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Interplay of charge and spin fluctuations of strongly interacting electrons on the kagome lattice
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We study electrons hopping on a kagome lattice at third filling described by an extended Hubbard
Hamiltonian with on-site and nearest-neighbor repulsions in the strongly correlated limit. As a consequence
of the commensurate filling and the large interactions, each triangle has precisely two electrons in the effective
low-energy description, and these electrons form chains of different lengths. The effective Hamiltonian includes
the ring exchange around the hexagons as well as the nearest-neighbor Heisenberg interaction. Using large-scale
exact diagonalization, we find that the effective model exhibits two phases: If the charge fluctuations are small,
the magnetic fluctuations confine the charges to short loops around hexagons, yielding a gapped charge-ordered
phase. When the charge fluctuations dominate, the system undergoes a quantum phase transition to a resonating
plaquette phase with ordered spins and gapless spin excitations. We find that a peculiar conservation law is
fulfilled: the electron in the chains can be divided into two sublattices, and this division is conserved by the ring
exchange term.

DOI: 10.1103/PhysRevB.90.035118 PACS number(s): 71.10.Fd, 75.10.Jm, 71.10.Hf

I. INTRODUCTION

Strongly correlated systems on frustrated lattices can
exhibit very interesting physics. The competition between dif-
ferent interactions often results in multiple low-energy states
which are degenerate or nearly degenerate with each other.
Consequently, quantum fluctuations become very important at
low temperatures and can lead to emergent phases of matter
with exotic properties.

One such example is spin ice on the pyrochlore lat-
tice, which hosts collective excitations that form magnetic
monopoles [1]. At very low temperatures, where quantum
fluctuations become important, these models have been shown
to stabilize an artificial quantum electrodynamics, supporting
magnetic and electric charges as well as linearly dispersing,
gapless excitations (photons) [2–5]. Another exciting example
is the quantum Heisenberg model on the kagome lattice [6],
which is believed to exhibit a Z2 topological liquid ground
state, carrying anyonic excitations [7–9]. Recently, indications
for the existence of a Z3 spin liquid have been observed when
a finite magnetic field is applied [10]. Both examples are
systems involving localized spins. The effect of frustration
on charge degrees of freedom has received less attention so
far. Still, in a number of recent works, it has been shown that
models at partial filling (i.e., itinerant systems) on frustrated
lattices support fractional charges in two and three dimensions
[11–14]. This fact is quite interesting, as there exist only a few
examples of models that support fractional charges in higher
dimensions. One very interesting and important question is
about the interplay of spin and charge degrees of freedom. For
a checkerboard lattice model at quarter-filling, the interplay
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between charge and spin degrees of freedom can stabilize a
robust insulating resonating singlet-pair crystal phase [15,16].
Previous studies on the kagome lattice at different filling
factors have revealed rich phase diagrams including various
symmetry-broken as well as topological phases [17,18]. At
filling factor 1/6, a new mechanism for ferromagnetism on the
kagome lattice was found [19].

In this paper, we study the interplay between spin and
charge degrees of freedom on the kagome lattice at a filling
factor of n = 2/3. Most interestingly, we find that the spin
fluctuation in the model can drive the systems through
a phase transition into a charge-ordered phase. We start
from an extended Hubbard model on the kagome lattice for
which we derive a low-energy Hamiltonian using degenerate
perturbation theory. By considering different limiting cases,
we obtain some insight into the different phases of the
model. In the limit where antiferromagnetic spin fluctuations
dominate, a “short-loop” phase is formed in which the charges
align around hexagons. On the other hand, if the charge
fluctuations dominate, we find a “plaquette-ordered” ground
state. For the latter limit (no spin fluctuations), we find
a very peculiar conservation law, namely, the Hamiltonian
conserves the magnetization on dynamic sublattices. To get a
picture of the whole phase diagram, we perform a large-scale
exact diagonalization study of clusters up to N = 36 sites
in which we calculate the energy spectrum and different
correlation functions from which we conclude the phase
diagram.

This paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian and derive the low-energy effective
Hamiltonian. We then consider the limiting cases in Sec. III,
allowing us to make some statements about some corners of
the phase diagram. The full phase diagram is then evaluated
using exact diagonalization in Sec. IV. We conclude by giving
a short summary and outlook in Sec. V.
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FIG. 1. (Color online) (a) A configuration satisfying the con-
straint of zero or one electron per site and two electrons of arbitrary
spin per triangle. (b) Quantum fluctuations allow tunneling between
different degenerate configurations of spins and charge: ring exchange
with amplitude g and spin-exchange with an amplitude of J . The ring
exchange processes change the number of electrons on the starred
(blue) sublattice shown in (c), always by two. This is crucial for
gauging away the sign of g explained in the text. (d) All allowed
configurations can be expressed in terms of a two-colored fully packed
loop model on the honeycomb lattice; as an example, we show a
representation of the configuration presented in (a).

II. MODEL HAMILTONIAN

Here we consider the extended Hubbard model on a kagome
lattice with on-site and nearest-neighbor repulsive interactions
U and V , respectively, with the Hamiltonian

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.)

