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Numerical study of a transition between Z2 topologically ordered phases
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Distinguishing different topologically ordered phases and characterizing phase transitions between them is
a difficult task due to the absence of local order parameters. In this paper, we use a combination of analytical
and numerical approaches to distinguish two such phases and characterize a phase transition between them. The
“toric code” and “double semion” models are simple lattice models exhibiting Z2 topological order. Although
both models express the same topological ground state degeneracies and entanglement entropies, they are distinct
phases of matter because their emergent quasiparticles obey different statistics. For a 1D model, we tune a
phase transition between these two phases and obtain an exact solution to the entire phase diagram, finding a
second-order Ising×Ising transition. We then use exact diagonalization to study the 2D case and find indications
of a first-order transition. We show that the quasiparticle statistics provides a robust indicator of the distinct
topological orders throughout the whole phase diagram.
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I. INTRODUCTION

Phases of matter and phase transitions are usually classified
using Landau’s symmetry-breaking theory, which distin-
guishes different phases of matter using local order parameters.
However, it has become clear that some quantum phases do
not fall into this paradigm; they posses a topological order [1]
which cannot be detected by local order parameters. Prominent
examples of these phases include the fractional quantum Hall
effect [2] and gapped spin liquids [3–8] that appear in some
highly frustrated systems.

Topological order is characterized by the presence of
long-range entanglement, which means that the state cannot
be transformed into a product state through any local unitary
evolution [9]. This long-range entanglement can give rise
to some unique properties in topologically ordered phases
such a topological ground state degeneracy and fractionalized
(anyonic) excitations [10]. The topological degeneracy is a
degeneracy of the ground state wave function that depends on
the topology of the system and is robust against any small and
local perturbations. The anyonic excitations are characterized
by their braiding statistics that is quantified by two matrices,
the U and S matrices. The two matrices correspond to the
exchange and mutual statistics of the excitations, respectively
[11].

Since topological order cannot be characterized by lo-
cal order parameters, it is difficult to uniquely identify a
topologically ordered phase. The most common method to
identify a topologically ordered phase is through the use of
the topological entanglement entropy [12–17]. However, this
method is not unique as multiple topologically ordered phases
can have the same topological entanglement entropy [18]. A
more unique characterization is to directly calculate the U

and S matrices of the phase. This approach has been used
to detect topologically ordered phases in a number of recent
works [19–22]. Another interesting question is the nature
of phase transitions between topologically ordered phases.
Since these transitions do not fall readily into the traditional
symmetry-breaking paradigm, they are still poorly understood
in general. Previous numerical studies have so far mostly

concentrated on transitions from topologically ordered phases
into trivial phases and not between two topologically ordered
phases [23,24].

To explore the above questions, we consider two micro-
scopic Hamiltonians, the toric code (TC) [25] and the double
semion (DSem) [26,27] model. These are simple examples of
more general string-net models which describe a large class
of achiral topologically ordered phases. The TC model is a
canonical example of topological order in 2D; it possesses
a ground state degeneracy on a torus and nonvanishing
topological entanglement entropy which distinguishes it from a
trivial product state. The TC order is found in superconductors
[28] and the Heisenberg antiferromagnet on the kagome
lattice [7,16,29]. The related DSem model exhibits the same
degeneracy and entanglement entropy as the TC model, but
represents a different kind of order because its excitations have
different statistics. The DSem phase can be realized as a bilayer
of ν = ±1/2 bosonic Laughlin states [17], which have recently
been shown to be stabilized in spin models on the kagome
lattice [30,31]. Both the TC and the DSem represent Z2 topo-
logical orders because they are bothZ2 gauge theories [32,33].

The aim of this paper is twofold. First, we examine
a Hamiltonian that exhibits multiple topologically ordered
phases and we try to identify its phase diagram. We make use of
recent advances that allow us to calculate the U and S matrices
numerically from a full set of topologically degenerate ground
state wave functions [19,20,22]. We implement the procedure
using exact diagonalization and show that, even for small
systems, the U and the S matrices give a far more robust
diagnostic of the topological order of a phase than the more
traditional topological entanglement entropy measurement.
Second, we discuss the nature of the transition between the
TC and DSem phases. In phase transitions between the TC
and nontopological states, the disappearance of topological
order is due a to a condensation of vortices, which leads to a
confinement of point charges [23,24,34]. However, the tuning
between TC and DSem models cannot be viewed as a simple
confinement transition. Using exact diagonalization, we find
indications for a first-order transition at the boundary of the
two phases.
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This work is organized as follows. In Sec. II, we review
the Hamiltonians for the TC and DSem models, and give a
natural prescription for tuning between the two models. This
gives rise to a family of Hamiltonians which we solve exactly
for a 1D chain in Sec. III. In Sec. IV, we perform an exact
diagonalization study of the transition between the TC and
DSem models for a 2D system. We first extract the nature of
the transition using the energy spectrum and then calculate the
U and the S matrices numerically which we use as nonlocal
order parameters to distinguish the two phases. We finally
conclude in Sec. V with a summary and brief discussion of
our main results.

