
leading instability towards symmetry breaking.

A. Lagrangian

We perform a one-loop Wilsonian RG calculation [61] that
consists in integrating out the high-energy fermionic modes in
a thin frequency/momentum shell between �/b and �, where
b = 1 + d� and d� > 0 is an infinitesimal RG parameter. At
the one-loop level, we find that there is no wave function or
velocity renormalization, and for simplicity we set v‖ = vz = 1
in the Hamiltonian (45). The RG calculation is simplest in
the Lagrangian formalism, and the Lagrangian in Euclidean
space-time is

L = i
̄ /∂
 + g1(
̄�4
)2 + g2(
̄�5
)2 + g3(
̄�34
)2

+ g4[(
̄�14
)2 + (
̄�24
)2], (46)

where /∂ = γμ∂μ, the Dirac conjugate is 
̄ = −i
†γ0, and we
define a modified set of � matrices γμ, μ = 0,1,2,3, by γ0 =
�4, γ1 = −�14, γ2 = −�24, γ3 = −�34, and γ5 = γ0γ1γ2γ3 =
�45. This facilitates the calculation of traces of products of �

matrices. The matrices γμ satisfy the SO(4) Clifford algebra,
{γμ,γν} = 2δμν , μ,ν = 0,1,2,3, and {γ5,γμ} = 0, γ 2

5 = 1. In
terms of 
̄, the quartic terms (41) are given by

X1 = −(
̄�4
)2,

X2 = (
̄�3
)2 − (
̄�12
)2,

X3 = −[(
̄�0
)2 − (
̄�45
)2],

X4 = −(
̄�35
)2,

X5 = (
̄�5
)2,

X6 = (
̄�34
)2,

X7 = (
̄�1
)2 + (
̄�2
)2 − (
̄�13
)2 − (
̄�23
)2,

X8 = −[(
̄�15
)2 + (
̄�25
)2],

X9 = (
̄�14
)2 + (
̄�24
)2. (47)

We have traded the couplings λ1,λ5,λ6,λ9 for g1,g2,g3,g4 and
calculate the one-loop RG beta functions for the latter.
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There is a subtlety in the RG procedure [54]. Integrating
out the high-energy fermionic modes will in general generate
all the terms allowed by symmetry, i.e., all the quartic terms
in Eq. (47). Naively, it would be impossible to obtain a closed
set of equations for the couplings g1,g2,g3,g4. To avoid this,
we use the Fierz identity to express the terms generated
by integrating out the high-energy modes in terms of the
chosen linearly independent couplings X1,X5,X6,X9. Using
Gaussian elimination on the Fierz matrix (43), the equations
to be used are

X2 = −X1 + X6 − X9,

X3 = X1 + 2X5 + X6 + X9,

X4 = −X1 − X5 − X6, (48)

X7 = −2X1 − 2X6,

X8 = −2X1 − 2X5 − X9.

BCS ZS ZS’ 

FIG. 1. One-loop renormalization of the four-fermion vertex.

B. One-loop RG analysis

Besides the tree-level term, three types of diagrams con-
tribute to the one-loop RG β function (Fig. 1). If we write
the interaction Lagrangian in Eq. (46) in the general form
Lint = ∑

A gA(
̄�A
)2, the contribution δL< of the high-
energy fermionic modes to the effective Lagrangian for the
low-energy fermionic modes 
<,
̄< consists of four terms,

δL< = δL(1)
< + δL(2)

< + δL(3)
< + δL(4)

< , (49)

where

δL(1)
< = 2

∑
AB

gAgB

∫ �

�/b

d4p

(2π )4

Tr /p�A/p�B

(p2)2
(
̄<�A
<)(
̄<�B
<), (50)

δL(2)
< = −2

∑
A �=B

gAgB

∫ �

�/b

d4p

(2π )4

1

(p2)2
(
̄<�A/p�B
<)(
̄<�B /p�A
<), (51)

δL(3)
< = −4

∑
AB

gAgB

∫ �

�/b

d4p

(2π )4

1

(p2)2
(
̄<�A
<)(
̄<�B /p�A/p�B
<), (52)

δL(4)
< = 2

∑
A �=B

gAgB

∫ �

�/b

d4p

(2π )4

1

(p2)2
(
̄<�A/p�B
<)(
̄<�A/p�B
<), (53)

where we define the frequency-momentum four-vector p = (ω,px,py,pz), and /p = γμpμ. Products of fermion bilinears in
Eqs. (51)–(53) are simplified by the use of the Fierz identity (42), for example,

(
̄<�A/p�B
<)(
̄<�B /p�A
<) = − 1
16 (Tr �A/p�B�C�B /p�A�D)(
̄<�C
<)(
̄<�D
<). (54)

Performing the traces of products of � matrices and the momentum integrals, we obtain (dropping the superscripts < on 
<,
̄<

for simplicity)

δL(1)
< = S4�

2d�
{ − 4g2

1(
̄�4
)2 + 4g2
2(
̄�5
)2 − 4g2

3(
̄�34
)2 − 4g2
4[(
̄�14
)2 + (
̄�24
)2]

}
,

δL(2)
< = S4�

2d� 1
2

{
2
(
g1g2 + g1g3 + g2g3 + 2g1g4 + 2g2g4 + 2g3g4 + g2

4

)
[(
̄�0
)2 − (
̄�45
)2]

+ (
g1g2 + g1g3 − g2g3 + 2g1g4 − 2g2g4 − 2g3g4 − g2

4

)
(
̄�4
)2

+ (−g1g2 − g1g3 + g2g3 − 2g1g4 + 2g2g4 + 2g3g4 + g2
4

)
(
̄�5
)2

+ (
g1g2 − g1g3 + g2g3 + g2

4

)
[(
̄�14
)2 + (
̄�24
)2]

+ (−g1g2 + g1g3 − g2g3 − g2
4

)
[(
̄�15
)2 + (
̄�25
)2]

+ (
g1g2 + g1g3 − g2g3 − 2g1g4 + 2g2g4 + 2g3g4 − g2

4

)
(
̄�34
)2

+ (−g1g2 − g1g3 + g2g3 + 2g1g4 − 2g2g4 − 2g3g4 + g2
4

)
(
̄�35
)2

}
,

δL(3)
< = S4�

2d�2{g1(g1 − g2 − g3 − 2g4)(
̄�4
)2 + g2(−g2 + g1 − g3 − 2g4)(
̄�5
)2

+ g3(g3 − g1 + g2 − 2g4)(
̄�34
)2 + g4(−g1 + g2 − g3)[(
̄�14
)2 + (
̄�24
)2]},
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δL(4)
< = S4�

2d�
(− 1

2

){
2g1g2[(
̄�0
)2 − (
̄�45
)2]

+ 2(−g1g4 − g2g4 + g3g4)[(
̄�1
)2 + (
̄�2
)2 − (
̄�13
)2 − (
̄�23
)2]

+ 2
(−g1g3 − g2g3 + g2

4

)
[(
̄�3
)2 − (
̄�12
)2]

+ (
g1g2 − g1g3 + g2g3 − 2g1g4 + 2g2g4 − 2g3g4 − g2

4

)
(
̄�4
)2

+ (−g1g2 + g1g3 − g2g3 + 2g1g4 − 2g2g4 + 2g3g4 + g2
4

)
(
̄�5
)2

+ (
g1g2 − g1g3 + g2g3 − 2g1g4 + 2g2g4 − 2g3g4 − g2

4

)
[(
̄�14
)2 + (
̄�24
)2]

+ (−g1g2 + g1g3 − g2g3 + 2g1g4 − 2g2g4 + 2g3g4 + g2
4

)
[(
̄�15
)2 + (
̄�25
)2]

