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We study the impact of electron-phonon interactions on the many-body instabilities of electrons on the
honeycomb lattice and their interplay with repulsive local and nonlocal Coulomb interactions at charge neutrality.
To that end, we consider in-plane optical phonon modes with wave vectors close to the � point as well as to the
K, −K points and calculate the effective phonon-mediated electron-electron interaction by integrating out the
phonon modes. Ordering tendencies are studied by means of a momentum-resolved functional renormalization-
group approach allowing for an unbiased investigation of the appearing instabilities. In the case of an exclusive
and supercritical phonon-mediated interaction, we find a Kekulé and a nematic bond ordering tendency being
favored over the s-wave superconducting state. The competition between the different phonon-induced orderings
clearly shows a repulsive interaction between phonons at small- and large-wave-vector transfers. We further
discuss the influence of phonon-mediated interactions on electronically driven instabilities induced by on-site,
nearest-neighbor, and next-nearest-neighbor density-density interactions. We find an extension of the parameter
regime of the spin-density-wave order going along with an increase of the critical scales where ordering occurs
and a suppression of competing orders.
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I. INTRODUCTION

Electrons in graphene feature many unusual properties
that can be captured within relatively simple theoretical
frameworks based on a single-particle description of the
electrons close to the Fermi level [1,2]. The remarkable success
of the interplay between experiment and single-particle theory
for phenomena such as the half-integer quantum Hall effect [3]
or the Klein paradox [4] leads to the conclusion that electron-
electron interactions in pristine graphene play only a quan-
titative role, but not a qualitative one. On the charge-neutral
honeycomb lattice, due to the vanishing density of states for
energies close to the Fermi level, qualitative changes from
interactions such as strongly correlated electronic phases can
only appear beyond a critical interaction strength [5–7]. In this
case, however, depending on the type of interaction, possible
occurrences of exotic states of matter such as quantum spin
Hall phases [8,9] and even spin liquids are under consideration
[10,11]. Doped graphene features a nonvanishing density of
states at the Fermi level, which enhances the role of electronic
interactions as compared to the charge-neutral situation and
can give rise to possibly unconventional superconductivity
[12,13]. At least a supercurrent in graphene has been induced
[14] by means of the contact of a graphene sample with
superconducting electrodes.

This raises the question of under what circumstances
graphene can give rise to intrinsic superconductivity. In this
context, the role of electron-phonon interactions for different
types of superconducting states has been investigated [15–18]
with a focus on the effects of in-plane phonons that were
identified in the Raman spectra of graphene [19]. Further

*classen@thphys.uni-heidelberg.de
†scherer@thphys.uni-heidelberg.de
‡honerkamp@physik.rwth-aachen.de

ordering patterns, e.g., a Kekulé order due to the electron-
phonon coupling, have been considered [20,21]. Generally,
it is a difficult task to identify the leading ordering tendency
given a large variety of possible ordering patterns, in particular
when various interaction effects compete.

In this work we investigate the ordering tendencies of
electrons on the honeycomb lattice when electron-phonon-
mediated electronic interactions from in-plane optical phonons
as well as short-range Coulomb interactions are present.
Therefore, we employ a functional renormalization-group
(FRG) approach in a momentum-resolved patching scheme
for the vertex function. This method provides an unbiased
investigation of the appearing instabilities as it is effectively
equivalent to an infinite-order summation of all possible
one-loop particle-particle and particle-hole diagrams on equal
footing. This accounts for the competition and mutual in-
teraction between the different channels. As a result, we
obtain a systematic scheme to analyze the effective action,
and thereby the one-particle irreducible (1PI) vertices, at low
energies, allowing us to extract an effective Hamiltonian and
determine the leading order parameters. The FRG has been
proven to be a reliable tool for the study of a large range of
two-dimensional solid-state systems with strongly correlated
phases, e.g., high-Tc superconductors, such as cuprates and
pnictides and has been established before for investigations on
the honeycomb lattice; see Refs. [22,23] for recent reviews.
In our study we limit the application of the FRG to the
two-particle vertex and neglect the dependence on external
frequencies, which is sufficient to determine the ordering
tendencies [22,23].

As a result of this investigation, we find that the leading
correlations due to the phonon-mediated electronic interaction
are not of superconducting type but rather form a bond
order. The superconducting instability is only subleading. In
addition, we observe a competition between two different
kinds of bond orders depending on the relative strength of
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phonon modes with different wave vectors coming from the
center of the Brillouin zone (BZ) � or from the corners of
the BZ (the ±K points). The � modes induce a nematic state,
whereas the ±K phonons support a Kekulé ordering pattern.
By means of the FRG approach, we resolve this competition.