+V
∑
〈i,j〉

ninj + U
∑

i

ni↑ni↓. (1)

The operators ciσ (c†iσ ) annihilate (create) an electron with
spin σ at site i, ni = ni↑ + ni↓ is the electron number operator
with niσ = c

†
iσ ciσ , and the notation 〈i,j 〉 refers to pairs of

nearest neighbors. Throughout this paper, we focus on the
case of one-third filling, in the strongly correlated regime,
where |t | � V < U . For this filling there are two electrons on
each triangle on average (i.e., the total number of electrons is
Ne = 2N/3, where N is the number of lattice sites, providing
a filing factor n = Ne/N = 2/3).

In the strong-coupling limit, when t = 0 and U > V > 0,
the energy is minimized if there are exactly two electrons per
each triangle of the kagome lattice with no double-occupancy:
this is analogous to the case of magnetite as discussed in
Ref. [20]. An example configuration fulfilling these constraints
is shown in Fig. 1(a). The number of such configurations is
macroscopically degenerate: in addition to the trivial 22N/3

spin degeneracy, the number of charge configurations also

grows exponentially with the system size. The ground-state
configurations on the kagome lattice can be mapped to two-
colored fully packed loop configurations on the honeycomb
lattice [particles are sitting here on links of the honeycomb
lattice, and the two different colors encode the spin orientation;
see Fig. 1(d)]. The charge degrees of freedom (i.e., neglecting
the color) can be equivalently described by a dimer model by
exchanging the role of occupied and empty bonds. Using this
mapping, the degeneracy of different charge configurations
can be calculated exactly using Pfaffians [21] and is given
as ∼1.1137N for a honeycomb lattice with N bonds (corre-
sponding to N kagome sites). The total degeneracy is then the
product of the spin degeneracy and the charge degeneracy; i.e.,
∼ 22N/3 × 1.1137N .

The macroscopic ground-state degeneracy is lifted when
quantum fluctuations are taken into account. The effective
Hamiltonian that connects a manifold of degenerate states can
be obtained from a perturbative expansion of the Hamiltonian,
Eq. (1), in t/V and t/(U − V ). By keeping only the lowest
order of nonvanishing terms, one obtains the effective Hamil-
tonian as the sum of two parts:

Heff = Hring + Hspin. (2)

The first term describes a ring exchange of three electrons
occupying every other site on a hexagon of the kagome lattice
and is given as

Hring = −g
∑
{�}

h�, (3)

with an effective ring-exchange amplitude g = 6t3/V 2 and

h� =
∑

{σ,σ ′,σ ′′}
(c†nσ ′′cmσ ′′c

†
lσ ′ckσ ′c

†
jσ ciσ + H.c.). (4)

The sum is performed over sites of the hexagon and all
spin orientations. The indices i, j, k, l, m, and n are sites
oriented clockwise on a hexagon yielding the dynamics
sketched in Fig. 1(b); i.e., three electrons hop collectively
either clockwise or counterclockwise around the hexagons.
Clearly, this ring exchange process preserves the number
of electrons on each triangle, and if applied to a state that
belongs to the ground-state manifold, the resulting state will
also belong to the same manifold. Note that the fermionic
sign in expression for Hring can be gauged away, yielding
a bosonic model [14]. Furthermore, the overall sign of g

can be transformed by a simple gauge transformation which
multiplies all configurations by the factor iNstar , where Nstar is
the number of electrons on the sublattice shown in Fig. 1(c).

The second term in the effective Hamiltonian, (2), is the
nearest-neighbor Heisenberg exchange

Hspin = J
∑
〈i,j〉

(
2SiSj − 1

2
ninj

)
, (5)

where

J = 2t2

U − V
+ 2t3

V 2
. (6)

In the ground-state manifold, each electron has two occupied
neighboring sites (one on each of the two corner-sharing
triangles), so that closed loops are formed in a system with
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FIG. 2. (Color online) Values of the parameter α defined in
Eq. (7) as contour plots on the plane of |t |/U and |t |/V . (a) For
t > 0 the exchange is always antiferromagnetic, while (b) for t < 0
the exchange becomes ferromagnetic [shaded (pink) region] for large
on-site repulsion U , as it follows from the perturbative expansion
up to third order in the hopping, Eq. (6). The effective Hamiltonian
describes the region close to the origin in the unshaded (white) region
U > V and U > 0.

periodic boundary conditions. These loops are like spin chains
and the exchange Hamiltonian Hspin acts on the spins of the
electrons in these closed loops without modifying the charge
configuration. The length of the loops is always even, and the
shortest loop length is 6. For U 	 V the first term in Eq. (6),
proportional to t2, becomes small compared to the term that is
∝t3, so that the sign of the exchange depends on the sign of
the hopping amplitude t , allowing antiferromagnetic as well as
ferromagnetic exchanges (analogously to the one-dimensional
case considered in Ref. [22]). One important aspect of the
effective model, Eq. (2), is that g and J can be regarded as
nearly independent variables: One can tune the value of J by
changing U , without affecting g. We can reparametrize them
by a single variable,