+ (
g1g2 − g1g3 + g2g3 − 2g1g4 + 2g2g4 − 2g3g4 − g2

4

)
(
̄�34
)2

+ (−g1g2 + g1g3 − g2g3 + 2g1g4 − 2g2g4 + 2g3g4 + g2
4

)
(
̄�35
)2

}
, (55)

where S4 = 1/8π2 is the surface area of the unit three-
sphere divided by (2π )4. Using Eq. (48) to eliminate
X2,X3,X4,X7,X8 in favor of the linearly independent quartic
terms X1,X5,X6,X9, we obtain

δL< = S4�
2d�{f1({g})(
̄�4
)2 + f2({g})(
̄�5
)2

+ f3({g})(
̄�34
)2

+ f4({g})[(
̄�14
)2 + (
̄�24
)2]}, (56)

where f1,f2,f3,f4 are quadratic polynomials in the coupling
constants given by

f1({g}) = −2g2
1 − 2g1g2 + 2g1g3 + 4g1g4 + 4g3g4 + 2g2

4,

f2({g}) = 2g1g2 + 2g2
2 − 4g1g3 − 2g2g3 − 8g1g4 − 4g2g4

− 8g3g4 − 4g2
4,

f3({g}) = −2g1g3 + 2g2g3 − 2g2
3 − 4g1g4 − 4g2g4

− 4g3g4 − 2g2
4,

f4({g}) = −2g1g3 − 2g2g3 − 4g1g4 − 4g3g4 − 4g2
4 . (57)

It is convenient to define dimensionless couplings S4�
2gi →

gi . Rescaling the high-energy cutoff � and the fields, we obtain
the four one-loop RG equations

dgi

d�
= −2gi + fi({g}), i = 1,2,3,4, (58)

which are the main result of this section. In the following
section we analyze the fixed-point structure of these equations.

C. Fixed points

The tree-level term −2gi in the RG equations (58) implies
that the Gaussian fixed point (g1,g2,g3,g4) = (0,0,0,0) is
stable. The other fixed points are given by nontrivial solutions
of the system of four quadratic equations in four variables

2gi + fi({g}) = 0, i = 1,2,3,4, (59)

which can be solved analytically. We find a total of 15 fixed
points (Table I). The Gaussian fixed point is the only stable
one, besides which we find four critical points, six bicritical
points, and four tricritical points.

D. RG flows at strong coupling

We have shown that the noninteracting fixed point is the
only finite-coupling, stable fixed point of the one-loop RG
equations. Thus under RG with generic initial conditions,
the Weyl semimetal must either flow to the Gaussian fixed
point, or to strong coupling. We now analyze the flows to
strong coupling that represent the potential instabilities of
the Weyl semimetal. Different instabilities are represented by
different “fixed trajectories,” i.e., different directions in which
we can flow to strong coupling in the four-dimensional space
of coupling constants g1,g2,g3,g4. We will show that there is
a single stable fixed trajectory towards strong coupling. This
implies that any integration of the one-loop RG equations that
flows to strong coupling must do so in the direction of the
unique stable fixed trajectory. Thus, the one-loop RG analysis
predicts a unique instability.

When analyzing the asymptotic flow to strong coupling, we
can neglect the tree-level terms in the RG β functions. Thus

TABLE I. RG fixed points (FP) at one loop, with eigenvalues yi

of the linearized RG equations and type of fixed point (S: stable, C:
critical, B: bicritical, T: tricritical).

FP g∗
1 g∗

2 g∗
3 g∗

4 y1 y2 y3 y4 Type

1 0 0 0 0 −2 −2 −2 −2 S

2 −1 0 0 0 −4 4 −2 2 B

3 0 1 0 0 −4 −4 2 2 B

4 0 0 −1 0 −4 4 −2 2 B

5 −1 1 1 0 −4 −4 2 2 B

6 −3 4 1 1 −10 10 10 2 T

7 1
3

2
3 − 2

3 − 2
3 − 20

3
20
3

10
3 2 T

8 − 4
3

2
3 1 − 2

3 − 20
3

20
3

10
3 2 T

9 1
8 − 3

8 − 1
4 − 1

4 − 5
2 − 5

2 − 5
2 2 C

10 − 1
7

3
7 − 3

7
2
7 − 20

7 − 20
7 2 − 10

7 C

11 − 6
7

3
7

2
7

2
7 − 20

7 − 20
7 2 − 10

7 C

12
√

5−2
4

1
4

√
5−1
4 −

√
5+1
4 −5 5 −√

5 2 B

13 − 3−√
5

6
2
3

√
5+1
6 −

√
5−1
6 − 10

3 − 10
3 2 − 2

√
5

3 C

14 −
√

5+2
4

1
4 −

√
5+1
4

√
5−1
4 −5 5

√
5 2 T

15 − 3+√
5

6
2
3 −

√
5−1
6

√
5+1
6 − 10

3 − 10
3 2 2

√
5

3 B
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we obtain asymptotic one-loop RG equations of the form

dgi

d�
= fi({g}), i = 1,2,3,4, (60)

where the functions fi are given in Eq. (57). These equations
have the scaling solution

gi(�) = Gi

�c − �
, (61)

where G1,G2,G3,G4 are constants. Substituting the scaling
solution into the above differential equations yields a set of

algebraic equations

Gi = fi({G}), i = 1,2,3,4. (62)

These algebraic equations specify the asymptotic ratios of
the various couplings as the system flows to strong coupling.
There are 14 nontrivial solutions to the above set of equations
(Table II). These nontrivial solutions are the directions in
parameter space along which the system can flow to strong
coupling. However, not all the solutions are stable. To investi-
gate the (linear) stability of a solution, one must consider small
perturbations δi from the fixed trajectory. Linearizing the flow
equations in small perturbations δi about the fixed trajectory,
we obtain the linearized flow equations dδi

d�
= Mijδj , where

M =

⎛
⎜⎜⎜⎝

−2G1 − G2 + G3 + 2G4 −G1 G1 + 2G4 2G1 + 2G3 + 2G4

G2 − 2G3 − 4G4 G1 + 2G2 − G3 − 2G4 −2G1 − G2 − 4G4 −4G1 − 2G2 − 4G3 − 4G4

−G3 − 2G4 G3 − 2G4 −G1 + G2 − 2G3 − 2G4 −2G1 − 2G2 − 2G3 − 2G4

−G3 − 2G4 −G3 −G1 − G2 − 2G4 −2G1 − 2G2 − 4G4

⎞
⎟⎟⎟⎠ .

The stability matrix M necessarily has one positive eigenvalue,
corresponding to flow along the fixed trajectory. One should
thus project onto the subspace orthogonal to the fixed trajectory
by acting with δij − Pij , where Pij = 1

G2
1+G2

2+G2
3+G2

4
GiGj .

To determine the stability of a particular fixed trajectory, one
should look at eigenvalues of the projected stability matrix
M(I − P ) where I is the 4×4 identity matrix. If this matrix
has any positive eigenvalues, the fixed trajectory is unstable.

Performing a stability analysis about the 14 possible
fixed trajectories, we find that only one of them is stable,
i.e., has a projected stability matrix with strictly negative
eigenvalues. This is the trajectory with (G1,G2,G3,G4) =
( 1

16 ,− 3
16 ,− 1

8 ,− 1
8 ). Since there is a unique stable fixed tra-

jectory, there is a unique flow to strong coupling. Thus, within

TABLE II. Fixed-point trajectories for flows to strong coupling,
and their stability (S: stable, U: unstable). There is a unique stable
fixed trajectory, and thus a unique stable flow to strong coupling.