By including short-range Coulomb interactions, we fur-
thermore study the effects of phonons in a more realistic
setup. In previous renormalization-group (RG) investigations
[7,8,13] antiferromagnetic spin-density waves and charge-
density waves as well as topological quantum Hall states have
been considered as relevant ground-state candidates for the
half-filled honeycomb lattice depending on the interactions.
In this paper we show that the phonons affect the phase
diagram in such a way that the antiferromagnetic regime
benefits while the occurrence of the topological quantum
Hall phase is reduced. This could also be relevant for bilayer
graphene whose interaction parameters place it at the phase
boundary between an antiferromagnetic spin-density wave and
a quantum spin Hall state [24].

This paper is organized as follows. In Sec. II we introduce
our model in terms of a tight-binding Hamiltonian with
nearest-neighbor hopping and density-density interactions.
Phonon modes are included upon expansion of the hopping
amplitude in the displacements and integrated out to give a
contribution to the electron-electron interaction. In Sec. III we
describe the FRG method and discuss the N -patch scheme as
well as the approximations employed. We present results on
the ordering tendencies in Sec. IV. In Sec. IV A we discuss
exclusive in-plane optical phonons to analyze their isolated
effect. The interplay with short-range Coulomb interactions
is studied and the impact of the electron-phonon coupling is
discussed in Sec. IV B. We summarize and draw conclusions
in Sec. V.

II. MODEL HAMILTONIAN

We consider a tight-binding model of electrons on the
bipartite two-dimensional honeycomb lattice with nearest-
neighbor hopping

H = −t
∑

〈i,j〉,s
(c†A,i,scB,j,s + H.c.), (1)

where c
(†)
A,i,s annihilates (creates) an electron in unit cell i on

sublattice A with spin s and analogously for sublattice B. The
first sum includes all neighboring sites denoted by 〈i,j 〉. They
are connected by the nearest-neighbor hopping amplitude,
which in graphene has been estimated to be t ≈ 2.8 eV. After
Fourier transformation with co,i,s = ∑

k exp(ik · ri)co,k,s/
√

N

and o ∈ {A,B}, the tight-binding Hamiltonian reads

H = −t
∑
k,s

(�kc
†
A,k,scB,k,s + H.c.), (2)

with �k = ∑
i exp(−ik · ai), where ai labels the primitive

lattice vectors together with zero, i.e., i ∈ {1,2,3}.
Explicitly, the ai are given by a1 = 0, a2 = √

3aex ,
and a3 =

√
3a
2 ex + 3a

2 ey , where a is the lattice constant.
Diagonalization of H gives two bands with two inequivalent
linear band crossing points at the Brillouin zone corners, the

Dirac cones at K and −K. With the spin-resolved density
operator ni,s = c

†
o,i,sco,i,s we account for repulsive on-site

nearest- and next-nearest-neighbor interactions

HI = U
∑

i

ni,↑ni,↓ + V1

∑
〈i,j〉,
s,s ′

ni,snj,s ′ + V2

∑
〈〈i,j〉〉,
s,s ′

ni,snj,s ′ .

(3)

An estimate for the interaction parameters can be obtained
from constrained random-phase approximations (RPAs) [25].
Diagonalizing the single-particle Hamiltonian provides
an orbital makeup for the interaction terms, i.e., a
momentum-dependent vertex in the band representation
V → V (k1,n1,k2,n2,k3,n3,n4) determined by four band
indices ni , and three independent momenta ki .

A. Inclusion of phonon modes

To determine the coupling of electrons and lattice displace-
ments, we expand the hopping amplitude in the displacement
fields u, based on the assumption that it depends on the distance
between neighboring sites, i.e.,

t → t − α‖(ui − uj ) · δ̂ij . (4)

The expansion depends on the bond direction δ̂ij pointing
along one of the three nearest-neighbor vectors. The expansion
parameter is determined by ab initio calculations to be
|α‖| ≈ 4.4–5.3 eV/Å with α‖ < 0 [19,26,27]. We introduce
the phonons by the usual quantization of the Fourier-
transformed displacement fields using the explicit expres-
sions ui = ∑

q exp(iq · ri)uq,A/
√

N and uj = ∑
q exp[iq ·

(ri − aj )]uq,B/
√

N for site i in sublattice A and its nearest
neighbor j in sublattice B. Further,

uq,o =
∑

λ

uλ
qeλ

q,o =
∑

λ

1√
2M�λ

q

(pλ,q + p
†
λ,−q)eλ

q,o. (5)

The carbon mass is denoted by M and p
(†)
λ,q is the annihilation

(creation) operator of a phonon in mode λ with momentum
q. Corresponding dispersions and polarizations are given by
�λ

q and eλ
q,o. This inclusion of lattice distortions in terms of

the phonon operators leads to the electron-phonon coupling in
orbital momentum space

δH = α‖√
N

∑
k,q,

s,λ

1√
2M�λ

q

× [
gλ

k(q)c†A,k,scB,k−q,s(pλ,q + p
†
λ,−q) + H.c.