II. MODEL

Before introducing our model, we give a brief review of
the TC and DSem models [26,27], their ground states, and the
statistics of their emergent excitations.

A. Toric code (TC)

The Hilbert space of the TC consists of a tensor product of
σ z = ±1 living on each edge of a honeycomb lattice. In the
remainder of this paper, we will visualize configurations of
these spins by coloring in edges with σ z = −1, while leaving
σ z = 1 uncolored as indicated in Fig. 1(a). The Hamiltonian
has the form

H TC = −εP

∑
p

∏
k∈∂p

σ x
k

︸ ︷︷ ︸
BTC

p

−εV

∑
v

∏
k∈s(v)

σ z
k

︸ ︷︷ ︸
Bv

(1)

with εP ,εV > 0. The sums
∑

p,
∑

v run over all plaquettes and
vertices, respectively, ∂p are the six edges on the boundary of
plaquette p, and s(v) are the three edges attached to vertex
v. The vertex operator Bv has eigenvalues ±1 depending on
whether there are an even/odd number of down-spins on the
edges coming into vertex v. On the other hand, the plaquette
term BTC

p flips the spins on every edge of a plaquette p

and commutes with Bv because it flips a pair of spins at
each vertex v. Since also clearly [Bv,Bv′ ] = [BTC

p BTC
p′ ] = 0,

(a) (b)

FIG. 1. (Color online) (a) indicates the mapping from the spin
to the loop space. (b) shows the terms in the Hamiltonian. The
dots indicate Hermitian conjugates of the ones shown here and also
equivalent terms obtained by rotating the lattice.

the Hamiltonian is a sum of commuting operators, allowing
us to write down its ground states and excitations exactly.
The ground states are defined by BTC

p = Bv = 1 for all v,p.
The Bv = 1 condition implies that the ground state is a
superposition of closed loop configurations of the σ z spins,
while the BTC

p = 1 condition implies that all terms in this
superposition have equal weight.

When the system is placed on a torus, the Z2 topological
order of the TC model manifests itself through a fourfold
degeneracy. The degenerate ground states can be distinguished
by the winding number parities around the torus measured by

P z
γx(y)

=
∏

k∈γx(y)

σ z
k , (2)

where γx(y) is a long loop around the x(y) direction of the torus
(Fig. 7). We then label the four sectors as (00, 01, 10, and 11),
according to whether there is an even/odd number of loops
winding around the x and y direction of the torus.

For future reference we note that we can rewrite the
plaquette term (at least when all Bv = 1; i.e., no broken loops
are allowed) as

BTC
p = F0 + F1 + F2 + F3, (3)

where the F ’s are defined in Fig. 1(b). The operator F0 either
creates or destroys a single loop, F1 changes the size of the
loops, F2 changes the number of loops by joining or breaking
them, and F3 changes the number of loops by an even number.

There are three nontrivial deconfined anyon charges in the
theory: the charge 1 electric defects e, the π flux magnetic
defects m, and a bound state of charge and flux ψ ≡ e × m

which behaves like a fermion. In the model, an e particle is
associated with a vertex defect Bv = −1, the m particle is
associated with a plaquette defect BTC

p = −1, and the fermion
ψ is associated with both a vertex and plaquette defect. The
excitations can only be created in pairs. For example, breaking
the end of a loop creates two electric defects (e) at the two
ends of the broken loop.

B. Double semion (DSem)

The DSem model is defined on the same Hilbert space as
the TC, and has the Hamiltonian

H DSem = εP

∑
p

∏
k∈∂p

σ x
k

⎡
⎣ ∏

j∈s(p)

i(1−σ z
j )/2

⎤
⎦

︸ ︷︷ ︸
BDSem

p

Pv−εV

∑
v

∏
k∈s(v)

σ z
k

︸ ︷︷ ︸
Bv

,

(4)

where s(v),∂p are defined as before, and where s(p) is the set
of six legs radiating from plaquette p, and Pv is a projector
onto states with Bv = 1 for all v. The DSem Hamiltonian is the
same as that of the TC, except that the plaquette terms differ:
first, the plaquette term is only active on states with Pv = 1.
Second, in addition to flipping the edges of p, the new BDSem

p

operator has a phase of ±1 depending on the spins in s(p). In
addition, the plaquette component of the DSem Hamiltonian
appears with a total (+) sign rather than a (−) sign.