G1 G2 G3 G4 Stability

1
6

1
3 − 1

3 − 1
3 U

− 2
3

1
3

1
2 − 1

3 U
1
16 − 3

16 − 1
8 − 1

8 S

0 0 − 1
2 0 U

− 1
2 0 0 0 U

0 1
2 0 0 U

− 1
2

1
2

1
2 0 U

− 1
14

3
14 − 3

14
1
7 U

− 3
7

3
14

1
7

1
7 U

− 3
2 2 1

2
1
2 U

7−3
√

5
8(

√
5−1)

1
8

√
5−1
8 −

√
5+1
8 U

− 7+3
√

5
8(

√
5+1)

1
8 −

√
5+1
8

√
5−1
8 U

−
√

5−1
6(

√
5+1)

1
3

√
5+1
12 −

√
5−1
12 U

−
√

5+1
6(

√
5−1)

1
3 −

√
5−1
12

√
5+1
12 U

the one-loop RG, either the system flows to the Gaussian
fixed point, or it flows to strong coupling, with the various
couplings in the ratio (G1 : G2 : G3 : G4) = (1,−3,−2,−2)
and with signs G1 > 0, G2 < 0, G3 = G4 < 0. This is the
only possible flow to strong coupling that can be obtained
starting from generic initial conditions and using the one-loop
RG equations. For future reference, the Hamiltonian for the
fixed trajectory (which has g3 = g4) takes the form

H = H0 +
∫

d3r

[
gA(
†
)2 + gB(
†�45
)2

+ gC

3∑
i=1

(
†�i
)2

]
, (63)

where gA = −g1, gB = g2, and gC = g3, and the fixed
trajectory has (gA,gB,gC) = − 1

16 (1,3,2). Unlike the general
Hamiltonian (45), the Hamiltonian for the fixed trajectory (63)
has an emergent SO(3) rotation symmetry (see Appendix B).
The emergence of larger symmetries near certain fixed points
was discussed previously in the analogous context of fermions
with short-range interactions in graphene [62].

V. ORDER PARAMETERS AND INSTABILITIES

Having identified the direction in which the system flows
to strong coupling, we focus on what kind of ordering can
be expected at strong coupling. To this end, we consider the
susceptibility towards developing an expectation value for all
possible momentum-independent fermion bilinears, in both
the particle-hole and particle-particle channels. The largest
susceptibility indicates the leading instability along the fixed
trajectory.

A. Particle-hole channels

We illustrate the procedure by adding to the Lagrangian a
test vertex in the particle-hole channel of the form �

ph
μ 
†�μ
,
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Γμ Γν 

gν
Γν Γμ 

Γν 

Γν 

gν Γμ 

Γν 

Γν 

gν 

(a) (b) (c) 

FIG. 2. (Color online) A test vertex in the particle-hole channel
with structure �μ renormalizes through the diagrams (a) and (b). A
test vertex in the particle-particle channel renormalizes through the
diagram (c). We are using a diagrammatic code wherein dotted blue
lines indicate test vertices, dashed red lines indicate interactions, and
solid black lines indicate fermion Green’s functions.

where �μ is one of the 15 � matrices �a,�ab, a,b = 1, . . . ,5,
a < b (�0 simply corresponds to a global shift of the chemical
potential). This vertex renormalizes through the diagrams
shown in Figs. 2(a) and 2(b), and also has a tree-level scaling
dimension of +1. Thus, the RG flow equation for the vertex
�

ph
μ takes the form

d ln �
ph
μ

d�
= 1 +

∑
i

A
ph
μigi, (64)

where the coefficients Aμi remain to be determined. Substi-
tuting the strong-coupling scaling form (61) into the above
equation and solving yields

χph
μ (�) = �

ph
μ (�)

�
ph
μ (0)

= (�c − �)−f
ph
μ , f ph

μ =
∑

i

A
ph
μiGi, (65)

where we have defined the susceptibility χ
ph
μ . Thus, if

f
ph
μ > 0 there is a divergence in the susceptibility indicating

an instability to ordering in this channel, with the largest
divergence occurring in the channel with largest exponent f ph

μ .
We now derive the coefficients A

ph
μi and hence the f

ph
μ .

For ordering in the channel 
†�μ
, the diagram in Fig. 2(a)
gives a contribution

δ(a) ln �ph
μ = gA Tr �μG(ε,k)G(ε,k)

+ gB Tr �μG(ε,k)�45G(ε,k)

+ gC Tr �μG(ε,k)(�1 + �2 + �3)G(ε,k), (66)

where the fermion Green’s function is

G(ε,k) =
(
−iε +

3∑
i=1

viki�i

)−1

= iε + ∑3
i=1 viki�i

ε2 + v2
‖k2

‖ + v2
z k

2
z

, (67)

and the traces are taken over spin and valley indices, and also
indicate integration over ε and k. The minus sign coming
from the fermion loop has been canceled by the minus sign
associated with going up one order in perturbation theory.
The integral over ε is over the entire real line −∞ < ε < ∞,
whereas the integration over k is over an ellipsoidal shell of
states with energy e�−d� <

√∑3
i=1 v2

i k
2
i < e�. It is convenient

at this point to rescale viki → ki . This rescaling makes
the Green’s function isotropic, and allows us to take the k

integration over a spherical shell e�−d� < k < e� which is
easier to work with than an ellipsoidal shell.

The first trace vanishes for any �μ. The second and third
traces vanish unless �μ = �1,�2,�3,�45. For �μ = �1,2,3,
only the third trace is nonzero. This gives

δ(a) ln �
ph
1,2,3

= gC Tr
�1,2,3

(
iε + ∑

i ki�i

)( ∑
i �i

)(
iε + ∑

i ki�i

)
(ε2 + k2)2

= gC Tr
−ε2 + ∑

i,j kikj�1,2,3�i(�1 + �2 + �3)�j

(ε2 + k2)2

= gC Tr
−ε2 + ∑

i k
2
i �1,2,3�i(�1 + �2 + �3)�i

(ε2 + k2)2

= −gC

∫
dε

2π

∫ ′ d3k

(2π )3

ε2 + 1
3k2

(ε2 + k2)2
, (68)

where we have made use of the fact that any term odd in
ε vanishes upon integration over ε, and any term odd in
ki vanishes upon integration over ki . We have also used
the relations

∫ ′
d3k(k2

1 − k2
2 − k2

3)f (k2) = − 1
3

∫ ′
d3kk2f (k2)

when the primed integral sign denotes integration over the
spherical momentum shell, �2

i = 1, and �1�2 = −�2�1. We
obtain

δ(a) ln �
ph
1,2,3 = − 4

6π2
gCe2�d�. (69)

For ordering in the channel 
†�45
, the diagram in
Fig. 2(a) gives a correction

δ(a) ln �
ph
45 = gC Tr

−ε2 + ∑3
i=1 k2

i �45�i�45�i

(ε2 + k2)2

= gC

∫
dε

2π

∫ ′ d3k

(2π )3

−ε2 + k2

(ε2 + k2)2

= 0, (70)

where we have made use of the identity �1,2,3�45 = �45�1,2,3.
For all other ordering channels the trace over the bubble in
Fig. 2(a) is trivially zero. Thus, the diagram in Fig. 2(a)
contributes only to the susceptibility in the particle-hole
channel with structure �1,2,3.

The diagram in Fig. 2(b) contributes to ordering in a
particle-hole channel with structure �μ as

δ(b) ln �ph
μ = −

∫
dε

2π

∫ ′ d3k

(2π )3

[
gAG(ε,k)�μG(ε,k)

+ gB�45G(ε,k)�μG(ε,k)�45

+ gC

3∑
i=1

�iG(ε,k)�μG(ε,k)�i

]
, (71)

where there is a relative minus sign compared to the diagram
in Fig. 2(a) because of the lack of a fermion loop, and there is
no trace over spin/valley indices, again because we do not have
a fermion loop in this diagram. We can now use the various
(anti)commutation relations for the � matrices to move these
matrices in the above expression all the way over to the right.
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For μ = 1,2,3, we have

δ(b) ln �
ph
1,2,3

=
∫

dε

2π

∫ ′ d3k

(2π )3

(gA + gB − gC)
(
ε2 + 1

3k2
)

(ε2 + k2)2

= 1

6π2
(gA + gB − gC)e2�d�. (72)

Combining the renormalization from the diagrams in Figs. 2(a)
and 2(b), we obtain

δ ln �
ph
1,2,3 = 1

6π2
(gA + gB − 5gC)e2�d�, (73)

hence

f
ph
1,2,3 = e2�c

6π2
(gA + gB − 5gC) = e2�c

16π2
> 0, (74)

indicating a triply degenerate instability to ordering in this
channel, with coefficient e2�c

16π2 . For μ = 45, a similar argument
gives

δ(b) ln �
ph
45 =

∫
dε

2π

∫ ′ d3k

(2π )3

(gA + gB + 3gC)(ε2 − k2)

(ε2 + k2)2
= 0,

(75)

thus a test vertex in this channel is not renormalized by either
diagram. There is no instability in this channel.