]
, (6)

where gλ
k(q) = ∑

i(e
iq·ai eλ

q,A − eλ
q,B) · δ̂ie

−ik·ai . Similar cou-
plings were obtained for carbon nanotubes [28] and by a fit to
ab initio values in graphene [19].
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Integrating out the phonons in the functional integral
representation gives an effective electronic interaction

Hph−med = − α2
‖

2MN

∑
q,λ

∑
k,s,

k′,s ′

1

q2
0 + �λ2

q

× [
gλ

k(q)gλ
−k′(q)∗c†A,k,sc

†
A,k′,s ′cB,k′+q,s ′cB,k−q,s

+ gλ
k(q)gλ

k′(q)∗c†A,k,sc
†
B,k′−q,s ′cA,k′,s ′cB,k−q,s+ c.c.

]
,

(7)

mediated by the phonons. The multiple index k = (k0,k)
collects the fermionic or bosonic Matsubara frequency and
the wave vector.

In the following we will need expressions for the phonon
dispersion and polarization. In principle, a calculation of
the phonon spectrum would give eigenvectors with x and y

components of the displacements for a given lattice site that
vary with the phonon wave vector q. In this two-dimensional
bipartite system, the eigenvectors correspond to four possible
polarizations λ being orthogonal to each other. In density
functional theory (DFT) calculations it was shown that the
optical modes with wave vector close to � and the highest-
energy modes close to K,−K give the main contributions
to the electron-phonon coupling strength [29]. This is why
we will concentrate on them and use only their energy and
polarization in the phonon-mediated interaction (see Sec. IV).
This approximation greatly simplifies the study, but should
not affect the qualitative results, as the smaller variation of the
phonon energy due to the dispersion of the optical modes in
the denominator of Eq. (7) does not have a strong impact on
the effective interaction.

III. THE FRG METHOD

We use the functional renormalization-group approach to
describe the evolution from the bare action to an effective
action at low energy as a function of the energy scale in an
unbiased way, i.e., the structure of the effective low-energy
theory is not anticipated. This method accounts for effects
beyond mean field and RPA as it also includes the interplay
between different ordering tendencies. We use the FRG
approach for the 1PI vertices with a momentum cutoff. For
a recent review see Ref. [22]. The 1PI vertices are generated
by the effective action �, which is the Legendre transform of
the generating functional for the connected Green’s functions.
In the effective action, the bare propagator of the system G0 is
modified by an infrared regulator C�,

G0(ω,k,b) → G�
0 (ω,k,n) = C�(ξn,k)

iω − ξn,k
, (8)

with the single-particle energy ξn,k = εn,k − μ in band n

and the chemical potential μ. The regulator is chosen as a
step function, which suppresses the modes with energy less
than � and reads C�(ξn,k) = �(|ξn,k| − �). For numerical
stability, we have slightly softened the step function in the
actual implementation. With this modification of the bare
propagator, we obtain a scale-dependent effective action ��

and a variation of the scale � provides a RG flow. Integration
of the RG flow from an initial scale �0 (typically of the order

of the bandwidth) down to low energies � → 0 provides
a smooth interpolation between the bare and the effective
action of the system. During the lowering of the energy scale,
some components of the effective two-particle interaction V �

typically grow large and diverge at a critical scale �c > 0,
indicating an instability towards an ordered state. The pro-
nounced momentum structure of the near-critical interaction
vertex then allows one to extract an effective Hamiltonian for
the low-energy degrees of freedom and determines the leading
order parameter.

In the following, several approximations are employed to
numerically integrate the resulting RG flow equations for the
1PI vertices efficiently: We truncate after the two-particle
interaction vertex V �, which means that the results are of
second order in the interaction. The flow of V � provides the
essential information about the leading instabilities and we
further neglect the effect of self-energy corrections as they
couple to the flow of the interaction vertex only at third order
(see, e.g., Ref. [30]). In addition, we do not account for the
frequency dependence of the vertex V � and set the external
frequencies to zero to single out the most singular contri-
bution of the flow for the determination of the ground-state
properties of the system. This strategy has proven to provide
reliable results in a large number of different two-dimensional
fermionic solid-state systems (cf. Refs. [22,23]). Despite these
approximations, one obtains an infinite-order summation of
second-order diagrams that, importantly, accounts for the
competition between different channels.