It can be verified that [Bv,B
DSem
p ] = 0, so we may restrict

ourselves to the study of the subspace with all Bv = 1; i.e., we
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consider states consisting of superpositions of closed loops.
In this subspace, [BDSem

p ,BDSem
p′ ] = 0 for all plaquettes p,p′.

Once again, the Hamiltonian is exactly solvable, and the
ground state saturates a lower bound on the Hamiltonian by
having BDSem

p = −1 and Bv = 1 for all p,v. Like the TC, the
DSem model has a topological degeneracy when placed on a
torus.

At this point, it is helpful to rephrase the plaquette term
in the Pv = 1 sector slightly differently. We can rewrite the
plaquette term in the form

BDSem
p = F0 − F1 + F2 − F3. (5)

Here we see that the F0,F2 terms have a relative sign with
respect to the F1,F3 terms—in the TC case, all the F terms
have a + sign. F0 and F2 can change the number of loops by an
odd number and thus can change the parity of the loop sector
whereas F1 and F3 only change the number of loops by an even
number and thus preserve the parity of the loop sector. This,
along with the fact that BDSem

p = 1, tells us that the ground
state is a superposition of loop configurations weighted with a
phase of U = (−1)#loops. Indeed, this operator Û is a nonlocal
unitary transformation relating the two Hamiltonians to each
other (at least within the Pv = 1 sector) through

H DSem = (−1)#loopsH TC(−1)#loops, (6)

and thus the two models have the same spectrum. Like the
TC, the DSem model has three nontrivial deconfined anyonic
charges. There are positive and negative chirality semions
s+,s− as well as a π flux defect which can be thought of
as a bound state of the semions m = s+ × s−. There is some
freedom and subtlety involved in defining these excitations
near their end points [35], but for the purposes of this work
the s+ is associated with a vertex defect Bv = −1, the m is
associated with a plaquette defect BDSem

p = 1, while the s− is
associated with a combination of plaquette and vertex defects.

We have seen that a simple change in the definition of
the plaquette operators has led to a substantial change in
the excitations present in the theory. To explore a transition
between these phases, we consider a Hamiltonian which
interpolates between the TC and DSem model:

H (η,μ,λ) = ηH TC + μH DSem − λ

n∑
k=1

σ z
k , (7)

where we have also introduced a magnetic field term λ. We
work in a basis with only closed loops (setting εV to a large
value to heavily penalize broken loops) and set εP = 1. The
magnetic field then acts as a string tension for the loops.
We also impose the condition η + μ + λ = 1 to explore a
triangular phase diagram with exactly solvable points on the
vertices. For any η or μ, a sufficient increase in λ will lead
to a polarization of spins σ z = 1. For η = 0 and μ > 0 or
η > 0 and μ = 0, the transition to the polarized phase with
increasing λ can be viewed as the standard confining transition
in (2 + 1)D Z2 gauge theory where π flux vortices proliferate
and destroy the topological order. This gives rise to 3D Ising
critical exponents [23]. We will mainly be concerned with the
transition associated with λ = 0 and tuning μ from 0 to 1 (or η

from 1 to 0), which is not a standard condensation transition

(a)

(b)

FIG. 2. (Color online) The ladder geometry used for the quasi-
1D systems. In (a), we show the domain wall representation of loops
in the even sector of the Hilbert space; note the use of auxiliary ↑
spins off the lattice. (b) shows a domain wall representation for loops
in the odd sector of the Hilbert space; here we need auxiliary ↑ spins
above the chain and ↓ spins below it.

because both sides of the transition have the same number of
deconfined species.

III. THE 1D TRANSITION

Before discussing the 2D topological phase transition, we
solve the problem exactly on a quasi-1D ladder geometry [36]
(Fig. 2) with the Hamiltonian of Eq. (7). We impose periodic
boundary conditions, and further restrict ourselves to the sector
of the Hilbert space with Bv = 1, i.e., no vertex defects. Loop
configurations in this restricted space can be labeled even/odd,
depending on whether an even or odd number of loops wind
around the system. We concentrate on the even loop sector, and
comment later on the odd loop sector which is less interesting
because it reduces to the TC ladder Hamiltonian.

In the even sector [Fig. 2(a)], loop configurations can be
realized as domain walls between Ising spins τ z defined at
the center of plaquettes. We first introduce auxiliary spins into
the system: place τ z = 1 spins above the ladder, and τ z = 1
spins below the ladder as in Fig. 2. A string is present on
an edge (M) of the lattice precisely when the plaquettes p,q

bordering M have different Ising spins, so that σ z
M = τ z

pτ z
q .