For μ = 4,5, pushing � matrices to the right gives

δ(b) ln �
ph
4,5 =

∫
dε

2π

∫ ′ d3k

(2π )3

(gA − gB − 3gC)(ε2 + k2)

(ε2 + k2)2

= 1

4π2
(gA − gB − 3gC)e2�d�, (76)

hence

f
ph
4,5 = e2�c

4π2
(gA − gB − 3gC) = e2�c

8π2
> 0, (77)

indicating a doubly degenerate instability in this channel, with
larger coefficient than the instability in the �1,2,3 channels. For
μ = 12,23,13, pushing � matrices to the right gives

δ(b) ln �
ph
12,23,13

=
∫

dε

2π

∫ ′ d3k

(2π )3

(gA + gB − gC)
(
ε2 + 1

3k2
)

(ε2 + k2)2

= 1

6π2
(gA + gB − gC)e2�d� < 0, (78)

indicating no instability in this channel. Finally, for μ =
14,24,34,15,25,35 we obtain

δ(b) ln �
ph
14,24,34,15,25,35

=
∫

dε

2π

∫ ′ d3k

(2π )3

(gA − gB + gC)
(
ε2 − 1

3k2
)

(ε2 + k2)2

= 1

12π2
(gA − gB + gC)e2�d� = 0, (79)

indicating no instability in this channel.
Thus, there are instabilities in the particle-hole channel

towards developing an expectation value for 
†�μ
, with μ =

1,2,3,4,5 only. The leading instability is a doubly degenerate
instability to ordering in a channel with μ = 4,5. As will be
seen in Sec. VI, this type of order would gap out the Weyl
points, and corresponds to SDW order at momentum 2Q in
the z direction, with an associated complex order parameter M

with Re M = 〈
†�4
〉 and Im M = 〈
†�5
〉. There is also
a subleading instability to ordering with μ = 1,2,3 that corre-
sponds to a type of intranode ferromagnetism that simply shifts
the position of the Weyl nodes, but this will likely be preempted
by the leading instability, which destroys the Weyl nodes.

B. Particle-particle channels

We now consider the particle-particle channels. These
renormalize according to Fig. 2(c). The possible test pairing
vertices added to the Lagrangian are of the form �

pp
μ 
T �μ
 +

H.c., with the additional constraint from Fermi statistics that
�μ must be an antisymmetric matrix. This restricts us to μ =
2,5,13,14,25,34. We now obtain the vertex renormalization
for each of these. From Fig. 2(c) we obtain

δ(b) ln �pp
μ = −

∫
dε

2π

∫ ′ d3k

(2π )3

[
gAGT (−ε, − k)�μG(ε,k)

+ gB�45G
T (−ε,−k)�μG(ε,k)�T

45

+ gC

3∑
i=1

�iG
T (−ε,−k)�μG(ε,k)�T

i

]
. (80)

Again, there is no trace over spin/valley indices because
there is no fermion loop. We can further simplify by noting
that GT (−ε,−kx,−ky,−kz) = −G(ε,kx,−ky,kz), and also by
noting that �1,3,45 are symmetric matrices, whereas �2 is
antisymmetric. We now check each of the channels in turn.
It is convenient to introduce the (modified) slashed notation
/k = ∑3

i=1 ki�i to be used throughout Sec. V B. This is a
slightly different slashed notation to the one introduced earlier
(which involved the γ matrices rather than the � matrices),
but it is the most convenient for our present purposes.

For particle-particle pairing in the �2 channel, we
use �2(k1�1 − k2�2 + k3�3) = −/k�2 and thus (iε + /k)
�2(k1�1 − k2�2 + k3�3) = (iε + /k)(iε − /k)�2=−(ε2 + k2)�2.
Using also the commutation relations [�45,�2] = 0 and
{�1,3,�2} = 0, we obtain

f
pp
2 = −

∫
dε

2π

∫ ′ d3k

(2π )3

(gA + gB − 3gC)
(
ε2 + k2

)
(ε2 + k2)2

< 0,

(81)

indicating no instability in this channel. For μ = 13, we obtain
f

pp
13 = f

pp
2 . This follows because �2(k1�1 − k2�2 + k3�3) =

−/k�2 and �13(k1�1 − k2�2 + k3�3) = −/k�13, and �2 and
�13 have the same commutation relations with �1,2,3,45.

In the �5 channel we have (iε + /k)�5(k1�1 − k2�2 +
k3�3) = (iε + /k)(iε − k1�1 + k2�2 − k3�3)�5 = −(ε2 +
1
3k2)�5. We have also {�45,�5} = 0 and {�1,2,3,�5} = 0, hence

f
pp
5 = −

∫
dε

2π

∫ ′ d3k

(2π )3

(gA − gB − gC)
(
ε2 + 1

3k2
)

(ε2 + k2)2
< 0,

(82)

indicating no instability in this channel.
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For the �14 channel we have (iε + /k)�14(k1�1 −
k2�2 + k3�3) = (iε + /k)(iε − k1�1 − k2�2 + k3�3)�14 =
−(ε2 + 1

3k2)�14, just like in the �5 channel, and likewise in
the �23 channel. Also, {�45,�14,34,5} = 0, thus gA and gB

affect the �14,23 channels in the same way that they affect the
�5 channel. Meanwhile, keeping track of the transposition
when evaluating the gC correction term,

f
pp
14,23 = −

∫
dε

2π

∫ ′ d3k

(2π )3

(gA − gB − gC)
(
ε2 + 1

3k2
)

(ε2 + k2)2
< 0,

(83)
again indicating no instability. The �34 channel is degenerate
with the �5 channel, a consequence of SO(2) rotation
symmetry (see Appendix B). More unexpectedly, it is also
degenerate with the �14 channel. This follows because our
model has an SO(3) rotation invariance when g3 = g4, which
is the case along the fixed trajectory, and thus we can rotate �5

into �14 by acting with the matrix �23 which corresponds to a
rotation about the x axis (see Appendix B). Finally, for �25 we
have (iε + /k)�25(iε + k1�1 − k2�2 + k3�3) = (iε + /k)(iε +
/k)�25 = (−ε2 + k2)�25, which vanishes upon integration over
energies. Thus there is no instability in the particle-particle
channel.

VI. LEADING INSTABILITY: SPIN-DENSITY WAVE
GROUND STATE

A. Mean-field Hamiltonian

The leading instability is in the particle-hole channel and
is doubly degenerate, and the corresponding ordered state is
described by the mean-field Hamiltonian

HMF = H0 +
∫

d3r(�4

†�4
 + �5


†�5
), (84)

with �4,�5 real. The single-particle spectrum is fully gapped,
E±(p) = ±

√
p2 + �2

4 + �2
5. Using 
† = i
̄γ0 (see Sec. IV A

for the definition of the modified � matrices γμ), the corre-
sponding Euclidean Lagrangian is

LMF = i
̄γμ∂μ
 + i�4
̄
 − �5
̄γ5
. (85)

Defining a real mass amplitude m0 and angle θ0 by �4 =
m0 cos θ0, �5 = m0 sin θ0, we have

LMF = i
̄γμ∂μ
 + im0
̄eiθ0γ5
. (86)

As mentioned in Sec. III E, the pair of � matrices (�4,�5) trans-
forms as a vector under U (1) chiral symmetry. Equivalently,
a U (1) chiral transformation can naively be compensated by a
shift of θ0. Therefore, the mean-field Lagrangian (86) with a
fixed value of θ0 describes a state with spontaneously broken
chiral symmetry. Discrete symmetries are also spontaneously
broken if a � matrix appearing in the mean-field Hamiltonian
is odd under that symmetry. A nonzero value of �4 breaks the
antiunitary T and particle-hole C symmetries, while a nonzero
value of �5 breaks the parity P symmetry. Due to our choice
of � matrices, here the normal mass 
̄
 is T breaking, while
the axial mass 
̄γ5
 is T preserving.