α = |g|
|g| + |J | , (7)

which falls within 0 � α � 1. In the limiting case α → 0 we
can neglect the effect of the ring exchange term. This happens
when V → U (but still V > U ), as due to the divergence in
Eq. (6), the effective exchange becomes much larger than g.
In the limit of V � U , α approaches α → 3/4 as

α = 3

4
− 3V 2

16tU
+ O(1/U 2). (8)

However, the overall behavior is not as simple and in the
following we consider the different signs of the hopping t

separately: Figures 2(a) and 2(b) show contour plots of α on
the plane U and V (more precisely, t/U and t/V ) for t > 0
and t < 0, respectively.

For t > 0, the exchange is always antiferromagnetic and
0 < α � 3/4. To increase α from the α = 0 limit at U = V ,
we need to increase U compared to V , and from Eq. (8) we
find the upper bound as 3/4.

The situation is more involved when t < 0: we encounter
both ferromagnetic and antiferromagnetic J , and α can take
values 0 < α � 1. The line α = 1 in Fig. 2(b) is determined by
the antiferromagnetic ∝t2 term, canceling the ferromagnetic
∝t3 term in J [see Eq. (6)]. When the effective exchange is

ferromagnetic, the values of α are limited to 3/4 � α < 1: as
U increases from the α = 1 line, α decreases down to 3/4 for
U 	 V [Eq. (8)]. The antiferromagnetic exchange is realized
by decreasing U from the α = 1 line toward U = V , which
decreases α down to 0. These factors indicate that, with a
suitable choice of the values of interactions and hoppings, we
can select antiferromagnetic exchange with arbitrary value of
0 < α < 1.

Here, let us mention that we can link our model to the
“flat-band” ferromagnetism: the Hubbard model with t > 0
and n � 1/3 has been proven to be ferromagnetic for any
U > 0 and V = 0 [23,24]. Furthermore, the n = 1/3 case
with |t | � V � U is also proven to exhibit a ferromagnetic
ground state [19]; thus here we extend the possibility of a
ferromagnetic ground state also to filling factor n = 2/3.

In the remainder of the paper, we consider how the effective
Hamiltonian lifts the degeneracy of the ground-state manifold
in the strong-coupling limit.

III. LIMITING CASES

It is instructive to first consider the two terms in the effective
Hamiltonian, Eq. (2) separately. This corresponds to the setting
α = 1 and α = 0. Understanding these two limits will help us
get a picture of the full phase diagram.

A. Plaquette phase of the ring exchange Hamiltonian (α = 1)

At α = 1, the effective Hamiltonian reduces to Hring given
by Eq. (3). First, we use the mapping to the two-color fully
packed loop model [see Fig. 1(d)] to understand the charge
dynamics. Second, we discuss a hidden symmetry of this
model that yields large degeneracies.

1. Resonating plaquettes and winding numbers

When the spins of the electrons are all pointing in the
same direction (e.g., up; S = Sz = Smax

tot ), the spins can be
omitted and the relevant degrees of freedom are the positions
of the charges. As described in Sec. II, the charge problem
can be mapped to a dimer model on the honeycomb lattice.
The quantum-dimer model on the honeycomb lattice with
resonances on the neighboring disjunct hexagons has been
shown to have a gapped, plaquette-ordered ground state
with an off–diagonal order parameter [25]: the so-called
“plaquette phase.” The ground state is threefold degenerate in
the thermodynamic limit, breaking the translational symmetry
of the lattice. The plaquette phase, when mapped back to the
kagome lattice model, hosts electrons resonating around the
hexagons (see Fig. 8, right). Then, one can define conserved
quantities (winding numbers) that can be used to classify
the states in the Hilbert space, similar to the quantum-dimer
model on a square lattice [26]. In our case, Hring conserves
the number of electrons along the straight lines parallel to
the edges of the hexagons in the kagome lattice. Actually, the
number of linearly independent winding numbers is only two
when the system is put onto a torus (i.e., when considering
standard periodic boundary conditions). The Hilbert space is
divided into subspaces (sectors), as only states having the same
winding numbers are connected by Hring.
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FIG. 3. (Color online) Dynamic sublattice structure defined on a
loop of charges, consisting of an even number of sites. The effective
ring exchange denoted by arrows preserves the magnetization on each
of the dynamic sublattices A and B (see Appendix A for details).

2. Hidden conservation law

In what follows, we investigate the effect of the ring
exchange on the spins of electrons in the loops. We show that,
in addition to the trivial conservation of the total z component
Sz

tot and the total spin Stot, a hidden conservation law emerges,
which we describe below.