Moreover, flipping the value of the Ising spin τ z
p on a plaquette

corresponds to adding a loop around plaquette p, so that τ x
p =∏

M∈∂p σ x
M . With these variables

H (η,μ,λ) = −
∑

r

τ x
r

[
η − μτz

r−1τ
z
r+1

] − λ
∑

r

τ z
r τ z

r+1. (8)

This effective Hamiltonian has been studied in the context
of cold atoms [37]. For η = μ and λ = 0, this is also the
effective Hamiltonian for the edge of a 2D Ising symmetry-
protected topological (SPT) phase [38] with Ising symmetric
boundary conditions. As an aside, we note that the odd winding
number sector has the effective Hamiltonian H (η + μ,0,λ)
using the notation in Eq. (8). This is just a TC Hamiltonian in
a magnetic field.

The general Hamiltonian Eq. (8) is amenable to a
Jordan-Wigner transformation using τ x

r = 1 − 2c
†
r cr and
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τ z
r = {∏s<r (1 − 2c

†
s cs)}(cr + c

†
r ). In the Majorana fermion

language iψr = c
†
r − cr and χr = c

†
r + cr , and the Hamilto-

nian can be rewritten as

H (η,μ,λ) = −i
∑

s

[
ηχa

s ψa
s + μχa

s+1ψ
a
s

] − iλ
∑

r

ψr−1χr

− i
∑

s

[
ηχb

s ψb
s + μχb

s+1ψ
b
s

]
, (9)

where χa
s = χ2s and χb

s = χ2s+1 and similarly for ψ . Thus
the system consists of two fermion chains (the even and odd
sites) coupled only by the magnetic field term λ. The spectrum
is exactly symmetric about η = μ, which follows from the
unitary transformation of Eq. (6).

Setting λ = 0, for η = 0 and μ = 1 (η = 1 and μ = 0), we
are at the DSem (TC) fixed point and the spectrum is perfectly
flat as expected. In both cases, loops (σ z = −1) proliferate,
or equivalently the τ z Ising spins are disordered. Increasing
λ away from either of the fixed points eventually leads to the
confinement of loops (corresponding to an ordering of the
dual Ising spins). The transition between short and long loop
phases (confined and deconfined) is in the 2D Ising critical
universality class. Setting λ = 0 and η = 1 − μ and tuning
from μ = 0 to 1 leads to a single transition at μ = η = 1/2
with two gapless points, corresponding to two decoupled Ising
models (Fig. 3). It is interesting to notice that, precisely

at μ = η, the number of domain walls Q̂ = ∑
r

1+σ z
r σ z

r+1

4 =∑
r

1+iψrχr+1

4 is a good quantum number. This symmetry is
apparent in the fermion language if we rewrite

H (η,μ,λ) = −i
∑

r


̃T
r+1

(
μ 0
0 η

)

r + iλ

2

∑
r


̃T
r 
r,

(10)
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FIG. 3. (Color online) The spectrum of the 1D ladder model in
the even sector at various points in the phase diagram. For 0 � η < μ

(0 � μ < η) and 0 � λ < μ (η) we are in the DSem (TC) phase,
and the spectrum is fully gapped. For any 0 � λ < 0.5 there is a
continuous phase transition involving two critical Ising theories as
we tune μ to be greater than η (vertical red line). For μ �= η and
when λ = 0.5 (horizontal thick line), there is a critical point in the
2D critical Ising universality class, and the spectrum has a single Dirac
point. For λ > 0.5, σ z loops are short, and the auxiliary Ising spins
τ z are ordered. At λ = 0.5, μ = η = 0.25 which is the intersection
of two lines of critical points (horizontal and vertical), the spectrum
shows a quadratic dispersion.

where 
r = (ψr−1,χr )T , 
̃r = (χr, − ψr−1)T . The U (1) sym-
metry emerges at η = μ and is associated with the real
SO(2) rotation 
 → R̂
, and under which 
̃ → R̂
̃. One
striking feature of the 2D problem (which we study next) at
the transition is that the U (1) conservation law of domain-
walls/loops at η = μ is broken down to a Z2 conservation law
of loop number.

IV. TWO DIMENSIONS

Having concluded the nature of the phase diagram and
the phase transitions in 1D, we examine the system in 2D
on a L × L honeycomb lattice. We use exact diagonalization
to obtain the ground state and the lowest excited states. The
exponential growth of the Hilbert space with the system size
usually does not allow simulations beyond approximately 30–
40 spins in exact diagonalization. However, restricting our
Hilbert space to the space of loops allows us to go up to 75
spins.

We first obtain the energy spectrum from which we examine
the nature of transition between the TC and DSem phases.
We then try to identify the topological and nontopological
regions in the phase diagram by looking at the behavior of the
topological entanglement entropy (TEE). We only calculate
the spectrum and the TEE for the topological sector with an
even number of long loops around the torus (00 sector) as we
expect the sectors to be degenerate in the thermodynamic limit.
Having identified the topological regions, we characterize the
phases in the topological regions by extracting the braiding
statistics of their excitations.