In terms of the microscopic fermions, the mean-field
Hamiltonian (84) describes a SDW ground state which
spontaneously breaks translation symmetry but preserves the

SO(2) spin-orbit rotation symmetry. Indeed, the magnetization
of the microscopic fermions in the z direction is given by

Mz(r) = 〈
c†rασ

αβ

3 crβ
〉

= 〈
†�4
〉 cos 2Qz + 〈
†�5
〉 sin 2Qz, (87)

which describes a spatial modulation at wave vector 2Q in the
direction z that joins the two Weyl points. Since 〈
†�4
〉 ∝
�4 = m0 cos θ0 and 〈
†�5
〉 ∝ �5 = m0 sin θ0, we have

Mz(r) ∝ m0 cos(2Qz − θ0), (88)

i.e., the angle θ0 corresponds physically to the phase of the
SDW. Fluctuations above the mean-field ground state are
described by a Lagrangian of the same form as (86),

L = i
̄γμ∂μ
 + im
̄eiθγ5
, (89)

but where m and θ are dynamical fields. If we expand
about the ground state m(r,τ ) = m0 + δm(r,τ ) and θ (r,τ ) =
θ0 + δθ (r,τ ) with δm 	 m0 and δθ 	 2π , the amplitude
fluctuations δm are gapped and can be integrated out, while the
angle fluctuations δθ are gapless. Indeed, δθ is the Goldstone
mode associated with the spontaneous breaking of the U (1)
chiral symmetry. At energies below the single-particle gap
|m0|, the Goldstone mode is governed by the Lagrangian

L(δθ ) = κ

2
(∂μδθ )2, (90)

where the phase stiffness κ depends on m0. Fluctuations of δθ

thus correspond physically to fluctuations of the SDW phase,
i.e., the sliding mode. Sufficiently strong phase fluctuations
δθ ∼ 2π will melt the SDW and restore the translationally
invariant Weyl semimetal ground state.

It is known that massless Dirac fermions in 2 + 1 dimen-
sions, such as those in graphene, can undergo a continuous
semimetal-insulator transition similar to the one discussed
here, where a mass term is spontaneously generated for
sufficiently strong interactions [12]. The critical point for
that transition is in the universality class of the Gross-Neveu
theory [63] in 2 + 1 dimensions. The critical exponents for
this strongly coupled critical point differ from those of the
Gaussian fixed point and can be calculated perturbatively using
the 1/N expansion [64] or the ε expansion [65] where ε = 1
corresponds to 2 + 1 dimensions. In 3 + 1 dimensions, ε = 0
and anomalous dimensions vanish. Therefore the critical point
for a continuous transition between the Weyl semimetal and
the SDW state will have Gaussian critical exponents, possibly
with logarithmic corrections to scaling.

The spontaneous breaking of chiral symmetry in a Weyl
semimetal induced by sufficiently strong four-fermion in-
teractions was also studied by Wang and Zhang [47]. In
their work, a particular type of four-fermion interaction was
selected that produced a CDW ground state when treated
at the mean-field level. As discussed in Sec. I, the main
difference between their approach and ours is that we consider
all possible short-range interactions allowed by symmetry, and
allow quantum fluctuations to determine what type of order can
develop at strong coupling.
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B. Axion electrodynamics

Let us now assume that the fermions couple to an external
electromagnetic field with charge e. This coupling can be
reintroduced in the theory by replacing the partial derivative ∂μ

in Eq. (89) by the gauge-covariant derivative Dμ = ∂μ + ieAμ

where A0 is the scalar potential and Ai is the magnetic
vector potential. This is valid in the regime, to which we
restrict ourselves, where the external electromagnetic field
varies slowly on the scale of the SDW wavelength λSDW =
π
Q

. In this limit, the Euclidean Lagrangian complete with
electromagnetic fields is [66]

L = i
̄γμDμ
 + im
̄eiθγ5
 + 1

8π
(E2 + B2), (91)

where E and B are the electric and magnetic fields, respec-
tively. As mentioned earlier, one would naively expect that
the angle θ could be eliminated from the Lagrangian by a
U (1) chiral symmetry transformation 
 → e−iθγ5/2
, 
̄ →

̄e−iθγ5/2. However, in a quantum theory, one also has to worry
about whether the integration measure D
̄D
 in the path
integral definition of the partition function remains invariant
under this transformation–if not, there is an anomaly [67]. This
is indeed what happens in our case, and the resulting anomaly is
known as the chiral or Adler-Bell-Jackiw anomaly [68,69]. The
Jacobian associated with the chiral symmetry transformation
gives rise to a E · B term in the transformed Lagrangian [70],
and we obtain

L= i
̄γμDμ
 + im
̄
 + 1

8π
(E2 + B2) + iθe2

4π2
E · B, (92)

i.e., a massive Dirac fermion coupled to axion electrodynam-
ics [71]. Strictly speaking, this derivation [70] only holds for a
space-time-independent θ , i.e., in the ground state θ = θ0, but
a perturbative calculation for a dynamical θ angle that varies
slowly on the scale set by the inverse of the fermion mass m

gives a coupling between θ and the electromagnetic fields that
has the same form [72]. (The anomaly calculation can also be
extended to a space-time-dependent θ : see, e.g., Ref. [45].)

The emergence of axion electrodynamics in our effective
Lagrangian points to a connection to time-reversal invariant
3D topological insulators [3,4]. To establish this connection,
given our choice of � matrices it is convenient to use the chiral
anomaly to rotate the mass angle by θ + π

2 instead of rotating it
by θ . This eliminates the normal mass rather than eliminating
the axial mass, and generates an axion angle of θ + π

2 ,

L = i
̄γμDμ
 + m
̄γ5
 + 1

8π
(E2 + B2)

+ i
(
θ + π

2

)
e2

4π2
E · B. (93)

For θ = −π
2 , assuming m > 0 the original Lagrangian (91)

has a positive axial mass term m
̄γ5
, while for θ = π
2 ,

the axial mass is negative −m
̄γ5
. In the transformed
Lagrangian (93), θ = −π

2 corresponds indeed to a positive
axial mass with no E · B term, while θ = π

2 corresponds to a
positive axial mass but with an E · B term with axion angle
θ + π

2 = π . Since only the axial mass is T preserving, a
ground state with θ0 = −π

2 corresponds to a T -invariant trivial
insulator, while θ0 = π

2 corresponds to a T -invariant topolog-

ical insulator [73,74]. This particular choice of topological
versus trivial assumes that the vacuum outside the material
can be adiabatically connected to an insulator with θ0 = −π

2 .
Since the value of θ0 is picked by spontaneous symmetry
breaking in the infinite system, all values of θ0 correspond to
degenerate ground states. If we restrict ourselves toT -invariant
ground states, because the topological insulator has surface
states whereas the trivial insulator does not, it seems likely
that the bulk degeneracy between the two phases will be lifted
by surface effects. We leave further investigation of surface
effects for future work.

All values of θ0 modulo 2π besides θ0 = ±π
2 correspond to

a T -breaking insulator [75,76]. In all cases, the microscopic
time-reversal symmetry is broken. Moreover, from the point of
view of spontaneous chiral symmetry breaking there is nothing
special about the values θ0 = ±π

2 , and the ground state will
generically break the T symmetry. The total axion angle θ0 +
π
2 can in principle be measured by magneto-optical Kerr and
Faraday rotation [77,78].

