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Spectral properties near the Mott transition in the two-dimensional Hubbard model
with next-nearest-neighbor hopping
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The single-particle spectral properties near the Mott transition in the two-dimensional Hubbard model with
next-nearest-neighbor hopping are investigated by using cluster perturbation theory. Complicated spectral features
of this model are simply interpreted, by considering how the next-nearest-neighbor hopping shifts the spectral
weights of the two-dimensional Hubbard model. Various anomalous features observed in hole-doped and electron-
doped cuprate high-temperature superconductors are explained in a unified manner as properties near the Mott
transition in a two-dimensional system whose spectral weights are shifted by next-nearest-neighbor hopping.
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I. INTRODUCTION

Since the discovery of cuprate high-temperature supercon-
ductors [1], electronic properties of a two-dimensional (2D)
system near the Mott transition have attracted considerable
attention, because the high-temperature superconductors are
obtained by doping layered-structure Mott insulators with
holes or electrons [1,2]. The anomalously high superconduct-
ing transition temperature (Tc) is considered to be related
to the anomalous features near the Mott transition in a
2D system [3–5]. Because both hole-doped and electron-
doped systems exhibit superconductivity [1,2], it is natural to
consider that the mechanism of high-Tc superconductivity is
included in both cases. Thus, a comprehensive understanding
of the electronic properties of hole-doped and electron-doped
systems is desired in order to elucidate the mechanism of
high-Tc superconductivity.

A remarkable difference in spectral feature between hole-
doped and electron-doped systems near the Mott transition
is the location of the pseudogap in the momentum space:
The spectral weights around the Fermi level are considerably
reduced around (±π,0) and (0, ± π ) in hole-doped systems
[6–9], whereas those around (±π/2, ± π/2) are almost lost
in electron-doped systems [6,10,11]. Although this difference
has been more or less reproduced in the 2D Hubbard and
t-J models with next-nearest-neighbor hopping, the interpre-
tations are controversial [12–32]. For the pseudogap around
(±π/2, ± π/2) in electron-doped systems, the most widely
accepted interpretation would be that it can be identified as
the gap due to the band splitting caused by antiferromagnetic
long-range order [12–22]. There are also other interpretations,
such as that it is the result of short-range antiferromagnetic
correlations [23–26], renormalization of the Fermi surface by
interactions [28], or zeros of the Green function [29].

The purpose of this paper is to interpret the spectral features
of hole-doped and electron-doped systems in a unified manner
from the viewpoint of the Mott transition. Recently, the spectral
features near the Mott transition of the 2D Hubbard model
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without next-nearest-neighbor hopping have been explained
by tracing their origins back to the characteristic modes of
the one-dimensional (1D) Hubbard model [33]. This paper
further extends the argument to the case where next-nearest-
neighbor hopping is included, by considering how the spectral
weights are shifted by next-nearest-neighbor hopping near the
Mott transition, and shows that the nature of complicated
spectral features in hole-doped and electron-doped systems
can be intuitively understood by tracing their origins back
to the properties of the 1D and 2D Hubbard models without
next-nearest-neighbor hopping.

Based on this picture, various spectral features observed
in hole-doped and electron-doped high-Tc cuprates near the
Mott transition can be interpreted in a unified manner as
properties of the 2D Hubbard model whose spectral weights
are shifted by next-nearest-neighbor hopping. In particular, the
different locations of the pseudogap between hole-doped and
electron-doped systems [6–11] and the disappearance of the
spectral weights of the in-gap states toward the Mott transition
observed in both hole-doped and electron-doped cuprates
[4,6,11,34,35] are naturally explained from the viewpoint of
the Mott transition.

II. MODEL AND METHOD

A. Model

We consider the 2D Hubbard model with next-nearest-
neighbor hopping defined by the following Hamiltonian:

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + t ′

∑
〈〈i,j〉〉,σ

(c†iσ cjσ + H.c.)

+U
∑

i

ni↑ni↓ − μ
∑
i,σ

niσ , (1)

where ciσ and niσ denote the annihilation and number
operators, respectively, of an electron at site i with spin σ . The
notations 〈i,j 〉 and 〈〈i,j 〉〉 indicate that sites i and j are nearest
neighbors and next-nearest neighbors, respectively, on a square
lattice. We consider the case for t > 0, t ′/t ≈ 0.3, and U/t �
8, unless otherwise mentioned. The hole-doping concentration
δ is defined as δ = 1 − n, where n denotes the density of
electrons. At half-filling (δ = 0), the system becomes a Mott
insulator in the parameter regime we consider in this paper. In
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this paper, the 1D and 2D Hubbard models indicate the models
defined by Eq. (1) without the next-nearest-neighbor hopping
term (t ′ = 0) on a chain and on a square lattice, respectively,
unless otherwise mentioned.