The flow equation for the coupling function
V �(k1,k2,k3,n4) reads

d

d�
V �(k1,k2,k3,n4) = τ�

pp + τ�
ph,d + τ�

ph,cr , (9)

with ki = (ωi,ki ,ni) labeling the Matsubara frequencies, the
wave vectors, and the bands. The particle-particle channel is
given as

τ�
pp =

∑∫
V �(k1,k2,k,n′)L�(k,qpp)V �(k,qpp,k3,n4),

where
∑∫ = −A−1

BZT
∑

ω

∫
d2k

∑
n,n′ . The direct and the

crossed particle-hole channels are given by

τ�
ph,d =

∑∫
[−2V �(k1,k,k3,n

′)L�(k,qd )V �(qd,k2,k,n4)

+ V �(k,k1,k3,n
′)L�(k,qd )V �(qd,k2,k,n4)

+ V �(k1,k,k3,n
′)L�(k,qd )V �(k2,qd,k,n4)]

and

τ�
ph,cr =

∑∫
V �(k,k2,k3,n

′)L�(k,qcr )V �(k1,qcr ,k,n4),

respectively, and we define the wave vectors qpp = −k + k1 +
k2, qd = k + k1 − k3, and qcr = k + k2 − k3. Here ABZ

denotes the area of the first Brillouin zone. The loop kernel
reads

L�(k,k′) = d

d�

[
G�

0 (k)G�
0 (k′)

]
, (10)

with the free propagator G�
0 due to the neglect of the self-

energy.

035122-3



CLASSEN, SCHERER, AND HONERKAMP PHYSICAL REVIEW B 90, 035122 (2014)

1 2 3
4 5

6 7 8

9
10
11
12

131415
1617

181920

21
22
23
24

K 'K

KK

FIG. 1. (Color online) The left panel shows the interaction vertex
with spin convention (diagram on top). Below, we depict the loop
contributions coming from (a) the particle-particle channel, (b) the
crossed particle-hole channel, and (c) the direct particle-hole channel.
The right panel shows the discretization of the momentum depen-
dence (patching) in the Brillouin zone. Each patch is represented by
a wave vector near the Fermi level as indicated by the dots.

To solve the flow equations numerically, the wave-vector
dependence of the interaction vertex is discretized with a
patching scheme that divides the Brillouin zone into N patches,
in which the vertex is approximated to be constant. This pro-
cedure was established in Ref. [30] and successfully applied
in a large number of works (cf. Ref. [22]). The representative
momentum for each patch is placed close to the Fermi level.
Thereby the angular dependence of the interaction on the wave
vectors is taken into account. We choose N = 24 or 48 patches
as shown in Fig. 1 to check that our findings do not depend on
this choice. In the actual numerical evaluation of a diverging
interaction vertex, we stop the flow at a scale �IR where
the largest component of V� is of the order of ten times the
bandwidth and use this �IR as an estimate for the critical scale
�c. The flow to strong coupling signals that the self-energy
negligence is no longer valid. Self-energy corrections would

alter the low-energy spectrum, e.g., by the appearance of a
gap, and without these corrections, an emerging order appears
as a divergence. The critical scale �c can be interpreted as an
estimate for the temperature below which ordering occurs or
correlations of the order parameter become important.

IV. INSTABILITIES AND PHASE DIAGRAM

In this section we analyze the phases of the honeycomb
lattice system at temperature T = 0 as a function of the bare
interaction parameters U , V1, and V2 and the electron-phonon
couplings αN and αK that determine the impact of the phonons
with a wave vector close to � and K, − K, respectively.

A. Purely phonon-mediated interaction

We start with the study of the isolated effect of the
phonon-mediated electron-electron coupling. As mentioned in
the beginning, we focus on the phonons at � and K, − K. This
means that we set �λ

q = �� = const if q is close to � and λ

corresponds to the optical branches. For q in the vicinity of the
Dirac points and λ labeling the three highest-energy phonons
�λ

q = �K = �−K = const. The analogous approximation is
used for the polarization vectors eq,a,eq,b and all other modes
are neglected. This ansatz accounts for the phonons that have
been identified in the Raman spectrum of graphene and in DFT
calculations to give the strongest electron-phonon coupling
[19,29]. They are often referred to as E2 and A′

1 or A1,B1

phonons, respectively. It has been shown in Refs. [20,21] that
the latter modes can give rise to a an instability corresponding
to Kekulé ordering. We also find this to be the dominating
instability for equally strong coupling of both modes, whereas
for an enhanced coupling of the E2 phonons, a nematic bond
order is induced.

With these preliminaries and comments, we choose to
parametrize the phonon-mediated contribution to the electron-
electron interaction as

Hph−med = − 1

N

∑
k1,k2,k3

s,s ′

(
V AABB

k1,k2,k3
c
†
A,k3,s

c
†
A,k4,s ′cB,k2,s ′cB,k1,s + V ABAB

k1,k2,k3
c
†
A,k3,s

c
†
B,k4,s ′cA,k2,s ′cB,k1,s + H.c.