The angle θ = θ0 + δθ is a dynamical field and the fluctu-
ations δθ can be regarded as a dynamical axion field [79,80]
governed by the Lagrangian

L(δθ ) = κ

2
(∂μδθ )2 + i

(
θ0 + π

2 + δθ
)
e2

4π2
E · B, (94)

which was also obtained in the CDW state found in Ref. [47]
(including the extra term ∝ 2QzE · B that we have omit-
ted [66]). Besides small fluctuations δ 	 2π , there will also
be singular 1D vortex lines around which θ winds by 2π .
As discussed in Ref. [47], these vortex lines correspond to
dislocations in the SDW and are equivalent to the axion strings
of particle physics [81] due to their direct coupling to E · B. As
discovered by Callan and Harvey [72], such axion strings will
trap chiral fermion modes, which could carry dissipationless
current.

VII. INSTABILITIES OF THE MAXIMALLY CHIRAL
SYMMETRIC HAMILTONIAN

The noninteracting Hamiltonian (10) also exhibits addi-
tional chiral symmetries (Sec. II D). These additional sym-
metries are not respected by typical lattice-scale interactions,
and thus imposing them on the interaction Hamiltonian is
likely to yield a poor approximation to the true physics.
Nonetheless, it is interesting to consider constraining the
interaction Hamiltonian by imposing on it these additional
symmetries, to see how they further reduce the number of
independent couplings, and to study the instabilities of the
resulting maximally chiral symmetric Hamiltonian.

A. Reduction of number of independent interaction
parameters by additional chiral symmetries

Under the discrete chiral antiunitary T̃ and particle-hole C̃
symmetries defined in Sec. II D, the � matrices transform as
before, T̃ �AT̃ −1 = ±�∗

A and C̃�AC̃−1 = ±�T
A . Because the

interaction terms are already constrained to be of the form
(
†�A
)2, these additional discrete chiral symmetries do not
constrain the allowed couplings any further.
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We now consider the chiral SO(2)R−L rotation symmetry.
Its action on the Weyl fermions is

R̃(θ )

(
ψR(r)

ψL(r)

)
R̃(θ )−1 = R̃(θ )

(
ψR(Rθr)

ψL(R−θr)

)
, (95)

where Rθ is the 3×3 spatial rotation matrix (24), and

R̃(θ ) = e−iθ�3/2. (96)

Because it is a rotation in both spin space and real
space, the chiral rotation symmetry only allows quartic
terms with four Weyl fermions of the same chirality.
This means that only the eight block-diagonal � matrices
�0,�1,�2,�3,�12,�13,�23,�45 are allowed. This reduces the
number of independent couplings from nine (before using
Fierz identities) to six. Expanding the quartic terms (
†�A
)2

in Weyl components, in order to eliminate the forbidden
terms of the form ψ

†
RψRψ

†
LψL we need to impose the three

constraints λ1 = λ5, λ4 = λ6, and λ8 = λ9 in Eq. (40). This
reduces the number of independent couplings from six to three.
The three corresponding quartic terms are X1 + X5, X4 + X6,
and X8 + X9. Using Eq. (48), we find

X4 + X6 = −(X1 + X5),

X8 + X9 = −2(X1 + X5), (97)

therefore after using the Fierz identities we are left with a
single independent coupling corresponding to X1 + X5. The
Lagrangian is therefore

L = i
̄γμ∂μ
 + g[(
̄�4
)2 − (
̄�5
)2]. (98)

We now discuss the instabilities of the maximally chiral
symmetric Hamiltonian (98). The RG equation for g can be
easily read off from the previous RG equations by setting
g1 = −g2 = g and g3 = g4 = 0. We find that the O(g2)
contribution to the RG β function vanishes. The one-loop
calculation is insufficient in this case and one would need to
go to higher loops. A likely possibility is that there is a flow
to strong coupling g → ±∞ for � → ∞. One can then repeat
the susceptibility analysis for this case.

B. Susceptibility analysis

For a theory governed by the one-parameter Hamilto-
nian (98), a test vertex � introduced in either the particle-hole
or particle-particle channels renormalizes according to the flow
equation

d ln �

d�
= 1 + Ag, (99)

where A is a numerical coefficient that depends on the channel
under consideration. The appropriate value of A can be
obtained from the previous analysis by setting g1 =−g2 = g

and g3 = g4 = 0. The strongest instability occurs in the
channel with the largest positive value of 1 + Ag.

1. Large positive g

For large positive g, the leading instability is in a sixfold de-
generate particle-hole channel with order parameter structure
τ0 ⊗ σ or τ3 ⊗ σ . These ferromagnetic order parameters do not
gap out the Weyl points but shift their position in momentum

space, such that the single-particle spectrum remains gapless.
Order parameters with structure τ0 ⊗ σ1 = �1, τ0 ⊗ σ2 = �2,
and τ3 ⊗ σ3 = �3 shift both Weyl points by the same amount in
the x, y, and z directions, respectively, and their fluctuations
are analogous to a fluctuating vector potential. This is the
3D analog of in-plane ferromagnetic order in a 2D Dirac
fermion system, where ferromagnetic fluctuations also couple
like a vector potential [82]. The resulting state breaks all
three discrete P,T ,C symmetries, and order in the �1 and
�2 channels breaks the SO(2) rotation symmetry as well due
to a shift of the Weyl points away from px = py = 0. Order
parameters with structure τ3 ⊗ σ1 = �23, τ3 ⊗ σ2 = −�13,
and τ0 ⊗ σ3 = �12 shift the Weyl points relative to each other
in the x, y, and z directions, respectively, and their fluctuations
are analogous to a fluctuating chiral vector potential that
couples with opposite charge to Weyl fermions of opposite
chirality. The emergence of a dynamical chiral vector potential
coupled to Weyl fermions was also found in a proposal to
realize a Weyl semimetal in a magnetically doped topological
insulator [21]. The resulting state preserves P but breaks T
and C, and order in the �13 and �23 channels also breaks the
SO(2) rotation symmetry due to a shift of the Weyl points
away from px = py = 0.

2. Large negative g

If the flow is towards strong attractive coupling g → −∞,
the leading instability will be in a doubly degenerate
particle-particle channel, with order parameters 〈
T �2
〉
and 〈
T �13
〉 that both represent spin-singlet FFLO pair-
ing (see Appendix B). These FFLO states were discussed
previously as possible superconducting states of doped Weyl
semimetals [48]. The bulk Bogoliubov quasiparticle spectrum
obtained by diagonalizing Eq. (B5) is fully gapped in either
case, E±(p) = ±

√
p2 + |�|2 for either �2 = �, �13 = 0 or

�2 = 0, �13 = �. However, the pairing amplitude in the �2

channel has the same phase on each Weyl point, while it
has a relative phase of π on the two Weyl points in the �13

channel. In the weak pairing limit, this means that at the level
of the effective theory for the slow Weyl fermions, pairing
in the �2 channel corresponds to a trivial superconductor,
while pairing in the �13 channel corresponds to a topological
superconductor [83]. Invariance under T (and C) is achieved
if the pairing amplitude is pure imaginary � = i|�| (see
Appendix B), which corresponds to the usual spin-singlet
pairing on each node 〈ψT

R iσ2ψR〉 = ±〈ψT
L iσ2ψL〉 �= 0. Either

superconducting state preserves the SO(2) rotation symmetry.
Furthermore, �2 pairing breaks the P symmetry, while �13

pairing preserves P .
The degeneracy of the �2 and �13 channels originates from

the U (1) chiral symmetry of the normal state Hamiltonian
(see Appendix B), and a given superposition of these order
parameters will break this chiral symmetry spontaneously.
The energetics of possible superpositions can be explored by
constructing a Landau theory.