We study the single-particle spectral function A(k,ω) at
zero temperature defined as follows:

A(k,ω) =
{∑

l |〈l|c†k↑|GS〉|2δ(ω − εl) for ω > 0∑
l |〈l|ck↓|GS〉|2δ(ω + εl) for ω < 0

,

(2)

where ckσ denotes the annihilation operator of an electron with
momentum k and spin σ . Here εl denotes the excitation energy
of the eigenstate |l〉 from the ground state |GS〉. The spectral
function A(k,ω) can also be expressed as

A(k,ω) = − 1

π
ImG(k,ω), (3)

where G(k,ω) denotes the retarded single-particle Green
function [36]. The spectral function A(k,ω) can be probed
by using angle-resolved photoemission spectroscopy [6]. We
consider the properties for 0 � ky � kx � π without loss of
generality. For the 1D and 2D Hubbard models (t ′ = 0), the
spectral function in the electron-doped case at δ = −ξ for
0 < ξ � 1 is the same as that in the hole-doped case at δ = ξ

with ω and k replaced by −ω and π − k, respectively, where
π denotes π for 1D and (π,π ) for 2D, due to the symmetry
under the particle-hole and gauge transformations on bipartite
lattices [37].

B. Method

In this paper, cluster perturbation theory (CPT) [38,39] is
employed to calculate A(k,ω). In CPT, the Green function
is obtained by connecting cluster Green functions calculated
by exact diagonalization through the first-order single-particle
hopping process without assuming long-range order. In the
noninteracting case (U = 0), CPT becomes exact [38,39]. We
use cluster Green functions in (4 × 4)-site clusters, which
respect rotation and reflection symmetries of the square lattice.

Before discussing the results for the 2D Hubbard model
with next-nearest-neighbor hopping, we confirm the validity of
CPT near the Mott transition by comparing the results obtained
by using CPT with those obtained by using unbiased methods
[40–45]. From the viewpoint of numerical calculations, CPT
is expected to work better in low-dimensional systems,
because boundary effects of clusters are smaller than in high-
dimensional systems. On the other hand, from the physical
viewpoint, CPT is expected to work better in high-dimensional
systems, because the free-electron-like mode will be more
dominant than in low-dimensional systems. In the following,
we confirm the validity of CPT for the 1D and 2D Hubbard
models near the Mott transition.

First, we compare the results obtained by using 16-site-
cluster CPT for the 1D Hubbard model. The result for A(k,ω)
of the 1D Hubbard model for U/t = 8 near the Mott transition
obtained by using CPT [Fig. 1(a)] agrees reasonably well
with that obtained by using the dynamical density-matrix
renormalization group (DDMRG) method [47] [Fig. 1(b)]
[40]. In particular, the almost symmetric spectral-weight

FIG. 1. (Color online) Comparisons of CPT results with
DDMRG and exact results for the 1D Hubbard model for U/t = 8.
(a) A(k,ω)t obtained by using CPT at δ ≈ 0.03. (b) The same as
(a) but obtained by using the DDMRG method, taken from Ref. [40].
(c) Energy of the mode for ω > 0 in the LHB at k = π [ε(π )] obtained
by using CPT (red circles) and that obtained by using the Bethe
ansatz (solid blue curve) [33,40]. The dashed green curve indicates
the energy of the mode at k = π for U = 0. (d) Spectral weight
for ω > 0 in the LHB [W ] obtained by using CPT (blue diamonds)
and that obtained by using the DDMRG method (red circles with
dashed line) taken from Ref. [40]. The dotted green line indicates
the electron-addition spectral weight in the LHB for t = 0 [46].
(e) Chemical potential μ obtained by using CPT (blue circles) and
that obtained by using the Bethe ansatz (dashed red curve) [41]. The
values in the δ → 0 limit indicate those of −�/(2t) obtained from
the Mott gap � between the UHB and the LHB at δ = 0. Gaussian
broadening is used with standard deviation σ = 0.1t for the results
obtained by using CPT and the DDMRG method.

distribution between the upper Hubbard band (UHB) and
the lower Hubbard band (LHB) near the Mott transition
and the emergence of a dispersing mode for ω � 0 by hole
doping [40] as well as the characteristic modes, such as
the spinon mode, the holon mode, and the shadow band
[40,48,49], are well reproduced by CPT. In addition, the
doping dependences of the energy of the mode for ω > 0
in the LHB at k = π [ε(π )], the spectral weight for ω > 0 in
the LHB [W (≡ ∫

ω>0 in the LHB dω
∫ π

−π
dkA(k,ω)/(2π ))], and

the chemical potential μ [39] obtained by using CPT agree
well with the DDMRG results [40] and the exact results
[40,41] [Figs. 1(c)–1(e)]. These comparisons imply that CPT
can capture the features near the Mott transition in the 1D
Hubbard model for the energy scale of Fig. 1.

We next compare the results obtained by using (4 × 4)-site
cluster CPT for the 2D Hubbard model (t ′ = 0). As shown in
Figs. 2(a) and 2(b), the bandwidth of the low-|ω| mode in the
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FIG. 2. (Color online) Comparisons of CPT results for the 2D
Hubbard model (t ′ = 0) with QMC and exact diagonalization results.
(a) Bandwidth of the low-|ω| mode in the LHB in the (0,0)–(π,π )
direction at δ = 0 [ε(0,0)] [Fig. 2(e), pink arrow] (blue diamonds) in
the 2D Hubbard model obtained by using CPT, taken from Ref. [33].
The dotted green line represents