)
, (11)

V AABB
k1,k2,k3

=
{

αN

∑2
λ=1

1
{�λ

�}2 g
λ,�
k3

(k3 − k1)gλ,�
−k4

(k3 − k1)∗ for k3 − k1 close to �

αK

∑3
λ=1

1
{�λ

±K}2 g
λ,±K
k3

(k3 − k1)gλ,±K
−k4

(k3 − k1)∗ for k3 − k1 close to ±K,
(12)

V ABAB
k1,k2,k3

=
{

αN

∑2
λ=1

1
{�λ

�}2 g
λ,�
k3

(k3 − k1)gλ,�
k2

(k3 − k1)∗ for k3 − k1 close to �

αK

∑3
λ=1

1
{�λ

±K}2 g
λ,±K
k3

(k3 − k1)gλ,±K
k2

(k3 − k1)∗ for k3 − k1 close to ±K,
(13)

with k4 = k1 + k2 − k3 due to momentum conservation
and fixed polarization in g

λ,Q
k (q) = ∑

i(e
iq·ai eλ

Q,A − eλ
Q,B) ·

δ̂ie
−ik·ai as motivated before. Here {�λ

Q} labels the value of the
phonon energy, so the interaction parameter αN/K has units of
energy.1 As is well known and also discussed in the context of

1αN and αK should not be confused with α‖ from the expansion
of the hopping amplitude αN/K = α2

‖/2M[�λ
�/K]2. With the ab initio

the RG, e.g., in Ref. [31], the phonon-mediated interaction is
suppressed for frequencies larger than the phonon frequency
�. Resolving this frequency dependence of the interactions in
the RG flow with frequency-independent interactions requires
some physical insights, at least if one wants to reduce the

values for α‖ from above, the interaction parameter is of the order
αN/K ≈ 0.12t − 0.17t .
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numerical effort.2 Usually one tries to replace the frequency
dependence with a dependence on the electronic excitation
energy. One reasonable choice for studying the phonon-
mediated interaction case separately would then be to only
include interactions of electrons with excitation energies below
�. This would correspond to starting the RG flow only at the
RG scale �0 = �. In this work, however, we chose to start the
flow already at the bandwidth �0 = 3t . This can be viewed as
ignoring the retardation and artificially enhances the impact
of electron-phonon interactions and makes its effects clearly
visible.

We address several scenarios for the electron-phonon
coupling by different choices for the interaction parameters
αN and αK . We study the cases where only phonons from
the vicinity of the � point (αK = 0) or only phonons close to
the Dirac points (αN = 0) contribute. Moreover, we include
their mutual influence by tuning through different ratios of

αN/αK with the most physical case around αN/αK ≈ 1. The
investigated parameter range spans from αN/K = 0 to αN/K =
t . In these flows, divergences develop only if the interaction
parameter αN/K is large enough; otherwise the system is a
stable semimetal. This phenomenon is clearly related to the
vanishing density of states at the Fermi level and has been
seen for many other types of interaction-driven instabilities for
fermions with this spectrum before (see, e.g., Refs. [7,8,13]).
First, we discuss the results for αN = αK . The discretized bare
interaction, which is the initial value of the flow equation, is
shown in Fig. 2(a). Here the critical parameter value for an
instability to occur at half filling is αc

K ≈ 0.28t [cf. Fig. 2(b)].
The momentum structure of the effective interaction close to
the critical scale is presented in Fig. 2(b). It has the same
structure as the bare phonon-mediated interaction, however,
only for momentum transfer with k3 − k1 = K and k3 − k1 =
−K. Using this relation in the coupling function V (k1,k2,k3)
gives the effective low-energy Hamiltonian

HK= − Veff

N

∑
λ

∑
k,s

[
gλ

k(K)c†A,k,scB,k−K,s + gλ
k(−K)∗c†B,k+K,scA,k,s

]×∑
k′,s ′

[
gλ

k′(−K)c†A,k′,s ′cB,k′+K,s ′ + gλ
k′(K)∗c†B,k′−K,s ′cA,k′,s ′

]
,

(14)

with Veff > 0. For this expression, we perform a mean-field decoupling with the molecular field

�λ
ph(Q) = Veff

N

∑
k,s

〈
gλ

k(K)c†A,k,scB,k−K,s + gλ
k(−K)∗c†B,k+K,scA,k,s

〉
, (15)

which also serves as order parameter field, e.g., in a mean-field approach. This yields

HK≈−
∑
k,s,λ

{
�λ

ph(−K)
[
gλ

k(K)c†A,k,scB,k−K,s+gλ
k(−K)∗c†B,k+K,scA,k,s

]+�λ
ph(K)

[
gλ

k(−K)c†A,k,scB,k+K,s+gλ
k(K)∗c†B,k−K,scA,k,s

]}
,

(16)

ignoring the constant term.
If we compare this expression to the coupling Hamiltonian

(6) we recover the contribution of the ±K phonons from
the beginning with the identification �λ

ph(±K) = |α‖|uλ
±K.