A. Energy spectrum

In Eq. (6) we noted that H DSem and H TC are related through
a unitary transformation U = (−1)#loops and thus the spectrum
is symmetric about μ = η, regardless of λ (because the string
tension λ does not change the number of loops). Figure 4 shows
how the first derivative of the ground state energy density of
the system changes as we tune from the TC point to the DSem
point at zero magnetic field. The derivative becomes steeper
with increasing system size at μ = 0.5. Extrapolating to the
thermodynamic limit, we expect it to develop a discontinuity
thus indicating a possible first-order transition

We can get additional information about the transition by
studying the behavior of the excitations near the transition
point. For example, at a second-order transition, a condensa-
tion of excitations is expected. This motivates the definition
of a quantity which is related to the fidelity (the overlap of
the ground state wave functions at two neighboring points in
the transition). We consider the spectral decomposition of the
ground state at the transition point |ψc

0 〉 into the eigenstates
of the Hamiltonian at neighboring points x. From this we
can directly see which eigenstates contribute to the ground
state |ψc

0 〉 at the transition. To be more precise, we define the
following quantity,

A(ω,x) =
∑

n

∣∣〈ψx
n

∣∣ψc
0

〉∣∣δ(εx
n − ω

)
, (11)

where |ψx
n 〉 and εx

n are the nth excited eigenstate and
eigenvalue of the Hamiltonian at x. It is difficult to obtain
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FIG. 4. (Color online) Derivative of ground state energy density
as the system is tuned from the TC to DSem phase. The increase in
steepness at μ = η = 0.5 as we go to large system sizes (N = number
of spins) indicates a possible first-order transition.

more than a few excited states |ψx
n 〉 directly using efficient

sparse matrix methods. We thus use instead an equivalent
representation of (11),

A(ω,x) = 1

π
Im

〈
ψc

0

∣∣ 1

ω − iζ − Hx

∣∣ψc
0

〉
, (12)

where ζ → 0 and Hx is the Hamiltonian at x. This function
can be evaluated efficiently by using the continued fraction
method [39].

Figures 5(a) and 5(b) show A(ω,λ) for Hamiltonian (7)
with μ = 0 along the line η = 1 − λ for two different system
sizes. A second order phase transition from the TC phase to a
polarized phase takes place at λc ≈ 0.18 [23]. The location of
this transition is known accurately since the TC can be mapped
to an Ising model on a triangular lattice (Appendix A) for
which the transition has been studied in detail [40]. The levels
above the ground state become denser with increasing system
size and appear to condense as expected in a second-order
transition.

Figures 5(c) and 5(d) show A(ω,μ) with λ = 0 along the
line η = 1 − μ for two different system sizes. We observe a
level crossing as the system size is increased. This again points
to a first-order transition at μ = η = 0.5. Although we have
frozen out electric charge defects, we note that our conclusions
about the phase transition of Hamiltonian (7) remain valid
when allowing for electric defects as long as εV is chosen
large enough. This is because the number and the positions
of electric charges are good quantum numbers at all points
in the phase diagram. The nature of the phase transition may
alter if we add terms to the Hamiltonian which can create
and hop electric defects (e.g., a transverse field). We defer
the investigation of this issue to a possible future work. The
nature of the transition between TC and DSem may indeed be
sensitive to precisely what additional terms are present in the
Hamiltonian. For instance, Ref. [30] notes that a second-order

)b()a(

)d()c(

FIG. 5. (Color online) Spectral decomposition A of the ground
state wave function at the transition points (dashed lines) for different
system sizes. The left column corresponds to 48 spins and the right
column corresponds to 75 spins. The top row shows the behavior of
A(ω,λ) at the known second-order transition from the TC phase to
the polarized phase at λ ≈ 0.18. The bottom row shows A(ω,μ) at the
transition from the TC to the DSem phase where a transition occurs
at μ = 0.5.

transition is possible in the presence of an additional SU(2)
symmetry in the Hamiltonian.