√
2v2D/t with the spin-wave velocity

of the 2D Heisenberg model v2D(≈1.18
√

2J [50]) (J = 4t2/U ). The
yellow squares show the bandwidth of the mode of the single-hole
excitation in the 2D t-J model at δ = 0 obtained by using exact
diagonalization in clusters of up to 26 sites, taken from Ref. [42].
(b) The same as (a) but showing the J/t dependence. (c) Chemical
potential μ obtained by using CPT (blue circles with solid lines) and
QMC (green squares taken from Ref. [43] and purple cross taken
from Ref. [44]) in the 2D Hubbard model. The dashed red curves
indicate the exact results for the 1D Hubbard model [41]. The upper
and lower curves show the results for U/t = 4 and 8, respectively.
The values in the δ → 0 limit indicate those of −�/(2t) obtained
from the Mott gap � between the UHB and the LHB at δ = 0. (d)
Mott gap � at δ = 0 obtained by using CPT (blue diamonds taken
from Ref. [33]) and QMC (green square taken from Ref. [43] and
purple cross taken from Ref. [44]) in the 2D Hubbard model. The
dotted red curve indicates the exact results for the 1D Hubbard model
[41]. (e) A(k,ω)t in the LHB of the 2D Hubbard model for U/t = 8
at δ = 0 obtained by using CPT, taken from Ref. [33]. The dotted
green line indicates the ω value at the top of the LHB. The pink
arrow indicates the bandwidth of the low-|ω| mode in the LHB in the
(0,0)–(π,π ) direction. (f) The same as (e) but at δ = 0.03, taken from
Ref. [33]. The straight solid green line represents ω = 0. Gaussian
broadening is used with standard deviation σ = 0.1t for the results
obtained by using CPT.

LHB in the (0,0)–(π,π ) direction at δ = 0 [ε(0,0)] [Fig. 2(e),
pink arrow] obtained by using CPT [33], which behaves in
the large-U/t regime as

√
2v2D , where v2D denotes the spin-

wave velocity of the 2D Heisenberg model (v2D ≈ 1.18
√

2J

[50]) (J = 4t2/U ) [33], agrees reasonably well [51] with that
of the single-hole excitation in the 2D t-J model at δ = 0
obtained by using exact diagonalization [42] in the large-U/t

regime. In addition, the doping dependence of the chemical
potential μ and the U/t dependence of the Mott gap � at
δ = 0 obtained by using CPT agree reasonably well with those
obtained by quantum Monte Carlo (QMC) simulations for
U/t = 4 [43,44] [Figs. 2(c) and 2(d)]. Furthermore, the overall
behavior of A(k,ω) in the 2D Hubbard model for U/t = 8
near the Mott transition obtained by using CPT [Fig. 2(f)]
[33] agrees reasonably well with that obtained by a QMC
simulation in Ref. [45]. These comparisons imply that CPT
can capture the features near the Mott transition in the 2D
Hubbard model for the energy scale of Fig. 2.

The doping dependence of the chemical potential near the
Mott transition in the 2D Hubbard model appears similar to
that in the 1D Hubbard model [Fig. 2(c)]. To judge whether
the value of the critical exponent of the charge susceptibility
χc(= ∂n/∂μ) for the Mott transition in 2D [36,43,44,52] is
the same as that in 1D [53], more careful analyses than those
in the present study, such as size-scaling analyses, might be
necessary. In any case, the characteristic features of the Mott
transition shown in Ref. [33] and in this paper do not depend
on the value of the exponent.

Because the results shown in this paper as well as in
Ref. [33] are based on (4 × 4)-site cluster Green functions, the
properties in the very small-|ω| regime as well as the details of
line shapes and fine structures of the spectral function might
not be well resolved due to finite-size effects. This paper as
well as Ref. [33] discusses overall spectral features for which
the (4 × 4)-site cluster CPT appears to give reliable results.

Here, some technical details for how CPT was implemented
in this paper and in Ref. [33] are mentioned. The Lanczos
algorithm was used for the calculation of cluster Green
functions in clusters without ground-state magnetization. The
Green functions were calculated by considering superclusters
so the electron density n could be controlled arbitrarily
[39]. The CPT results with Lorentzian broadening (half-width
at half-maximum η = 0.16t) were deconvolved into those
with Gaussian broadening (standard deviation σ = 0.1t). The
chemical potential μ was set such that the spectral weight for
ω < 0 was equal to n/2:

∫ 0
−∞ dω

∫
dkA(k,ω)/(2π )d = n/2

in d dimensions [39]. At half-filling, it was set at U/2. Since
A(k,ω) was calculated at discrete values of ω, spaced by
intervals of �ω = 0.02t , the position of ω = 0 was generally
located between the discrete calculation points. In this paper
and Ref. [33], A(k,ω) at the discrete ω-point closest to ω = 0
for ω < 0 is shown as A(k,ω) for ω ≈ 0. It was confirmed that
the ω discretization was sufficiently fine such that there was
no serious difference within the interval around ω = 0 for the
discussions in this paper and Ref. [33].

In this paper as well as in Refs. [33,40], peaks [and edges
of characteristic continua (apart from Gaussian broadening)]
of the spectral function are referred to as modes. The ω value
at the top of the LHB at δ = 0 in the 2D Hubbard model is
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defined as the highest value of ω of the high-ω mode in the
(0,0)–(π,π ) direction in the LHB [Fig. 2(e), dotted green line].