Let us introduce the dynamic two-sublattices which are
defined on top of the electron loops (Fig. 3): starting from
an arbitrary choice of the loop configuration of electrons, we
assign the bipartite labels, A and B, to each electron in the loop;
this is possible because loops consist of even-number sites. To
be more precise, the rules to construct the dynamic sublattice
are simple: (i) neighboring electrons have different sublattice
labels, and (ii) next-nearest-neighbor electrons have the same
sublattice label on each hexagon of the kagome lattice. For
example, we find hexagon configurations which are completely
filled (ABABAB as we go around the hexagon) or depleted
hexagons such as AOAOAO, ABAOAO, and ABABAO (here the
O denotes empty sites). Once we have the configuration which
fulfills (i) and (ii), the effective Hamiltonian Hring conserves
this rule: After operating Hring arbitrary times, one finds that
the bipartite configuration is perfectly retained: each electron
can be assigned not only the spin, but also the label denoting
the dynamic sublattice. The proof of this conjecture is given
in Appendix A. Here, note that even if we return to the same
charge configuration at some point, the sites that were occupied
by A electrons could all be replaced with B electrons, and
vice versa. In fact, even though the bipartite sublattice rule is
maintained in the loops, the absolute locations of A and B are
not fixed, which is the reason we call them “dynamic.”

Next, we assign the spins to the electrons in the loops.
Since the electrons in the A and B sublattices never exchange
with each other, the total Sz

A and Sz
B on each of the dynamic

sublattices is a conserved quantity, so it is a good quantum
number. This is true not only for the z component, but also
for SA and SB . As a consequence, the Hilbert subspaces of a
fixed winding number are further divided into sectors that do
not mix the spin Sz on the two sublattices. For a system with
the magnetization Smax − n we find �n/2 + 1 disconnected
sectors; e.g., if we take Smax − 2, namely, flipping two spins
from a fully spin polarized configuration, we can either flip
both spins on one of the dynamic sublattices or one spin on
each of the sublattices, yielding two disjoint sectors. In fact,

 0

 0.1
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 0.3

 0.4

Γ Κ Μ
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G
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k
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FIG. 4. (Color online) Energy spectrum of the N = 36 cluster
at α = 1. We set one of the two dynamic sublattices to be fully
polarized as SB = 6 while varying the spin SA of the other sublattice.
The ground state is realized at the � point for SA = 6, indicating that
both dynamic sublattices hold maximal spins.

by keeping Sz
tot = Sz

A + Sz
B , the number �n/2 + 1 is equal to

the number of ways in which one can add two integers.
The hidden conservation law yields a spin degeneracy.

To show this, we introduce the PAB operator that exchanges
the A and B sublattice labels of the electron operators (note
that this operator does not change the charge configuration).
Since P 2

AB = 1, the wave functions are either even or odd
with respect to PAB , with eigenvalues ±1. The ring exchange
Hamiltonian and the SA + SB commute with the PAB , while
the SA − SB does not. However, we can define the operator,

Qμν = (
S

μ

A − S
μ

B

)(
Sν

A − Sν
B

)
, (9)

which commutes with both the PAB and the Hring (where
μ,ν = x,y,z). The Qμν has nonvanishing matrix elements
between total spin states that differ by 2, so these states
are also degenerate in energy [more precisely, the Qμν +
Qνμ − (2/3)δμνQ

ηη is a rank 2 tensor operator]. For example,
applying the Q−− to the highest weight state of the maximal
spin we create a state that is a linear superposition of Smax

tot
and Smax

tot − 2 and is degenerate with the Smax. Regarding
the ground state, we find that the total spin on A and B

dynamic sublattices is maximal, SA = SB = N/6. This could
be observed explicitly for the cluster with N = 36 sites shown
in Fig. 4: There, we keep one of the two sublattices polarized
as SB = 6 and vary the total spin of the other sublattice
(SA). We find that the ground state does in fact have a
maximal SA. The two “giant” spins can be combined to make
Smax

tot − 2m spin states that are even with respect to PAB ,
all having the same minimal energy (here m is an integer).
Similarly, the Smax

tot − 2m − 1 are also degenerate and are odd
eigenstates of PAB . In other words, in the ground state the
two giant spins on the two dynamic sublattices behave as
noninteracting spins (except for the parity effect with respect
to PAB , which disappears in the thermodynamic limit). To this
end, a qualitative difference between the one-third- and the
one-sixth-filled cases becomes clear. In the one-sixth-filled
case (n = 1/3), the effective Hamiltonian Hring connects all
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FIG. 5. (Color online) (a) Excitation energies of the spin Hamil-
tonian (Hspin) for two loop configurations of the 36-site cluster: one
consisting of four short loops of length 6, and the other consisting
of one 18-site loop and one 6-site loop. Numbers next to the levels
indicate in which state each loop is; e.g., 0001 means that three loops
are in the ground state and one is in the first excited spin state.

spin configurations within the zero winding sector yielding a
ferromagnetic ground state [19].1

This is no longer the case for the one-third-filled case:
the ground state is degenerate, and the ferromagnetic state
and the singlet state are among the ground states. However,
the dynamic subsystems A and B are still ferromagnetic: our
system can be thought of as putting together two one-sixth-
filled systems, each of them living on the A and the B dynamic
sublattices of the ground-state manifold.