However, in order to get a diverging phonon-mediated in-
teraction parameter αK , the phonon frequency must tend
to zero. Thus the observed instability results in a static
lattice distortion formed by the modes from ±K, which
modulates the hopping strength according to Eq. (4) by
δtij = u exp(iKri) exp(−iKaj )�(ri) + c.c., with amplitude u

and �(ri) = [exp(iKaj )eλ
K,A − eλ

K,B ] · δ̂ij . Hence the hopping
is nonuniform in the three bond directions resulting in a tripled
unit cell. This distortion is also known as Kekulé order and is
depicted in the inset of Fig. 3(b). Correspondingly, close to
the Dirac points, the eigenenergies extracted from Eq. (16)
coincide with previous investigations of the Kekulé phase
[35,36] and show the opening of a gap.

Now we tune the interaction to both extreme cases where
one of the parameters is zero. For αN = 0, we again find the
Kekulé distortion as the leading instability. The only difference

2Note that in some recent FRG works [32–34], the frequency
dependence of the interactions have been taken into account.

is that the critical αK needed to induce the ordering is slightly
decreased to αc

K ≈ 0.26t , as visible in Fig. 3(a). This already
shows that the small-wave-vector phonons controlled by αN

have a destructive influence on the large-wave-vector phonons
controlled by αK , i.e., there is some degree of phonon-phonon
interaction.

For αK = 0, the behavior is qualitatively different. As
shown in Fig. 3(a), the instability does not occur until a
threshold value αc

N ≈ 0.78t is reached and cannot be due
to ±K phonons because they are not included in this case.
Instead we find the momentum structure at low energies of
Fig. 2(c), which mirrors the bare phonon-mediated interaction
for zero momentum transfer k3 = k1. The extracted low-
energy Hamiltonian is

HN = − V̄eff

N

∑
λ

∑
k,s

(
gλ

kc
†
A,k,scB,k,s + gλ∗

k c
†
B,k,scA,k,s

)

×
∑
k′,s ′

(
gλ

k′c
†
A,k′,s ′cB,k′,s ′ + gλ∗

k′ c
†
B,k′,s ′cA,k′,s ′

)
, (17)

with V̄eff > 0 and the abbreviation gλ
k(q = 0) = gλ

k . The
corresponding mean-field Hamiltonian results in

HN ≈ −2
∑
k,s,λ

�λ
ph(gλ

kc
†
A,k,scB,k,s + gλ∗

k c
†
B,k,scA,k,s), (18)
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FIG. 2. (Color online) Bare and effective phonon-mediated inter-
actions in units of the hopping amplitude t : (a) bare phonon-mediated
interaction from Eq. (11), (b) effective low-energy interaction near
the critical scale for dominating αK , and (c) effective low-energy
interaction near the critical scale for dominating αN . The numbers
on the axes correspond to the patches of Fig. 1. The horizontal
axes shows k2, the vertical k1 and k3 is fixed on the first patch.
Orbital combinations are (a)–(c) o1 = o4 = o2 = o3 (left panels) and
o1 = o2 = o3 = o4 (right panels).

where

�λ
ph = V̄eff

N

∑
k,s

〈
gλ

kc
†
A,k,scB,k,s + gλ∗

k c
†
B,k,scA,k,s

〉
(19)

is the order parameter. Comparison to the coupling Hamil-
tonian (6) now gives the static lattice distortion due to the
zone center E2 phonons with 2�λ

ph = |α‖|uλ
0 . For q = 0,

the displacement of neighboring sites has different signs
eλ

0,A = −eλ
0,B . This means that the two sublattices are moved

in opposite directions in this state, changing the hopping to
δtij = ±u · δ̂ij with constant displacement vector u and sign
modulation between sublattices. The sixfold symmetry of the
original lattice is reduced to a twofold one; the translational
symmetry of the underlying Bravais lattice, however, is
maintained, corresponding to a nematic ordering pattern. The
best energy gain is a distortion along the bonds between two
sites. As a result, we obtain the configuration shown in the
inset of Fig. 3(b), where the hopping along one bond direction
is enhanced and the Dirac points are shifted away from the
Brillouin zone corners. Such a state was studied in Ref. [35].