III. SPECTRAL FEATURES OF THE 2D HUBBARD
MODEL WITH NEXT-NEAREST-NEIGHBOR HOPPING

A. CPT results

The results obtained by using CPT for the 2D Hubbard
model with next-nearest-neighbor hopping for U/t = 8 and
t ′/t = 0.3 are shown in Fig. 3. At half-filling, the bottom
of the UHB is located near (π,0), whereas the top of the
LHB is located near (π/2,π/2) [Fig. 3(a)]. In hole-doped
systems near the Mott transition, the spectral weights for
ω ≈ 0 are primarily located around (π/2,π/2), and pseudogap
behavior appears around (π,0) and (0,π ) [Figs. 3(b), 3(c),
3(g), and 3(h)]. These features are essentially the same as
those of the 2D Hubbard model [Fig. 2(f)] [33] except that
the pseudogap behavior is enhanced by next-nearest-neighbor
hopping. In contrast, in electron-doped systems near the
Mott transition, the spectral weights for ω ≈ 0 are primarily
located around (π,0) and (0,π ), and pseudogap behavior
appears around (π/2,π/2) [Figs. 3(d), 3(e), 3(i), and 3(j)].
The spectral weights of the mode for ω < 0 around (0,0) in the
UHB disappear toward the Mott transition in electron-doped
systems [Figs. 3(a) and 3(d)–3(f)] as do those for ω > 0
around (π,π ) in the LHB in hole-doped systems [Figs. 2(e),
2(f), and 3(a)–3(c)] [33,40]. The dispersion relation around
(π,0) is considerably flat near the Mott transition in both
hole-doped and electron-doped systems [Figs. 2(e), 2(f), and
3(a)–3(f)] [33]. By increasing the doping concentration of
electrons (holes), the pseudogap decreases in electron-doped
(hole-doped) systems and closes at some value of the doping
concentration, which results in a Fermi surface similar to that
of the noninteracting case [Figs. 3(b)–3(k)] [33]. Spectral
features similar to the above have been observed in high-Tc

cuprates [4,6–11,54].
Although similar spectral features have been obtained in

the 2D Hubbard and t-J models with next-nearest-neighbor

hopping by various methods, their interpretations are con-
troversial [13–31]. For the pseudogap around (π/2,π/2)
in electron-doped systems, there are several interpretations,
such as that it is the result of the band splitting caused
by antiferromagnetic long-range order [12–22], short-range
antiferromagnetic correlations [23–26], renormalization of the
Fermi surface by interactions [28], or zeros of the Green
function [29].

B. Spectral-weight shift caused by
next-nearest-neighbor hopping

Here, we interpret the spectral features as a result of the
spectral-weight shift caused by next-nearest-neighbor hopping
near the Mott transition. In the noninteracting case (U = 0),
since the dispersion relation of the single-particle excitation is
obtained as ε(k) = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky −
μ, the next-nearest-neighbor hopping (t ′ term) shifts the spec-
tral weights to higher and lower values of ω in the momentum
regime where the values of the Fourier transform of the next-
nearest-neighbor hopping integral, t ′(k)[≡ 4t ′ cos kx cos ky],
are positive and negative, respectively. Similarly, in the
interacting case (U > 0), the next-nearest-neighbor hopping
is expected to shift the spectral weights of the 2D Hubbard
model to higher and lower values of ω for t ′(k) > 0 and
t ′(k) < 0, respectively [29,55]. The shift should also depend
on the spectral-weight distribution. A simple approximation
that exhibits such spectral-weight shift is the following. In
the small-|t ′/t | regime, by considering next-nearest-neighbor
hopping as perturbation, the Green function of the 2D
Hubbard model with next-nearest-neighbor hopping can be
approximated [56] as

G(k,ω) ≈ G2D(k,ω)

1 − t ′(k)G2D(k,ω)
, (4)

analogously to the random-phase approximation (RPA) for
interchain hopping from the 1D limit [33,57–68] and that
for intersite hopping from the atomic limit [69,70]. Here,

FIG. 3. (Color online) (a)–(f) A(k,ω)t of the 2D Hubbard model with next-nearest-neighbor hopping for U/t = 8 and t ′/t = 0.3 at δ = 0,
0.04, 0.1, −0.04, −0.1, and −0.15 in the LHB [(a)–(c)] and the UHB [(a) and (d)–(f)], obtained by using CPT. The solid green lines represent
ω = 0. (g)–(k) The same as in (b)–(f) but for ω ≈ 0. Gaussian broadening is used with standard deviation σ = 0.1t .
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FIG. 4. (Color online) A(k,ω)t obtained by using the RPA-type
approximation for next-nearest-neighbor hopping [Eq. (4)] for t ′/t =
0.5. The CPT results for the 2D Hubbard model (U/t = 8 and t ′ = 0)
[33] are used as G2D(k,ω) in Eq. (4). (a)–(c) A(k,ω)t at δ = 0, 0.04,
and −0.04 in the LHB [(a) and (b)] and the UHB [(a) and (c)]. The
solid green lines represent ω = 0. (d) and (e) The same as in (b)
and (c) but for ω ≈ 0. Gaussian broadening is used with standard
deviation σ = 0.1t .