B. Short loop phase (α = 0)

At α = 0, the effective Hamiltonian is reduced solely to
Hspin. Since the fluctuations in electron occupation vanish, the
ground state is the one which minimizes the spin exchange
interactions along the closed electron loops. This is achieved
with short hexagonal loops, giving rise to a ‘short-loop phase,”
shown in Fig. 8 (left). The finite-size correction for the
ground-state energy per site of a periodic antiferromagnetic
Heisenberg chain of length L is [27]

eL − e∞ = − π2

12L2
(10)

in the leading order in 1/L, where e∞ = 1/4 − ln 2 ≈
−0.4431 stands for the energy density in the thermodynamic
limit. Thus, the shorter the loop is, the lower the energy
density becomes. The shortest loop on the kagome lattice is
of length L = 6 with energy e6 ∼ −0.4343, and these loops
are arranged in a regular pattern, as shown in Fig. 5(b), with a
hexagonal unit cell consisting of nine sites. This ground state
is threefold degenerate and breaks the translational symmetry.
The lowest energy excitation of this charge-ordered phase is
realized by the formation of an L = 18 loop out of three

1This can be traced back to the number of fermions taking place in
the effective ring exchange: For an odd number of fermions high spin
is favored, while for an even number of electrons a low-spin state
(singlet) is lower in energy, as, e.g., in Ref. [15] for a quarter-filled
checkerboard lattice.

adjacent hexagonal loops [Fig. 5(c)], with the energy gap
	 = E18 − 3E6 = 0.771. In Fig. 5(a) the energies of different
charge (or loop) configurations in a 36-site cluster are shown.

IV. NUMERICAL RESULTS

We have already found that the two extreme cases α = 0 and
α = 1 show different orderings. The transition between the two
phases can be understood by using the analogy to the quantum-
dimer model on a honeycomb lattice.2 As discussed in detail in
Ref. [25], the two different orderings have centers of rotation
symmetry that lie in distinct places when forming domains
of one phase with the other (in fact, the precise nature of the
phase transition might be either a first-order one or two phase
transitions with coexisting order parameters, as suggested in
Ref. [28] for the quantum-dimer model on a square lattice).
Thus we expect a phase transition between them when tuning
the parameter α from 0 to 1.

In order to pin down the transition and to verify the above-
mentioned two characteristic phases, we employ numerical
exact diagonalization of the effective Hamiltonian Heff on
finite clusters of N = 27 and 36 sites. We simulate Heff within
the Hilbert space spanned by the allowed configurations.
Furthermore, we reduce the Hilbert-space size by making use
of the spatial symmetries given in Appendix B. The results
are summarized in Fig. 8, which shows the phase diagram we
obtain from our numerical analysis: We observe a first-order
phase transition from a short-loop to a plaquette-ordered phase
at α ≈ 0.6. Both phases have a charge gap but only the former
one has a spin gap. The details of the numerical simulations
are described below.

However, before presenting our numerical findings, we
mention that the strong-coupling limit of the Hubbard model
(more precisely, the tJ model) at the same filling as ours,
but without the nearest-neighbor V term, has been discussed
in Ref. [18]. It has been found that the ground state is
formed by a resonance of two electrons in the singlet state
on disjunct triangles, making a crystal. The ground state is
twofold degenerate, depending whether the resonances are
taking place on the up- or down-pointing triangles. The crucial
difference with respect to our model is that the number of
electrons in the triangles can deviate from two in their model
(there are two electron only in average). In fact, the electron
number strongly fluctuates in the triangles connecting the
resonating pairs, which costs energy due to the V term and
leads to destabilization of the state. The Hubbard model
for the one-third-filling case has been studied in Ref. [17]
using a Hartree-Fock mean-field theory which provided a rich
phase diagram: Our short-loop phase can be recognized as
the CDWIII phase in their work, while our plaquette phase is
missing, as the quantum fluctuations stabilizing the resonance
of charges are beyond the reach of the Hartree-Fock approach.

2Even though the effective Hamiltonian, (2), is more complex
than the quantum-dimer model, they both have the same symmetry
properties with respect to the charge degrees of freedom. The
short-loop phase can be mapped to the columnar phase and the
plaquette phases can be identified in both models.
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FIG. 6. (Color online) Anderson tower for the N = 36 cluster
for (a) α = 0.9 and (b) α = 0.8. The energies of the two low-lying
two series of states belonging to different irreducible representations,
IR01 and IR05 (see Appendix B), which are even and odd with respect
to PAB , behave proportionally to S(S + 1). As α increases and/or the
system size increases, their gradient decreases toward 0, at which all
these points fall onto the same horizontal line (become degenerate).
Such behavior is a strong indication of antiferromagnetic ordering.