B. Topological entanglement entropy (TEE)

We now identify the region of the phase diagram that is
topologically ordered. To do this, we calculate the topological
entanglement entropy [12,13] (TEE) which is widely used
to identify topologically ordered phases. The entanglement
entropy of a subsystem is given by the von Neumann entropy
of its reduced density matrix. The TEE (γ ) is a length-
independent correction to the area law for the entanglement
entropy. In 2D,

S = αL − γ, (13)

where L is the length of the boundary of the subsystem.
A topologically ordered phase has a nonzero TEE because

of the long-range entanglement in the system. For an Abelian
phase, the number of quasiparticles n determines the TEE
completely through γ = ln(

√
n). The TC and DSem phases are

both Abelian phases with four quasiparticles. Hence, γ = ln 2
for both phases. Thus, we expect that even away from the fixed
points, we should not be able to distinguish them using TEE. As
introduced in Ref. [12], we calculate the TEE numerically by
adding and subtracting the entanglement entropy of different
regions such that the length dependent contributions cancel
out.
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FIG. 6. (Color online) Variation of the topological entanglement
entropy (TEE) as the system is tuned from the TC fixed point to the
DSem fixed point (along λ = 0; red circles, top x axis), and from
the TC fixed point to the polarized fixed point (along μ = 0; blue
triangles, bottom x axis). The inset shows the TEE at all points in
the phase diagram with dark red regions indicating higher TEE. This
indicates that the bottom part of the phase diagram is topologically
ordered. The size of the system considered is 48 spins.

Figure 6 shows the TEE as the system is tuned along two
different directions in the phase diagram. The blue triangles
show a transition from the TC phase to a polarized phase
[23] on increasing the magnetic field. The red circles show a
transition from the TC phase to the DSem phase (with zero
magnetic field). We see a dip at the transition point μ = 0.5
due to finite-size effects, but the TEE remains the same on both
sides of the transition. The triangular inset shows the TEE at
all points in the phase diagram. The dark areas indicate regions
with high TEE and correspond to topologically ordered phases
with TEE close to ln 2.

Hence, TEE distinguishes the topological regions from
the trivial regions in the phase diagram. However, it cannot
distinguish between the different topologically ordered phases.
To do that, we turn to extracting the braiding statistics of the
excitations in the topological region.

C. Braiding statistics

We extract the braiding statistics of the excitations in the
topologically ordered region. In particular, we obtain the U

and S matrices which quantify the self statistics (exchange
statistics) and the mutual statistics respectively. An element of
the U matrix specifies the phase obtained by the many-body
wave function when we exchange two identical particles. An
element of the S matrix corresponds to the phase obtained
when we move one of the particles in a closed path around
another particle.

The U and S matrices of the TC and DSem model can be
calculated exactly [19,27]. However, away from these fixed
points, the Hamiltonian is no longer exactly solvable and we
have to obtain the matrices numerically.

FIG. 7. (Color online) Nontrivial bipartitions of the torus. We
consider the partition on the right and trace over one-half of the
torus to obtain the reduced density matrix. The yellow lines indicate
the long loops around the torus characterizing the possible winding
sectors.

We obtain the U and S matrices by constructing overlaps
of so-called minimally entangled states (MES) on nontrivial
bipartitions of a torus [19,20] (Fig. 7). The MES are ground
states which minimize the bipartite entanglement entropy on a
given bipartition of the system. When we consider nontrivial
bipartitions of a torus, it turns out that the MES are eigenstates
of Wilson loop operators defined parallel to the entanglement
cuts. Now, take for example the S matrix. It is the matrix
that transforms the eigenstates of one Wilson loop operator to
another. Thus, it follows that the S matrix corresponds to a
certain unitary transformation in the MES basis.

To obtain the MES, we need to first calculate all the
degenerate ground states of the system. There are four ground
states for both the TC and the DSem phase on a torus. These can
be characterized by their winding numbers (modulo 2) around
two independent directions of the torus, i.e., by having an even
or odd number of loops winding around the torus. We obtain
four almost degenerate ground states for the Hamiltonian of
Eq. (7) by diagonalizing it separately in each winding number
sector. We then obtain the MES (|�〉) by minimizing the
entanglement entropy for a linear combination of these ground
states. Since we have four ground states, our parameter space
consists of the surface of a 3-sphere plus additional phase
factors,

|�x〉 = ξ1|00〉 + eiφ1ξ2|01〉 + eiφ2ξ3|10〉 + eiφ4ξ4|11〉, (14)

where |�x〉 corresponds to a MES on one of the nontrivial
bipartitions of the torus and |αβ〉 is the ground state in the αβ

winding sector.
Since the model is defined on the honeycomb lattice, the

transformation of the MES under a 2π/3 rotation allows us
to calculate the US matrix (Appendix B) [19]. As shown in
the appendix, we can also use the US matrix to calculate the
U and S matrices individually. As an example, we indicate
the U and S matrices obtained at two points on the transition
along the line λ = 0 with η = 1 − μ. At μ = 0.25, we obtain
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matrices close to the exact ones for the TC model:

U 0.25
jj =

⎛
⎜⎝

1.0
1.0
1.0

−1.0

⎞
⎟⎠ + 10−1

⎛
⎜⎜⎝

1.5e−i0.1π

0.7e−i0.1π

1.0ei0.9π

0.8ei0.1π

⎞
⎟⎟⎠ ,

S0.25 = 1

2

⎛
⎜⎝

1.0 1.0 1.0 1.0
1.0 1.0 −1.0 −1.0
1.0 −1.0 1.0 −1.0
1.0 −1.0 −1.0 1.0

⎞
⎟⎠ + 10−1

⎛
⎜⎜⎝

0.3ei0.9π 0.3ei0.9π 0.3ei0.9π 0.3ei0.9π

0.3ei0.9π 0.3ei0.7π 0.4ei0.6π 0.7e−i0.9π

0.3ei0.9π 0.2e−i0.7π 0.5e−i0.1π 0.9e−i0.9π

0.3ei0.9π 0.7e−i0.1π 0.1ei0.7π 0.4ei0.1π

⎞
⎟⎟⎠ .

At μ = 0.75, we correspondingly obtain matrices close to the exact ones for the DSem model:

U 0.75
jj =

⎛
⎜⎝

1.0
1.0
−1i

1i

⎞
⎟⎠ + 10−1

⎛
⎜⎜⎝

1.3
0.7

0.8ei0.5π

0.8e−i0.5π

⎞
⎟⎟⎠ ,

S0.75 = 1

2

⎛
⎜⎝

1.0 1.0 1.0 1.0
1.0 1.0 −1.0 −1.0
1.0 −1.0 −1.0 1.0
1.0 −1.0 1.0 −1.0

⎞
⎟⎠ + 10−1

⎛
⎜⎜⎝

−0.3 −0.3 −0.3 −0.3
−0.3 −0.2 0.6ei0.8π 0.7e−i0.8π

−0.3 0.7e−i0.3π 0.4e−i0.9π 0.7ei0.3π

−0.3 0.7ei0.3π 0.7e−i0.3π 0.5ei0.9π

⎞
⎟⎟⎠ .

From the plot of the elements of the U matrix (Fig. 8),
we can identify the characteristic statistics of the quasiparticle
excitations in the two phases. In the TC phase (μ < 0.5), three
of the quasiparticles (1, e, m) have bosonic exchange statistics
and one of them is a fermion (ψ). In the DSem phase (μ > 0.5),
we find two semionic quasiparticles (s+, s−) and two of them
behave like bosons (1, m).

Near the transition point (μ = 0.5), the results obtained
are ambiguous. This is possible due to two reasons. First,

FIG. 8. (Color online) Variation of the U matrix as the system is
tuned from the TC phase to the DSem phase. The angle αj plotted
is related to the U matrix by Ujj = eiαj . We see a transition from
the fermionic statistics indicative of the TC phase to the semionic
statistics indicative of the DSem phase. The region near the transition
point is ambiguous due to an additional degeneracy which comes into
play. The size of the system considered is 48 spins.

minimizing the entanglement entropy is the same as max-
imizing the TEE. Hence, finding the correct MES depends
on the four ground states having the same TEE. However,
close to the transition point we observe that the TEE for the
4 states becomes very different due to finite-size effects and
this causes a bias in the minimization. The second reason is
that we have an extra degeneracy which arises at μ = 0.5
because the Hamiltonian conserves the loop number modulo
2. We then have two sectors characterized by the number of
loops modulo 2 containing 4 topologically degenerate ground
states each. We expect the two sectors to be degenerate in the
thermodynamic limit and thus we end up with eight ground
states at the transition point which violates our assumption
about the parameter space of the minimization. Despite this
ambiguity due to finite-size effects, we believe that there is
a sharp transition as indicated previously from the energy
spectrum.

Thus, by using the U and S matrices as nonlocal “order pa-
rameters,” we uniquely characterize the topological region of
the phase diagram by distinguishing the different topologically
ordered phases in it.

V. SUMMARY AND DISCUSSION

In this paper, we considered a model Hamiltonian which
exhibits two different Z2 topologically ordered phases and
a topologically trivial phase. In two limiting cases, the
Hamiltonian reduces to the exactly solvable double semion
(DSem) and toric code (TC) models. We obtained an exact
solution for the entire phase diagram on a 1D ladder and find
a second-order transition half-way between the two limits,
described by an Ising×Ising conformal field theory. For
the 2D system on a honeycomb lattice, we resort to exact
diagonalization in a basis of loops which allows us to go
up to system sizes of 75 spins. We reproduce the known
second-order transition between the topological and trivial
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phases and find indications for a first-order transition between
the two Z2 topological phases from the energy spectrum.
While the topological entanglement entropy distinguishes the
topologically ordered and trivial phases, it cannot tell the
difference between the TC and DSem phases. We calculated
the exchange statistics and mutual statistics of the quasiparticle
excitations numerically and used them as “order parameters”
to distinguish the two topologically ordered phases. We finally
obtained the full phase diagram of the Hamiltonian of Eq. (7)
which is schematically shown in the inset in Fig. 8.