G2D(k,ω) denotes the Green function of the 2D Hubbard
model (t ′ = 0). Then, in the momentum regime where the
values of t ′(k) are positive and negative, the spectral weights
are shifted to higher and lower values of ω, respectively, by
the perturbation (next-nearest-neighbor hopping) [66,67]. The
shift becomes large, where the value of |t ′(k)| and the spectral
weight are large [66]. This approximation becomes exact for
U = 0 and recovers the properties of the 2D Hubbard model
[G2D(k,ω)] for t ′ = 0.

Figure 4 shows the results obtained by using Eq. (4)
for t ′/t = 0.5, where the CPT results for the 2D Hubbard
model (U/t = 8 and t ′ = 0) [33] are used as G2D(k,ω). At
half-filling, the bottom of the UHB is located near (π,0),
whereas the top of the LHB is located near (π/2,π/2)
[Fig. 4(a)], as in the case of the CPT results [Fig. 3(a)]. This
feature can be explained as follows. Because the values of
t ′(k) are negative and large in magnitude around (π,0) and
(0,π ) [t ′(k) ≈ −4t ′ < 0], the flat mode carrying large spectral
weights around (π,0) and (0,π ) is shifted considerably to lower
values of ω by next-nearest-neighbor hopping, whereas the
spectral weights around (π/2,π/2) remain almost unaffected
by next-nearest-neighbor hopping [Eq. (4), t ′(k) ≈ 0]. Thus,
in the UHB, the flat mode around (π,0), which was originally
located above the bottom of the UHB near (π/2,π/2) in
the 2D Hubbard model [Fig. 2(e) in the case of the UHB],
is shifted down below the states around (π/2,π/2), which
causes large spectral weights for ω ≈ 0 around (π,0) and (0,π )
rather than around (π/2,π/2) in an electron-doped system
near the Mott transition [Figs. 4(c) and 4(e)]. In the LHB,
the flat mode around (π,0), which was originally located
below the top of the LHB near (π/2,π/2) in the 2D Hubbard
model [Fig. 2(e)], is shifted to further lower values of ω,
with the states around (π/2,π/2) almost unchanged. Thus,
the spectral weights for ω ≈ 0 near the Mott transition in a

hole-doped system remain primarily located around (π/2,π/2)
with the pseudogap behavior around (π,0) and (0,π ) enhanced
[Figs. 4(b) and 4(d)].

As for the energy scale of the pseudogap in an electron-
doped system near the Mott transition, because the flat
mode around (π,0) is shifted to lower values of ω by next-
nearest-neighbor hopping with the states around (π/2,π/2)
almost unaffected [Eq. (4)], the energy difference between the
lower edge of the continuum bending back near (π/2,π/2)
and the flat mode around (π,0) in the UHB is primarily
determined by the shift of the flat mode of the order of t ′,
O(t ′), in the large-U/t regime [Figs. 3(a), 3(d), 3(e), 4(a),
and 4(c)]. In a hole-doped system near the Mott transition,
due to the same reason, the energy difference between the
upper edge of the continuum bending back near (π/2,π/2)
and the flat mode around (π,0) in the LHB is enhanced
by next-nearest-neighbor hopping. Thus, the energy scale
of the pseudogap defined by this energy difference, which
almost coincides with the pseudogap defined as the energy
difference between the Fermi level (ω = 0) and the main peak
of ρ(ω)[≡ ∫

dkA(k,ω)/(2π )2] in the δ → +0 limit [33], is
primarily determined by the shift of the flat mode of O(t ′)
in addition to the effect of the antiferromagnetic fluctuation
of the order of J (= 4t2/U ) in the large-U/t regime [33]
[Figs. 3(a)–3(c), 4(a), and 4(b)].

The argument on the spectral-weight shift caused by next-
nearest-neighbor hopping can be straightforwardly general-
ized to the cases where there are further-neighbor hoppings
by defining t ′(k) in Eq. (4) such that the Fourier transforms
of the further-neighbor hopping integrals are included. In the
momentum regime where the values of t ′(k) are positive and
negative, the spectral weights are shifted to higher and lower
values of ω, respectively, by the perturbation (next-nearest-
and further-neighbor hoppings).

The above RPA-type argument reasonably well explains the
overall spectral features, such as the locations of large spectral
weights and the pseudogap behavior (reduction in spectral
weight) for ω ≈ 0 near the Mott transition, for the 2D Hubbard
model with next-nearest-neighbor hopping obtained by using
CPT [Figs. 3(b)–3(e) and 3(g)–3(j)], and those observed in
high-Tc cuprates [4,6–11,54]. However, the spectral weights
for ω ≈ 0 in the pseudogap momentum regime near the Mott
transition obtained by using CPT [Figs. 3(g)–3(j)] are con-
siderably smaller than those of the RPA-type approximation
[Figs. 4(d) and 4(e)], which implies that processes omitted in
the RPA-type approximation [Eq. (4)] enhance the pseudogap
behavior. The spectral weights for ω ≈ 0 in the pseudogap
momentum regime observed in high-Tc cuprates are also
considerably reduced near the Mott transition [6–11].