C. Landau-Ginzburg analysis

The Landau Lagrangian, after performing a Hubbard-
Stratonovich transformation and integrating out the fermions,

035126-15



JOSEPH MACIEJKO AND RAHUL NANDKISHORE PHYSICAL REVIEW B 90, 035126 (2014)

takes the form

L = − Tr ln [iω + HBdG(p)] + 1

4λ
Tr |�2�2 + �13�13|2

= − Tr ln

(
iω + p · � �2�2 + �13�13

�∗
2�2 + �∗

13�13 iω + p · �T

)

+ 1

4λ
Tr(|�2|2 + |�13|2), (100)

where λ is the attractive coupling in the superconducting
channel, and the trace is taken over spin-valley space and
also represents integration over frequencies ω and momenta p.
Working near the critical temperature Tc allows us to invoke
critical slowing down, and thus to set ω = 0 and to integrate
over momenta only. We then obtain the Landau free energy

F = − Tr ln HBdG(p) + 1

4λ
Tr(|�2|2 + |�13|2)

= 1

4λ
(|�2|2 + |�13|2) −

∫
d3p

(2π )3

× ln[(p2 + |�2|2 + |�13|2)2 − (�∗
2�13 + c.c.)2], (101)

where we used the identity Tr ln M = ln det M . Expanding
the free energy in powers of the order parameter, we obtain

F = F0(|�2|2 + |�13|2) + K(�∗
2�13 + c.c.)2, (102)

where K is a strictly positive coefficient. Minimizing Eq. (102)
tells us that we should take �2 = 0 and �13 �= 0 (cor-
responding to a topological superconductor), or �13 = 0
and �2 �= 0 (corresponding to a trivial superconductor), or
we can take both order parameters to be nonzero if we
give them a relative phase of ±π

2 . This is consistent with
Eq. (B17), and gives a fully gapped BdG spectrum E±(p) =
±

√
p2 + |�2|2 + |�13|2. Consider, for example, a pairing

term of the form |�2|
T i�2
 ± i|�13|
T i�13
 + H.c. In
Weyl components, this can be written as

�
(
eiθRψT

R iσ2ψR + eiθLψT
L iσ2ψL

) + H.c., (103)

where � =
√

|�2|2 + |�13|2 and

θL − θR = 2 tan−1

( |�13|
|�2|

)
, (104)

implying that θL − θR is zero for the trivial superconductor, π

for the topological superconductor, and any value in between
(modulo 2π ) for a general superconducting state with �2,�13

both nonzero, which breaks the antiunitary T symmetry (note
that with |�2| = 0 and |�13| �= 0, the apparently “T -odd”
pairing ±i|�13|
T i�13
 = ∓|�13|
T �13
 can be made T
even by a uniform gauge transformation). According to recent
work [84], the electromagnetic response of this fully gapped
T -breaking superconductor should be of the “Higgs-axion”
type,

Leff = 1

2
ρR(∂μθR − 2eAμ)2 + 1

2
ρL(∂μθL − 2eAμ)2

+ i(θL − θR)e2

8π2
E · B. (105)

As in Sec. VI B, however, all superconducting states consid-
ered here break the microscopic time-reversal symmetry. We
speculate that this is manifest in the electromagnetic response

in the presence of an additional ∝2QzE · B term coming
from the FFLO nature of the pairing that is missed in our
description in terms of slow fields ψR,ψL [66]. We leave this
question, as well as the analysis of fluctuation corrections to
the free energy that will probably lift the degeneracy between
the various scenarios, for future work.

VIII. CONCLUSION

We have presented a low-energy description of interacting
fermions in the simplest type of time-reversal symmetry-
breaking Weyl semimetal with two Weyl points related by
inversion symmetry. We restricted ourselves to short-range
interactions and used the symmetries of the noninteracting
low-energy Hamiltonian, which consisted of two continuum
Weyl fermions of opposite chirality, to constrain the form of
the interaction term. Combined with the use of Fierz identities,
this reduced the number of independent coupling constants
from 136 to 4, which made the problem amenable to an
analytical perturbative RG analysis. We computed the RG β

functions to one loop, and found a single stable trajectory in
the four-dimensional coupling constant space towards strong
coupling. We computed the susceptibilities for all possible
momentum-independent order parameters in the particle-hole
and particle-particle channels, and determined that the leading
instability was towards SDW ordering. Using an anomaly
calculation, we found that the sliding mode or SDW phase
mode θ coupled to external electromagnetic fields via an axion
term ∝ θE · B similar to that found previously by Wang and
Zhang [47] for CDW order.

We also investigated a maximally chiral symmetric model
with a single independent coupling constant. While “true”
lattice scale interactions are unlikely to display maximal chiral
symmetry, this simplified problem nevertheless presents an
interesting toy model for theoretical study. In this case, the
susceptibility analysis indicated two possible types of ground
states: gapless ferromagnetic states, or a gapped supercon-
ducting state. The spin waves of the gapless ferromagnetic
states were found to couple to the fermionic quasiparticles
like the spatial components of a normal or chiral gauge
field [21], depending on the type of ferromagnetic order. The
superconducting state was found to be of the exotic FFLO
type, with a “Higgs-axion”-type electromagnetic response.
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APPENDIX A: � MATRIX IDENTITIES

For convenience, we reproduce here certain � matrix
identities from Appendix A of Ref. [58] that are used
extensively throughout the paper:

[�ab,�c] = 2i(δac�b − δbc�a), (A1)

{�ab,�c} = εabcde�de, (A2)
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[�ab,�cd ] = −2i(δbc�ad − δbd�ac − δac�bd + δad�bc), (A3)

{�ab,�cd} = 2εabcde�e + 2δacδbd − 2δadδbc, (A4)

Tr(�a�b) = 4δab, (A5)

Tr(�a�b�c) = 0, (A6)

Tr(�a�b�c�d ) = 4(δabδcd + δadδbc − δacδbd ), (A7)

Tr(�a�b�c�d�e) = −4εabcde, (A8)

where εabcde is the totally antisymmetric symbol in five
dimensions and ε12345 = +1.

APPENDIX B: SYMMETRIES OF THE
SUPERCONDUCTING ORDER PARAMETERS

In this Appendix we discuss how superconducting order pa-
rameters transform under the symmetries of the Hamiltonian.
We restrict ourselves to superconducting order parameters of
the form 〈
T �A
〉 that are momentum independent in the
low-energy effective theory, corresponding to on-site pairing.
This does not necessarily mean that the resulting superconduct-
ing state is conventional. Matrices �A with nonzero diagonal
blocks describe pairing between fermions on the same Weyl
point, which corresponds to an exotic FFLO state [56,57] that
spontaneously breaks translation symmetry in the z direction,
due to the fact that Cooper pairs carry nonzero center-of-mass
momentum in this direction. Indeed, pairing between the slow
Weyl fermion operators ψR,ψL translates into pairing between
the microscopic fermion operators c that is given by

〈crαcrβ〉 � e2iQz〈ψRαψRβ〉 + e−2iQz〈ψLαψLβ〉
+ 〈ψRαψLβ〉 + 〈ψLαψRβ〉, (B1)

where we have used Eq. (4).
The mean-field Hamiltonian for a superconducting state is

HMF = H0 + 1

2

∫
d3r (
T �†
 + H.c.), (B2)

where � = −�T by Fermi statistics, but is otherwise arbitrary.
A general 4×4 antisymmetric matrix can be expanded as � =
�A�A, where �A are linearly independent antisymmetric 4×4
Hermitian matrices, and �A is in general complex. Among the
16 linearly independent 4×4 Hermitian matrices, six of them
are antisymmetric: �2,�5,�13,�14,�25,�34. In terms of these
antisymmetric � matrices, the momentum space Hamiltonian
reads

HMF = 1

2

∫
d3p

(2π )3
�†(p)HBdG(p)�(p), (B3)

where �(p) is an eight-component Nambu spinor defined as

�(p) =
(


(p)

[
†(−p)]T

)
,

�†(p) = 
†(p) 
T (−p)), (B4)

and the 8×8 Bogoliubov–de Gennes (BdG) Hamiltonian
matrix is

HBdG(p) =
(

p · �
∑

A �A�A∑
A �∗

A�A p · �T

)
, (B5)

where p · � = px�1 + py�2 + pz�3.
We wish to determine how the superconducting order

parameter transforms under the symmetries of our problem.
We first consider the rotation symmetry of Sec. II C 1, under
which a typical pairing term transforms as

R(θ )
∫

d3r(�∗
A
T �A
 + H.c.)R(θ )−1

=
∫

d3r[�∗
A
T (Rθr)R(θ )T �AR(θ )
(Rθr) + H.c.]