In Fig. 3(b) we also show the evolution of the critical scale
for fixed supercritical αN when αK is increased. We clearly
see that the Kekulé phonons with large-wave-vector transfer
reduce the scale for the nematic instability and push it to zero
already for αK ≈ 0.2αN . This exhibits a clear anharmonic

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

αK αN

c
t

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

αN t or αK t

c
t

(a)

(b)

FIG. 3. (Color online) (a) Critical scale as a function of the
phonon-mediated interaction parameter. For αN = αK (dashed line)
and αN = 0 (solid line) the Kekulé state is induced, whereas for
αK = 0 (dot-dashed line) a nematic bond order develops. With
particle-particle contributions only and αN = αK (dotted line) a
conventional superconducting ground state is favored. (b) Critical
scale as a function of the ratio αK/αN at fixed αN = 0.8t . The insets
show the nematic (αK/αN � 0.15) and the Kekulé (αK/αN � 0.3)
state, respectively.

interaction between phonon modes with different wave vectors
that is revealed by the FRG treatment. When αK is increased
further, one reaches the Kekulé-ordered phase again. Note that
the rather high critical scales found here are not to be taken
literally due to the mentioned overestimation of the phonon
effects when the retardation is ignored.

Usually, in more than one dimension, an important property
of the electron-phonon interaction is to induce Cooper pairing,
which seems to be suppressed here. We can indeed recover
a conventional phonon-mediated superconducting state, but
only if the RG flow equation for the interaction is reduced
to the particle-particle term and all particle-hole terms are
switched off. Through this the integration of the FRG equations
is identical to a ladder summation in the particle-particle
channel. However, the critical interaction strength needed to
observe a flow to strong coupling for such an undisturbed
Cooper instability is larger than in the bond-ordering case.
Here, without the particle-hole term, we find αSC ≈ 0.58t for
αK = αN . This shows that phonon-mediated superconductivity
arises in the particle-particle channel as one would expect,
however only when the competing contributions from the
particle-hole channels are completely neglected.
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B. Inclusion of density-density interactions

We now also include the Coulomb-induced repulsive
density-density interactions U , V1, and V2 as given in Eq. (3).
First, we include, in addition to the phonon-mediated interac-
tion, each one of the three short-range interactions U , V1, and
V2 separately. This shows if the phonon-mediated interaction
amplifies or weakens the effect of the respective electronic
interaction. The results are compared to the case without the
consideration of phonons.

Running the FRG flow with a fixed, supercritical on-site
interaction for different phonon-mediated interaction strengths
leads to an antiferromagnetic spin-density wave (SDW) as in
the case without phonons. However, with increasing phonon-
mediated interactions, the critical scale of the flow is enhanced.
This amplifying tendency is also observed if we determine the
critical on-site interaction needed to induce an instability. It
reduces from Uc = 2.6t to Uc = 1.3t if a phonon-mediated
interaction of, e.g., α = 0.2t , is turned on (cf. Fig. 4). For
the nearest-neighbor interaction, we obtain qualitatively the
same behavior. As without phonons, the nearest-neighbor
interaction triggers a charge-density wave (CDW) whose
critical scale is increased with increasing phonon-mediated
interaction. However, this effect is not as large as in the

KK SDWSDW

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8

U t

c
t

KK CDW
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0
0.2
0.4
0.6
0.8
1.0

V1 t

c
t

KK
QSHQSH

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

V2 t

c
t

FIG. 4. (Color online) Critical scale as a function of the density-
density interaction (from top to bottom) U , V1, and V2 for different
values of the phonon-mediated interaction α ∈ {0.28t,0.24t,0.20t,0}
(solid, dashed, dotted, dot-dashed lines, respectively). For small
density-density interactions the gray-shaded area shows the ap-
pearance of the Kekulé ordering tendency (K). For larger density-
density interactions we recover the SDW (on-site interaction, top
panel), CDW (nearest-neighbor interaction, middle panel), and QSH
(next-nearest-neighbor interaction, bottom panel) states.

FIG. 5. (Color online) Phase diagram for the rescaled ab initio
density-density interaction profile in graphene from Ref. [25] with
rescaling parameter c and the electron-phonon coupling strength
α = αN = αK . The density-density interactions are rescaled according
to {U/t,V1/t,V2/t} ≈ {3.3,2.0,1.5} → c{U/t,V1/t,V2/t}. In the
case without electron-phonon coupling we find a quantum spin
Hall state being favored for this interaction profile; cf. Ref. [24].
In agreement with the previous observations, the EPC supports the
tendency towards the SDW phase.

case of the on-site interaction. Nevertheless, the critical V1

changes from V c
1 = 0.4t for α = 0 to V c

1 = 0.25t for α = 0.2t .
The situation is different if we consider only a next-nearest-
neighbor interaction, which induces a quantum spin Hall state
(QSH). Including an electron-phonon coupling suppresses the
tendency for the formation of a QSH state as shown in the
bottom panel of Fig. 4.

These tendencies are confirmed when we run the FRG
flow with all interactions, i.e., density-density repulsion up
to the second nearest neighbor and the phonon-mediated
interaction, included. The parameter range that we account
for extends from zero through the constrained RPA values
from Ref. [25]. They are taken as upper bounds because the
FRG tends to overestimate the critical scales. A summary of
this investigation is given by Fig. 5.