From the viewpoint of the spectral-weight shift, the strong
reduction in spectral weight for ω ≈ 0 in the pseudogap
momentum regime near the Mott transition [Figs. 3(b)–3(e)
and 3(g)–3(j)] [6–11] can be interpreted as a separation of the
modes due to the large shift of the flat mode around (π,0)
caused by next-nearest-neighbor hopping. In electron-doped
systems near the Mott transition, the mode fading away toward
the Mott transition can be effectively separated around ω = 0
from the continuum for ω > 0 around (π/2,π/2) as a result
of the large downward shift of the flat mode around (π,0)
[Figs. 3(d) and 3(e)]. In hole-doped systems near the Mott
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transition, the flat mode can be almost separated around
ω = 0 from the mode fading away toward the Mott transition
due to the downward shift of the flat mode around (π,0)
[Figs. 3(b) and 3(c)]. The strong reduction in spectral weight
for ω ≈ 0 in the pseudogap momentum regime near the
Mott transition [Figs. 3(b)–3(e) and 3(g)–3(j)] might also be
related to antiferromagnetic fluctuations, pairing fluctuations,
or other effects suggested in the literature [3–5,12–29,32,36].
For details, further investigations, including careful analyses
on finite-size effects in CPT, are necessary.

C. Interpretation of spectral features of electron-doped
high-Tc cuprates

Based on the above results for the 2D Hubbard model with
next-nearest-neighbor hopping, the spectral features observed
in electron-doped high-Tc cuprates [6,10,11] can be naturally
explained from the viewpoint of the Mott transition as prop-
erties of the 2D Hubbard model whose spectral weights are

shifted by next-nearest-neighbor hopping. The states referred
to as in-gap states or doping-induced states can be identified
as the mode fading away toward the Mott transition [33]
whose spectral weights are shifted by next-nearest-neighbor
hopping. The pseudogap around (π/2,π/2) can be primarily
interpreted as a reduction in spectral weight for ω ≈ 0 around
(π/2,π/2) due to the spectral-weight shift of the flat mode
around (π,0) caused by next-nearest-neighbor hopping: The
next-nearest-neighbor hopping shifts the flat mode carrying
large spectral weights around (π,0) down below ω = 0, which
lowers the chemical potential, leading to a reduction in spectral
weight for ω ≈ 0 around (π/2,π/2) with the doping-induced
states existing below ω = 0.

In this picture, the antiferromagnetic long-range order is
not necessary for the pseudogap behavior. The pseudogap
behavior is explained as a result of the spectral features
near the Mott transition [the presence of the mode fading
away toward the Mott transition and the flat mode carrying
large spectral weights around (π,0)] and the spectral-weight

FIG. 5. (Color online) Relationship between spectral features and modes near the Mott transition. Left column: A(k,ω)t of the UHB in the
electron-doped case (δ = −0.03) (upper panel) and that of the LHB in the hole-doped case (δ = 0.03) (lower panel) in the 2D Hubbard model
with next-nearest-neighbor hopping (U/t = 8 and t ′/t = 0.3) obtained by using CPT. The blue numbers I–VI and I′–VI′ indicate the modes
whose origins in the 2D Hubbard model (t ′ = 0) are the modes indicated by the blue numbers i–vi on the intensity plot in the center column.
Center column: The blue arrows indicate which modes are responsible for the spectral features in the 2D Hubbard model [33]. The red arrows
indicate which modes of the 1D Hubbard model are the primary origins of the modes of the 2D Hubbard model [33]. Here, kF denotes the value
of kx(= ky) of the Fermi surface in the (0,0)–(π,π ) direction. The intensity plot shows A(k,ω)t of the LHB at δ = 0.03 in the 2D Hubbard
model (U/t = 8 and t ′ = 0) obtained by using CPT [Fig. 2(f)] taken from Ref. [33]. The blue numbers i–vi on the intensity plot indicate the
modes described in the above diagram [33]. Right column: The intensity plot shows A(k,ω)t of the LHB at δ ≈ 0.03 in the 1D Hubbard model
(U/t = 8) obtained by using the DDMRG method [Fig. 1(b)] taken from Ref. [40]. The blue numbers 1–5 on the intensity plot indicate the
modes described in the above diagram [40]. The solid green lines on the intensity plots represent ω = 0. Gaussian broadening is used with
standard deviation σ = 0.1t .
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shift caused by next-nearest-neighbor hopping. This picture
explains not only the pseudogap behavior (reduction in
spectral weight) around (π/2,π/2) in electron-doped systems
[Figs. 3(i), 3(j), and 4(e)] [6,10,11] and that around (π,0) and
(0,π ) in hole-doped systems [Figs. 3(g), 3(h), and 4(d)] [6–9]
but also the doping-induced states [4,6,11,34,35] and the flat
dispersion relation around (π,0) [6,7,54] [Figs. 3(b)–3(f),
4(b), and 4(c)] in a unified manner. In addition, the energy
scale of the Mott gap is of the order of U in the large-U/t

regime in this picture.