We showed that the braiding statistics for different Z2

phases in a spin system can be obtained directly using exact
diagonalization methods. The same method might be used in
the case of the Heisenberg antiferromagnet on the kagome
lattice. Although the ground state is believed to contain Z2

topological order [7,16,29], a more precise characterization
could be made by calculating the U and S matrices to
determine whether it corresponds to a TC or DSem phase.
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APPENDIX A: MAPPING TO AN ISING MODEL
ON A TRIANGULAR LATTICE

Here we briefly review the duality mapping between the
topological TC/DSem models and their dual (nontopological)
Ising-like models. For simplicity, consider the TC or DSem
model on a sphere. Let us forbid vertex defects so that the
Hilbert space consists only of all possible loop configurations.
There is a one-to-one mapping between this Hilbert space and
the space of all domain wall configurations in Ising degrees of
variables τ z = ±1 living at the centers of plaquettes (Fig. 9).
For example, in this language we may rewrite the DSem
Hamiltonian as

H DSem = +εP

∑
p

τ x
p

∏
〈qr〉p

i(1−τ z
q τ z

r )/2, (A1)

FIG. 9. (Color online) Duality mapping between the loops in the
topological models and domain walls in the dual τ z

p Ising spins which
live on plaquettes.

where 〈qr〉p is the set of plaquettes q,r which are nearest
neighbors with one another, and nearest neighbors with p.
To ensure a one-to-one correspondence between the Hilbert
spaces of the two models, we also need to impose the global
symmetry

∏
p τ x

p = 1.
Notice that, as a whole, this dual Hamiltonian has Ising

symmetry. This is no coincidence. This Hamiltonian arose
from a model that acted on configurations of loops, which are
now interpreted as domain walls. This resulting Hamiltonian
should only care about domain walls, rather than the actual
values of the Ising spins within the domains. Hence, notice
that the τ z operators only ever arise in pairs, which gives rise
to a global Ising symmetry. There is related to the subtlety that
there is a one-to-two mapping between loop configurations
and the Ising spins themselves. This is because Ising spin
configurations related by flipping all the spins give rise to the
same domain wall configurations. Another way of expressing
this redundancy is to note that

∏
p Bp ≡ 1 on the Hilbert space

of the string-net models. In terms of the dual Ising spins, this
relation reads

∏
p τ x

p = 1; this does not hold as an identity, and
needs to be imposed as a symmetry constraint.

APPENDIX B: OBTAINING BRAIDING STATISTICS FROM
MINIMALLY ENTANGLED STATES (MES)

The U and S matrices can be extracted from the MES by
the method outlined in Refs. [19,20]. We can construct the US

matrix by observing the action of a 2π/3 rotation on the MES
over a lattice which has a 2π/3 symmetry,

(D†USD)ij = 〈
�x

j

∣∣R2π/3

∣∣�x
i

〉
, (B1)

where D is a diagonal matrix representing the unknown phases
that come with each |�x〉.

And we can construct the S matrix by observing the action
of a π/2 rotation on the MES on a lattice which has a π/2
symmetry,

(S)ij = 〈
�x

j

∣∣Rπ/2

∣∣�x
i

〉
. (B2)

However, we cannot extract the S matrix this way since our
honeycomb lattice does not have a π/2 symmetry. But, we
can extract the U and S matrix from the US matrix by using
some of the constraints on them. Since we know that the U

and D matrices are diagonal, we have 24 unknown parameters
(16 from the S matrix, 4 from the U matrix, and 4 phases).
However, we only have 16 constraints from the action of the
2π/3 rotation on the MES.

We can get around this by assuming that we know which
of the degenerate ground states the identity particle (which
always exists) belongs to. We will verify this assumption
later. Now we know that the identity particle has trivial
self-statistics (U1 = 1) and trivial mutual statistics (S1i =
Si1 = 1

Q
where Q is the quantum dimension). Since we

have an Abelian phase with 4 quasiparticles, Q = 2 here.
We can also obtain it from the topological entanglement
entropy (γ ) by using Q = eγ . Thus, we reduce the number
of unknown parameters to 16. We can now solve for all the
parameters.

In fact, we actually have more constraints since we also
know that the S matrix is symmetric. We can test our assump-
tion about the identity particle by checking that the S matrix
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we obtain is symmetric and that the row and column of the S

matrix and the element of the U matrix corresponding to the
identity particle are approximately equal to 1. We do this along

all the points in our phase diagram and find an approximately
symmetric S matrix everywhere, thus validating our original
assumption.
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