V. CONCLUSION

In this work we have analyzed the impact of in-plane
phonons on possible ground-state orderings in a simple theo-
retical model for monolayer graphene. We focused on phonon
eigenmodes arising from the modulation of nearest-neighbor
bonds between the carbon π orbitals on the honeycomb lattice
with wave vectors near � and K, − K. These modes, classified
as E2 for small-wave-vector transfer and A′

1, A1, and B1 for
large-wave-vector transfer, are known from DFT calculations
to couple most strongly with the electrons.

The electron-phonon coupling and the phonon dynamics
for these modes were transformed into an effective electron-
electron interaction, with some idealizations. Studying the
effects of the phonon-mediated interaction without including
Coulomb interactions between the electrons, we found the
following results. Near charge neutrality (i.e., for the undoped
system) the dominant instability is in the particle-hole channel
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and not in the pairing channel as is usually the case in non-
nested systems. While our study may not be fully quantitative,
the picture we found is that the phonons with large momentum
transfer dominate in the low-energy effective interactions and
that the predominant instability is towards Kekulé bond order,
where the unit cell is tripled by a pattern of strengthened
and weakened bonds. This state opens a gap at the Dirac
points, i.e., is an insulator. Various works have argued for the
existence of this state due to Coulomb interactions [20,21].
Previous RG studies of the same model [7,13,24] did not find
the Kekulé order for Coulomb interactions of density-density
type in the effective model, but it now occurs due to the
bond-bond interactions mediated by the phonons. We can
also weaken the influence of the large-wave-vector phonons
in the effective electron-electron interaction, emphasizing the
small-q phonons. In this case, a nematic instability becomes
dominant where one of the three bond directions is enhanced
with respect to the other two directions. The resulting spectrum
features shifted Dirac points. Considering the competition
between the different phonon channels, we found that the
large-wave-vector Kekulé phonons considerably weaken the
tendencies towards nematic order driven by the small-wave-
vector phonons. This means that there is a significant amount of
non-RPA or anharmonic physics at low-energy scales, where
phonons with different wave vectors interact destructively.

More realistically, the phonon-mediated interaction should
be considered together with the Coulomb interaction between
the electrons. The Coulomb interactions alone have been
studied with the RG approach and many other methods on hon-
eycomb lattices in a number of works (e.g., Refs. [7,8,13,37]).
In particular, quantum Monte Carlo calculations [5,10,11]
have firmly established that the ground state for pure on-site
repulsions becomes an antiferromagnetic SDW state when the
Hubbard U exceeds a threshold value. For interactions that
extend further in space, only less controlled techniques are
applicable. Renormalization-group and saddle-point calcula-
tions [8] found that charge-density-wave states and interaction-
induced QSH states are relevant competitors, depending on
the profile of the effective interaction. Adding phonons to
this interplay of the electronic ordering tendencies shifts the
balance toward the SDW, while the competing QSH channel
gets weakened. Interestingly, the bond phonons considered in
the work actually increase the SDW and also potential CDW
ordering tendencies. This can be seen most clearly in the

lowering of the threshold value for the Hubbard interaction
U to change the semimetal into the SDW state when the
electron-phonon interaction is turned on. For the QSH state
we found the reversed trend, indicating a destructive interplay
with the phonons.

Hence, one important upshot of our study is the identifi-
cation of the most relevant phonon-mediated effects on the
ground state. Based on our study, we do not expect that the
nature of potential ground-state ordering or, more realistically
according to the experimental state in single-layer graphene,
the nature of the leading correlations if the overall interaction
strength is insufficient to gap the semimetal is determined by a
phonon-mediated instability. However, we have shown that the
phonon sector may actually shift the phase boundaries between
different electronically driven ordering tendencies. Hence,
phonon effects may yet play an important role in deciding
which of these channels wins. We can also try to extrapolate
our results for the single-layer honeycomb lattice to multilayer
graphene, where experiments indeed show that the semimetal
gives way to an ordered state at low temperatures that is
gapped [38] or shows a nongapped spectrum reconstruction
[39]. Previous RG studies for electronic interactions in bilayer
graphene in fact found a nematic state as the leading instability
[40,41]. From our theoretical experience with multilayer
honeycomb systems [24] we can state that the main ordering
tendencies are still the ones of the single layer, while the
stacking only modifies the available density of states at low
scales. Then we should expect that in the multilayer system,
the phonon degrees of freedom have a similar influence in
modifying the interplay of the electronic ordering tendencies
as we find here. This makes the SDW state a more robust
candidate to explain the observed gaps. Notably, even though
the SDW state does not feature spin-resolved edge states like
the QSH state, it may still be useful resource for nanospintronic
devices when the multilayer system is slightly doped and
gated [42].
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[25] T. O. Wehling, E. Şaşioğlu, C. Friedrich, A. I. Lichtenstein, M. I.
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