IV. DISCUSSION AND SUMMARY

Various spectral features observed in hole-doped and
electron-doped high-Tc cuprates [4,6–11,34,35,54,71,72] can
be explained in a unified manner as properties of the 2D
Hubbard model with next-nearest-neighbor hopping, whose
origins can be traced back to the characteristic modes of the
2D Hubbard model based on the consideration of how the
next-nearest-neighbor hopping shifts the spectral weights
(Fig. 5). The origins of the modes of the 2D Hubbard model
can be further traced back to those of the 1D Hubbard model
(Fig. 5) [33].

Specifically, the spectral features in hole-doped and
electron-doped systems with next-nearest-neighbor hopping
are characterized by the modes indicated by the blue numbers
I–VI and I′–VI′ on the intensity plots in the left column
of Fig. 5. These modes are obtained as a result of the
spectral-weight shift caused by next-nearest-neighbor hopping
from the modes of the 2D Hubbard model indicated by the blue
numbers i–vi in the center column of Fig. 5. The origins of
the modes of the 2D Hubbard model (Fig. 5, modes i–vi)
can be traced back to the modes of the 1D Hubbard model
indicated by the blue number 1–5 in the right column of Fig. 5
by considering the spectral-weight shift caused by interchain
hopping [33]. Based on these relationships, various spectral
features can be interpreted as follows.

Doping-induced states. The mode for ω > 0 in the LHB in
hole-doped systems (Fig. 5, modes i and I) and that for ω < 0
around (0,0) in the UHB in electron-doped systems (Fig. 5,
mode I′ and mode i in the electron-doped case) correspond to
the states referred to as in-gap states or doping-induced states
[4,6,11,29,34,35,46,55,73–75]. These modes originate from
the mode of the upper edge of the spinon-antiholon continuum
in the 1D Hubbard model (Fig. 5, mode 1) [33]. All these
modes (Fig. 5, modes 1, i, I, and I′) remain dispersing until
the Mott transition occurs and fade away toward the Mott
transition [33,40].

Fermi arc and pseudogap in hole-doped systems. In hole-
doped systems near the Mott transition, the spectral weights for
ω ≈ 0 are primarily located around (π/2,π/2) [Fig. 5, lower
panels in the left and center columns; Figs. 3(g) and 3(h)]
[33]. There are essentially no spectral weights for ω ≈ 0 in
the (0,0)–(π,0) direction, because the flat mode around (π,0)
(Fig. 5, modes vi and VI) is located below ω = 0 [33]. The
spectral weights for ω ≈ 0 in the (π,0)–(π,π ) direction reduce
significantly near the Mott transition due to the property of the
mode fading away toward the Mott transition (Fig. 5, modes
i and I) [33]. In addition, the flat mode (Fig. 5, mode VI) can
be almost separated around ω = 0 from the mode fading away

toward the Mott transition (Fig. 5, mode I) due to the downward
shift of the flat mode around (π,0) caused by next-nearest-
neighbor hopping [Eq. (4), t ′(k) ≈ −4t ′ < 0]. Because of
these reductions in spectral weight for ω ≈ 0 in the (0,0)–(π,0)
and (π,0)–(π,π ) directions, the Fermi arc behavior appears in
hole-doped systems [Figs. 3(g) and 3(h)] [33]. The pseudogap
defined as the energy difference between the Fermi level
(ω = 0) and the main peak of ρ(ω) is primarily determined by
the energy difference between the Fermi level and the flat mode
around (π,0) (Fig. 5, modes vi and VI) in hole-doped systems
[33]. The pseudogap is enhanced by next-nearest-neighbor
hopping in hole-doped systems, because the flat mode around
(π,0) is shifted downward by next-nearest-neighbor hopping
[Fig. 5, mode VI; Eq. (4)].

Pseudogap around (π/2,π/2) in electron-doped systems. In
electron-doped systems with next-nearest-neighbor hopping
near the Mott transition, the spectral weights for ω ≈ 0 are
primarily located around (π,0) [Fig. 5, upper panel in the
left column; Figs. 3(i) and 3(j)], which are due to the flat
mode around (π,0) (Fig. 5, mode VI′). Because the flat
mode around (π,0) carrying large spectral weights, which
was originally located above ω = 0 (Fig. 5, mode vi in the
electron-doped case) in the UHB of the 2D Hubbard model, is
significantly shifted by next-nearest-neighbor hopping (Fig. 5,
mode VI′) down below the lower edge of the continuum around
(π/2,π/2) (Fig. 5, mode V′), the flat mode is located almost
at ω = 0 in the small-electron-doping regime, which causes
large spectral weights for ω ≈ 0 around (π,0). The spectral
weights for ω ≈ 0 around (π/2,π/2) reduce significantly near
the Mott transition due to the property of the mode fading away
toward the Mott transition (Fig. 5, mode I′). In addition, the
mode fading away toward the Mott transition (Fig. 5, mode I′)
can be effectively separated around ω = 0 from the continuum
around (π/2,π/2) whose lower edge can be identified as the
mode (Fig. 5, mode V′) originating from the 1D antiholon
mode (Fig. 5, mode 5) as a result of the large downward shift
of the flat mode around (π,0) caused by next-nearest-neighbor
hopping [Fig. 5, mode VI′; Eq. (4)]. The pseudogap can be
explained as the reduction in spectral weight for ω ≈ 0 around
(π/2,π/2) with the doping-induced states (Fig. 5, mode I′)
existing below ω = 0.