A. Anderson tower

As for the case α = 1, we have seen that the conservation
of the spin on the A and B dynamic sublattices leads to
a degenerate ground state. The spins on the two dynamic
sublattices take the maximal value SA = SB = N/6, and as
they do not interact, the states spanned by the two “giant”
spins constitute the ground-state manifold (Fig. 4 reveals that
states with lower sublattice spins SA and SB are higher in
energy). Once the Hspin is turned on, the hidden conservation
law no longer holds, and the spins on the A and B sublattices
start to interact with each other:

HLM ∝ J

N
SA · SB, (11)

similarly to a Lieb-Mattis model, as the kinetic term g 	 J

decouples the wave function and each spin on the A sublattice
interacts with each spin on the B sublattice with an effective
coupling ∝J/N . Denoting by Stot the total spin of the system,

the energy of this Hamiltonian is simply described as

ELM ∝ J

N
[Stot(Stot + 1) − SA(SA + 1) − SB(SB + 1)].

(12)

Indeed, the degeneracies at α = 1 are quickly removed with
decreasing α (see Fig. 7). When plotted against Stot(Stot +
1), the spectrum shows low-energy states whose energy is
∝J/NStot(Stot + 1), as shown in Fig. 6. These states form
the Anderson tower, which is the clear signature of an
antiferromagnetic ordering [29]. In this case, the texture of
the antiferromagnetic order is quite peculiar, as schematically
shown in Fig. 8 (right): a large effective spin-3/2 of resonating
charges on a hexagon is surrounded by “localized” spin-1/2
electrons. The resonating plaquette can occupy either of
the three inequivalent hexagon sublattices, thus the state is
threefold degenerate regarding the space-group symmetries.
This is reflected in the irreducible content of the states in
the Anderson tower in Fig. 6; IR1 and IR5 for the 36-site
cluster (see Appendix B for the whole chart of the irreducible
representation). With increasing system size, the slope of
the lowest energy levels approaches 0 as 1/N and becomes
degenerate in the thermodynamic limit. The finite-size gap
of the states above the Anderson tower also goes to 0; in
the case of antiferromagnetic ordering we expect that the
scaling follows 1/

√
N , which, however, could not be checked

in our problem due to the rapidly growing dimension of the
Hilbert space. The spin excitation spectrum becomes gapless,
in contrast to the short-loop phase when α ≈ 0.

B. Energy spectrum

We now consider the ground state and lowest excited states
over the full range α ∈ [0,1]. Figure 7 shows the energy spectra
as a function of α for the clusters with N = 27 and 36 sites.
At α = 0, the excitation gap above the threefold degenerate
ground state corresponds exactly to the value of 	 obtained
by diagonalizing the Heisenberg chains in Sec III. Due to
finite-size effects, the threefold degeneracy of the ground state
is lifted immediately for any α > 0. A level crossing in the
lowest excitations is prominent near α = 0.6 for both clusters,
indicating that the system undergoes a first-order quantum
phase transititon [30–32].

Combining the findings in the previous sections and the
exact diagonalization data in Fig. 7, we reach the phase
diagram shown in Fig. 8. Two phases are separated by a
first-order phase transition; for α � 0.6 we find the short-loop
phase, representing a charge-ordered phase that has both a
charge and a spin gap.

C. Correlation functions and structure factors

We calculate several different kinds of correlation functions
for the N = 36 cluster which serve as characteristic finger-
prints of the phases. We begin by studying the charge-charge
correlation functions,

Cc(r0,rj ) = 〈n(r0)n(rj )〉 − 〈n(r0)〉〈n(rj )〉, (13)

where r0 and rj are the positions of charges on the kagome
lattice and the expectation values are taken with respect to
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FIG. 7. (Color online) Energy spectra for two clusters, N = 27
in (a) and N = 36 in (b). The level crossing occurs at αc ≈ 0.6
between the energy levels of the same quantum number for both
clusters, which indicates a possible quantum phase transition. All
energies are measured from the lowest energy singlet state.

the ground state. n(rj ) is the occupation number operator,
which measures whether the charge is present at rj regardless
of its spin orientation. Figure 9(a) shows the density plot
of Cc(r0,rj ) at α = 0, which describes the charge order of
the short-loop phase. The charges on the hexagons, which
form short loops, are perfectly correlated. With increasing α,
this order gradually melts toward α = 1, at which only the
short-range correlations remain as shown in Fig. 9(b). The

FIG. 8. (Color online) Ground-state phase diagram of Eq. (2).
With increasing α, the short-loop phase undergoes a first-order
quantum phase transition into the plaquette phase at around α ∼ 0.6.
The purple hexagons in the left panel denote the short loops formed
by neighboring electrons, and blurred blue hexagons in the right panel
indicate the presence of resonating plaquettes.