=
∫

d3r ′[�∗
A
T (r′)R(θ )T �AR(θ )
(r′) + H.c.], (B6)

where r′ = Rθr. Since R(θ ) = e−iθ�12/2 [Eq. (23)] and
�12 = �T

12, we have

R(θ )T �AR(θ ) = e−iθ�12/2�Ae−iθ�12/2

= cos2(θ/2)�A − sin2(θ/2)�12�A�12

− i sin(θ/2) cos(θ/2){�12,�A}. (B7)

Using the algebra of � matrices, we find that �2,�13,�14,�25

transform as scalars,

R(θ )T �AR(θ ) = �A, A = 2,13,14,25, (B8)

hence the associated pairing terms preserve rotation symmetry.
On the other hand, (�5,�34) are related by a rotation,

R(θ )T �5R(θ ) = cos θ�5 − i sin θ�34, (B9)

R(θ )T �34R(θ ) = cos θ�34 − i sin θ�5, (B10)

which means that if we consider a pairing term of the form∫
d3r(�∗

5

T �5
 ∓ i�∗

34

T �34
 + H.c.), (B11)

under a rotation this term keeps the same form but with �5,�34

replaced by �′
5,�

′
34 where(

�′
5

�′
34

)
=

(
cos θ ∓ sin θ

± sin θ cos θ

)(
�5

�34

)
, (B12)

which preserves |�′
5|2 + |�′

34|2 = |�5|2 + |�34|2. Therefore
(�5,�34) transform as a vector under rotations. The choice of
a particular linear combination of �5 and �34 breaks SO(2)
rotation symmetry spontaneously.

A similar analysis can be done for the U (1) chiral symmetry
of Sec. II C 2. A typical pairing term transforms as

Rχ (φ)
T �A
Rχ (φ)−1 = 
T Rχ (φ)T �ARχ (φ)
. (B13)

Since Rχ (φ) = e−iφ�45/2 [Eq. (26)] and �45 = �T
45, we have

similarly to Eq. (B7),

Rχ (φ)T �ARχ (φ) = e−iφ�45/2�Ae−iφ�45/2

= cos2(φ/2)�A − sin2(φ/2)�45�A�45

− i sin(φ/2) cos(φ/2){�45,�A}. (B14)
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We find that �5,�14,�25,�34 transform as scalars under chiral
symmetry, while (�2,�13) transform as

Rχ (φ)T �2Rχ (φ) = cos φ�2 + i sin φ�13, (B15)

Rχ (φ)T �13Rχ (φ) = cos φ�13 + i sin φ�2. (B16)

If we consider a pairing term of the form∫
d3r(�∗

2

T �2
 ± i�∗

13

T �13
 + H.c.), (B17)

under chiral symmetry (�2,�13) transform as in Eq. (B12) but
with θ replaced by φ. Therefore the pairing (B17) describes
a superconducting state that breaks U (1) chiral symmetry
spontaneously.

We now consider the discrete symmetrices P,T ,C. Under
parity P , a typical pairing term transforms as

P
∫

d3r(�∗
A
T �A
 + H.c.)P−1

=
∫

d3r[�∗
A
T (−r)P T �AP
(−r) + H.c.]

=
∫

d3r[�∗
A
T (r)P T �AP
(r) + H.c.], (B18)

hence the pairing is even parity (preserves parity) if P T �AP =
�A and odd parity (breaks parity) if P T �AP = −�A. Under
the antiunitary symmetry T , we have

T (�∗
A
T �A
 + H.c.)T −1 = �A
T T T �∗

AT 
 + H.c.,
(B19)

hence a superconducting state is invariant under T if the
pairing amplitude is real �A = �∗

A and �A is even under
T , i.e., T T �∗

AT = �A, or if the pairing amplitude is pure
imaginary �A = −�∗

A and �A is odd under T , i.e., T T �∗
AT =

−�A. Under particle-hole symmetry C, we have

C(�∗
A
T �A
 + H.c.)C−1 = �A
T CT �AC
 + H.c.,

(B20)

thus the conditions for invariance under C are the same as
those for invariance under T , with �A being even under C

if CT �AC = � and odd if CT �AC = −�A. We summarize
the transformation properties of the pairing matrices under the
discrete symmetries in Table III.

Finally, we consider the enhanced SO(3) rotation symmetry
that emerges asymptotically along the stable RG flow to strong

TABLE III. The pairing matrices �A are either even (+) or odd
(−) under parity (P ), antiunitary symmetry (T ), and particle-hole
symmetry (C).

�2 �5 �13 �14 �25 �34

P − − + − + −
T − + − − + −
C − + − − + −

coupling and makes the �14 pairing channel degenerate with
the �5 and �34 channels. Along this flow, the Hamiltonian is
given by [see Eq. (63)]

H =
∫

d3r[
†� · (−i∇)
 + gA(
†
)2

+ gB(
†�45
)2 + gC(
†�
)2], (B21)

where � = (�1,�2,�3) and we have set v‖ = vz = 1 as in our
RG analysis. We now show that this Hamiltonian commutes
with the SO(3) rotation operator R(n̂,θ ) defined by

R(n̂,θ )
(r)R(n̂,θ )−1 = R(n̂,θ )
(Rn̂,θr), (B22)

which describes a rotation by an angle θ ∈ [0,2π ) around the
axis specified by the unit vector n̂. The 4×4 representation
matrix R(n̂,θ ) is given by

R(n̂,θ ) = e−iθ n̂·�/2, (B23)

where

�i = 1
2εijk�jk, i = 1,2,3. (B24)

We have �1 = �23, �2 = −�13, and �3 = �12 that we
recognize as the generator of SO(2) rotations about the z axis
(Sec. II C 1). Rn̂,θ is the standard 3×3 rotation matrix given
for small θ by

Rik
n̂,θ = δik + θεijkn̂j + O(θ2). (B25)

The gA term in Eq. (B21) is manifestly invariant under
the unitary transformation (B22). Using Eq. (A3), we have
[�45,�i] = 0 and the gB term is invariant as well. Using
Eq. (A1), we find

eiθ n̂·�/2�ie
−iθ n̂·�/2 = Rik

n̂,θ�k, (B26)

hence the gC term transforms as

(
†�
)2 → (

†′Rik

n̂,θ�k

′)(
†′Ri�

n̂,θ��

′)

= (
†′�k

′)(
†′��


′)
(
RT

n̂,θRn̂,θ

)
k�

= (
†′�
 ′)2, (B27)

since the rotation matrix Rn̂,θ is orthogonal, and the rotation
of coordinates 
 → 
 ′ = 
(Rn̂,θr) can be absorbed by a
change of integration variables in Eq. (B21). Finally, the
derivative operator ∇ transforms oppositely to � under
rotations and the kinetic term in Eq. (B21) is also SO(3)
invariant.

We have already seen that �5 and �34 transform into each
other under an SO(2) rotation about the z axis [Eqs. (B9)
and (B10)]. Under a rotation about the x axis, �5 transforms
as

R(x̂,θ )T �5R(x̂,θ ) = e−iθ�23/2�5e
−iθ�23/2

= cos2(θ/2)�5 − sin2(θ/2)�23�5�23

− i sin(θ/2) cos(θ/2){�23,�5}
= cos θ�5 − i sin θ�14, (B28)

hence the �14 pairing channel must be degenerate with the �5

and �34 channels.
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