Giant kink and waterfall. The giant kink and the waterfall
behavior in the (0,0)–(π,π ) direction are explained as a result
of the mode (Fig. 5, modes ii, II, and II′) originating from the
1D spinon mode (Fig. 5, mode 2) and the mode (Fig. 5, modes
iii, III, and III′) originating from the 1D holon mode (Fig. 5,
mode 3) [33].

Hole-pocket behavior in hole-doped systems. The signature
for the hole-pocket behavior in hole-doped systems is ex-
plained as a result of the upper edge of the continuum [bending
back near (π/2,π/2)] (Fig. 5, modes v and V) [33]. The upper
edge around (π/2,π/2) originates from the 1D antiholon mode
(Fig. 5, mode 5) [33].

Spin-wave mode of the Mott insulator. The spin-wave
mode of the Mott insulator in the 2D Hubbard model can
be interpreted as a result of the mode for ω > 0 in the LHB
(Fig. 5, mode i), which originates from the upper edge of the
spinon-antiholon continuum in the 1D Hubbard model (Fig. 5,
mode 1), and the mode (Fig. 5, mode ii) originating from the
1D spinon mode (Fig. 5, mode 2) [33,40,51].
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Thus, various spectral features of hole-doped and electron-
doped systems near the Mott transition can be explained in a
unified manner, by noting how the spectral weights of the 2D
Hubbard model are shifted by next-nearest-neighbor hopping:
the spectral weights are shifted to higher and lower values of
ω in the momentum regime where the values of the Fourier
transform of the next-nearest-neighbor hopping integral t ′(k)
are positive and negative, respectively, and the shift becomes
large where the value of |t ′(k)| and the spectral weight are large
[Eq. (4)]. The argument can be straightforwardly generalized
to the cases where there are further-neighbor hoppings: the
spectral weights are shifted to higher and lower values of ω in
the momentum regime where the values of the Fourier trans-
form of the additional (next-nearest- and further-neighbor)
hopping integrals are positive and negative, respectively.

The key feature to explain the significant asymmetry
between hole-doped and electron-doped systems around ω =
0 is the behavior of the flat mode around (π,0) (Fig. 5, modes vi,
VI, and VI′). Because this mode carries large spectral weights
around (π,0) where the values of the Fourier transform of
the next-nearest neighbor hopping integral are negative and
large in magnitude [t ′(k) ≈ −4t ′ < 0], its spectral weights
are significantly shifted downward by next-nearest-neighbor
hopping [Eq. (4)] around ω = 0. Thus, the relative position
with respect to the Fermi level is sensitive to the strength
of next-nearest-neighbor hopping, which causes remarkable
differences between the hole-doped and electron-doped sys-
tems around ω = 0. For the momentum regimes around (0,0)
and (π,π ), although the modes around (0,0) and (π,π ) are
shifted upward by next-nearest-neighbor hopping [Eq. (4),
t ′(k) ≈ 4t ′ > 0; Fig. 5, modes I–IV and I′–IV′], the proper-
ties around ω = 0 in these momentum regimes are almost
unaffected by next-nearest-neighbor hopping, because there is
no mode carrying large spectral weights around ω = 0 in these
momentum regimes.

As for the Mott transition, the most significant feature is
the behavior of the dispersing mode whose spectral weights
disappear toward the Mott transition (Fig. 5, modes 1, i, I,
and I′) [33,40,51]. This characteristic feature, which reflects
the spin-charge separation of the Mott insulator, causes [33]
various anomalous features observed in high-Tc cuprates, such

as the momentum-dependent reduction in spectral weight
around ω = 0 and the doping-induced states [4,6–11,34,35].
For comparison, in the noninteracting case, where the spectral
properties are determined by the single mode carrying the same
spectral weight along the dispersion relation regardless of k,
neither the band splitting into the UHB and the LHB, nor the
momentum-dependent reduction in spectral weight for ω ≈ 0,
nor the bifurcation of the mode into spinonlike and holonlike
branches occurs.

Although the properties of the ground state might depend
strongly on long-range correlations and influence the details
of line shapes and fine structures of the spectral function, the
overall spectral features which are characterized primarily by
the dominant modes (Fig. 5, modes 1–5, i–vi, I–VI, and I′–VI′)
should be rather governed by the short-range physics that can
be captured by small-cluster calculations. Thus, the present re-
sults for the overall spectral features would not be significantly
affected by whether the ground state is a paramagnetic state
such as a Fermi liquid, an antiferromagnetically ordered state,
or a superconducting state as long as the value of the antiferro-
magnetic or superconducting order parameter is not so large.

In this paper, the spectral features of the 2D Hubbard
model with next-nearest-neighbor hopping have been simply
explained by tracing their origins back to those of the 1D
and 2D Hubbard models (Fig. 5), based on the consideration
of how the spectral weights of the 2D Hubbard model are
shifted by next-nearest-neighbor hopping. Various anomalous
features observed in hole-doped and electron-doped high-Tc

cuprates [4,6–11,34,35,54,71,72] are naturally interpreted in
a unified manner as properties near the Mott transition in a
two-dimensional system whose spectral weights are shifted
by next-nearest-neighbor hopping.
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