FIG. 9. (Color online) (a), (b) Charge-charge correlation func-
tion in real space for α = 0 and 1, respectively. Correlations are
calculated with respect to the marked site r0 at the center. The radius
of the dots is proportional to the absolute value of the correlation,
while the color encodes the sign (red corresponds to a positive value;
blue, to a negative value). (c), (d) The same data in momentum space
in the extended Brillouin zone. The maximum in (c) is found at
Q = (8π/3,0) and symmetry-related points (high-symmetry points
denoted K2 and K ′

2).

corresponding structure factor,

Sc(q) = 1

N

∑
j

e−iq·(rj −r0) Cc(r0,rj ), (14)

is calculated in the extended Brillouin zone as shown in Fig. 9.
Note that we do not average the structure factor over the entire
unit cell but instead calculate it for a specific center. Thus we
have both positive and negative contributions. In experiments,
one would observe the averaged structure factor. The ordering
wave vectors Q of the short-loop phase lie at the corners (K2

and K ′
2) of the extended Brillouin zone, where the sharp peaks

are observed.
Next we consider the plaquette-plaquette correlation func-

tion

Ch(R0,Rj ) = 〈h�(R0)h�(Rj )〉 − 〈h�(R0)〉〈h�(Rj )〉,
(15)

where the operators h�(R0) and h�(Rj ) are those repre-
senting the resonance, as defined in Eq. (4), on hexagons
centered at positions R0 and Rj , respectively. The centers of
these hexagons form a triangular lattice. At α = 0, Ch(R0,Rj )
vanishes except for R0 = Rj , as shown in Fig. 10(a). This is
because the charges are perfectly localized on short loops and,
thus, cannot resonate. By contrast, we find a clear sign of the
plaquette ordering at α = 1 in Fig. 10(b), whose spacial pattern
is exactly the one expected in Fig. 8. The structure factor Sh(Q)
for both cases is calculated analogously to Eq. (14) and is
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FIG. 10. (Color online) (a), (b) Plaquette-plaquette correlation
function in real space for α = 0 and 1, respectively. Correlations are
calculated with respect to the marked site r0 at the center. The radius
of the dots is proportional to the absolute value of the correlation,
while the color encodes the sign (red corresponds to a positive value;
blue, to a negative value). (c), (d) The same data in momentum space
in the first Brillouin zone. The peaks in (d) are found at the K and K ′

points, with Q = (2π/3,2π/
√

3) and Q = (4π/3,0), respectively.

displayed over the first Brillouin zone in Figs. 10(c) and 10(d).
The one at α = 0 is structureless, whereas at α = 1 we observe
sharp peaks at the corners of the first Brillouin zone.

FIG. 11. (Color online) (a), (b) Spin-spin correlation function in
real space for α = 0 and 1, respectively. Correlations are calculated
with respect to the marked site r0 at the center. The radius of the
dots is proportional to the absolute value of the correlation, while the
color encodes the sign (red corresponds to a positive value; blue, to
a negative value). (c), (d) The same data in momentum space in the
extended Brillouin zone.
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FIG. 12. (Color online) Amplitudes of the (a) charge, (b) pla-
quette, (c) and spin structure factors, shown in Figs. 9–11, at the
corresponding ordering wave vectors Q. The gradual changes in
all panels indicate the melting of different kinds of ordering as the
parameter α is varied.

Finally, we consider the spin-spin correlation function,

Cs(r0,rj ) = 〈S(r0)S(rj )〉 − 〈S(r0)〉〈S(rj )〉, (16)

where the operator Srj
is the spin-1/2 spin operator at site

rj . For α = 0 the spins living on different short loops are
uncorrelated, and this is clearly seen in Cs(r0,rj ), which
vanishes once the distance is |r0 − rj | > 2 [Fig. 11(a) and
its corresponding structure factor in Fig. 11(c)]. The spin
structure becomes more distinct as α goes to 1 [see Figs. 11(b)
and 11(d)], and its textures in real and reciprocal spaces follow
those of the charge in Figs. 9(b) and 9(d). As discussed
earlier, the spins living on two dynamic sublattices form
large ferromagnetic spins, SA and SB , and one would find
large correlations between the spins belonging to the same
sublattice, if the dynamic sublattice could be extracted.
However, in real space, the strong change fluctuations will
cause the mixing of the two dynamic sublattices, and quite a
large portion of the real-space correlations is canceled out.

In Fig. 12 we show how the amplitudes of different structure
factors at the respective ordering wave vectors (the Q point,
which has the highest amplitude of the structural factors)
evolve. Here we multiply the amplitudes by the system size N ,
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in order to compare the results of different sizes on the same
ground, assuming that the sum rules are fulfilled. While the
general tendency is clear, it is difficult to identify the phase
transition point between the two phases in the correlation
functions, presumably due to the finite-size effect.

V. SUMMARY AND OUTLOOK

We have considered a system of strongly correlated elec-
trons on a kagome lattice at one-third filling and focused on the
interplay of charge and spin fluctuations. A surprising aspect
of our findings is that the originally complicated correlation
and dynamics of the charge and spin degrees of freedom could
be well separated within our approach in the strong-coupling
limit. We have derived an effective Hamiltonian which acts
on a low-energy manifold consisting of configurations with
exactly two electrons per each triangle of the kagome lattice
with no double-occupancy.

We have discussed in detail two limiting cases: (i) In the
limit where charge fluctuations dominate, a robust resonating
“plaquette ordered” phase is found. The charge fluctuations
conserve the magnetization on two dynamical sublattices and
maximize the total spin in each sector [19], yielding a huge
degeneracy. Small spin fluctuations then couple two giant spins
weakly, leading to gapless spin excitations. (ii) In the limit
where spin fluctuations dominate, the electrons are confined
to short loops around the hexagons to maximize the energy
gain due to spin fluctuations.

Using large-scale exact diagonalization, we have evaluated
the phase diagram and found a first-order transition separating
the “plaquette-ordered” and the “short-loop” phase. For both
phases we obtained the fingerprints in the form of experi-
mentally accessible signatures like spin and charge structure
factors.

To find the physics we discuss in this paper, we need to
search for strongly correlated materials with a kagome lattice
structure in the mixed-valence regime. This might possibly be
achieved by heavy doping of current kagome spin-liquid can-
didates like ZnCu3(OH)6Cl2 [33,34] and Rb2Cu3SnF12 [35] to
get the desired filling factors.

FIG. 13. (Color online) Description of a cluster with N = 36
sites and periodic boundary conditions. The symmetries of the point
group are shown in dark red: the hexagon denotes the rotation center
of order 6 (C6); the triangle, the rotation center of order 3 (C ′

3); and
the oval, the rotation center of order 2 (C ′

2). Dashed lines are the
reflections σ and σ ′. Dark-blue lines with half-arrows denote glide
reflections.

Note added in proof. Recently we learned about a similar
work by K. Ferhat and A. Ralko [36]: they considered the
Hubbard model, Eq. (1), without mapping to an effective model
and reached conclusions similar to ours for the considered
limit.
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TABLE I. Character table for the 36-site cluster.

IR I 6σ 18σ ′ 9C ′
2 3C3

6 6T1 12c 12a 18b 6a3 3T1T2 2T 2
1 24C6 16C ′

3 8C2
6 BZ

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 �

2 1 1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1 1 �

3 1 −1 1 −1 −1 1 −1 −1 1 −1 1 1 −1 1 1 �

4 1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 1 1 1 �

5 2 2 0 0 0 −1 −1 −1 0 2 2 −1 0 −1 2 K
6 2 −2 0 0 0 −1 1 1 0 −2 2 −1 0 −1 2 K
7 2 0 0 2 2 2 0 0 0 0 2 2 −1 −1 −1 �

8 2 0 0 −2 −2 2 0 0 0 0 2 2 1 −1 −1 �

9 4 0 0 0 0 −2 0 0 0 0 4 −2 0 1 −2 K
10 3 1 1 −1 3 −1 1 −1 −1 −1 −1 3 0 0 0 M
11 3 1 −1 1 −3 −1 1 −1 1 −1 −1 3 0 0 0 M
12 3 −1 1 1 −3 −1 −1 1 −1 1 −1 3 0 0 0 M
13 3 −1 −1 −1 3 −1 −1 1 1 1 −1 3 0 0 0 M
14 6 2 0 0 0 1 −1 1 0 −2 −2 −3 0 0 0
15 6 −2 0 0 0 1 1 −1 0 2 −2 −3 0 0 0
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APPENDIX A: PROOF FOR THE DYNAMIC
SUBLATTICE RULE

In this Appendix we prove that the effective ring-exchange
Hamiltonian (α = 1) conserves the magnetization on dynamic
sublattices. The rules for the “dynamic sublattice” are simple:
(i) neighboring electrons have different sublattice labels and
(ii) next-nearest-neighbor electrons have the same sublattice
label on each hexagon of the kagome lattice. Once we have
the configuration which fulfills (i) and (ii), the effective
Hamiltonian Hring preserves this rule. A flippable hexagon
involves necessarily only loop segments of the same kind
demanded by (ii). Also, the protruding bonds coming out of a
flippable hexagon are always exactly of the opposite kind to
that which the hexagon is made of. Let us assume without loss
of generality an A-A-A configuration on the flipped hexagon.
Then the six protruding bonds will essentially be labeled B.
Flipping the loop segments around a hexagon does not change
the positions relative to each other and thus (i) and (ii) are
fulfilled in the resulting hexagon configuration. Next we have
to check the six neighboring hexagons. The three hexagons
which lose a loop segment trivially fulfill the conditions.

For hexagons which gain a loop segment, we need to argue
a little more. The neighboring links of the added segment
are necessarily occupied by a B segment since the initial
configuration was a valid closely packed loop configuration
and it fulfilled (i). Since the neighboring segments are of the B

type, we know that the next-nearest-neighbor segments are of
the A type or empty. Thus the resulting configuration fulfills
(i) and (ii).

APPENDIX B: IRREDUCIBLE REPRESENTATION
OF THE 36-SITE CLUSTER

The symmetry-group elements of the 36-site cluster with
periodic boundary conditions are shown in Fig. 13. The
symmetry group of the kagome lattice is the wallpaper group
p6m, with the point group D6. The 36-site cluster consists of
12 unit cells, and since the order of the D6 is 12, the total
number of the symmetry group elements is 12 × 12 = 144.
Table I is the character table for the 36-site cluster, where
we also specify the point(s) in the Brillouin zone to which it
belongs (Table I).
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