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Motivated by the novel electronic behaviors seen in transition-metal oxides, we look for physical insight
into disordered, strongly correlated systems by exploring the atomic limit. In recent work, the atomic limit has
provided a useful reference point in systems with strong local interactions. For comparison with experiments, the
exploration of nonlocal interactions is of interest. In the atomic limit, both the case of on-site interactions alone
and the case of infinite-range (1/r) interactions are well understood; however, not so the intervening possibilities.
Here we study the atomic limit of the extended Anderson-Hubbard model using classical Monte Carlo to
calculate the single-particle density of states. We show that the combination of nearest-neighbor interactions
and site disorder produces a zero-bias anomaly caused by residual charge ordering, and the addition of on-site
interactions has a nonmonotonic effect on the depth of this zero-bias anomaly. A key conclusion is that the form
of the density of states in this classical system strongly resembles density of states results obtained for the full
extended Anderson-Hubbard model when U < 4V .
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I. INTRODUCTION

Transition-metal oxides display a rich array of electronic
behaviors many of which remain poorly understood. Because
the highest occupied bands in these materials have strong
d and f character, strong correlations are thought to play a
significant role. Disorder is often present in these materials
due to intrinsic and doped impurities as well as inhomogeneity
arising from competing orders. Understanding the influence
of disorder in strongly correlated systems is a significant
challenge with implications for the characterization and
control of transition-metal oxides.

The single-particle density of states (DOS) is relevant to a
wide range of materials properties and is a convenient point of
contact between theory and experiment. The combination of
interactions and disorder is known to cause changes in the DOS
near the Fermi level, and experiments are often compared with
the two paradigms of the Efros-Shklovskii Coulomb gap [1]
and the Altshuler-Aronov zero-bias anomaly [2]. However,
experimental data in strongly correlated systems is frequently
inconsistent with both of these pictures, and a better description
of these systems is needed [3–5].

Significant progress has been made in understanding the be-
havior of the DOS near the Fermi level in systems with strong
local interactions and strong site disorder. Chiesa et al. [6]
demonstrated, using numerical techniques, the existence of
a novel DOS suppression in the Anderson-Hubbard model.
Insight into the physical origin of this anomaly can be found by
starting from the atomic limit [7–10]. The linear dependence
of the width of the anomaly on the hopping amplitude, and
independence from other parameters over a wide range of
values, can be captured in a simple ensemble of two-site
systems [7]. As hopping between sites is turned on, the
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de-confinement of the electrons lowers their kinetic energy
and results in a suppression of the DOS at the Fermi level.

More recently there has been numerical work [11] exploring
how the inclusion of nonlocal interactions affects this picture
of a kinetic-energy-driven zero-bias anomaly (ZBA). For
weak nearest-neighbor repulsion, the kinetic-energy-driven
ZBA persists in a renormalized form. However, with stronger
nonlocal interactions, in the parameter space where a clean
extended Hubbard model displays charge density wave (CDW)
order [12], the behavior with disorder had a classical character.
While turning to the atomic limit to build understanding
has proved useful in the Anderson-Hubbard model, the
presence of nonlocal interactions presents new challenges.
When interactions are purely local, the atomic-limit DOS is
simple to write down and at zero temperature there is no ZBA.
In contrast, when nonlocal interactions are present even the
clean atomic limit is nontrivial [13–15].

In this work we study the atomic limit of the extended
Anderson-Hubbard model (EAHM) using classical Monte
Carlo in order to address two groups of questions. One topic
is the Efros-Shklovskii Coulomb gap [1] which arises in
continuum insulating systems with 1/r interactions. What
happens to the Coulomb gap when the interactions are short
ranged? Numerical work [16] has shown that the soft gap
fills in when the interaction is exponentially screened, but the
elegant analytic argument [1] giving the energy dependence
breaks down when interactions are cut off sharply at a
finite distance. Can we gain physical insight into the DOS
suppression which remains? Moreover, the possibility of
double occupancy has not been addressed. How is the Coulomb
gap affected by on-site interactions? A second topic is the full
EAHM. How similar is the behavior of the relatively simple
atomic-limit system to that with hopping? Can the atomic-limit
case provide physical insight into the case with hopping?

We find that nearest-neighbor interactions alone result in a
ZBA which arises from residual charge ordering and which,
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at strong disorder, has a width proportional to the strength of
the nearest-neighbor interactions. The depth of the anomaly
has an interesting nonmonotonic dependence on the on-site
interaction strength. In addition, this simple classical system
provides insight into many of the features found in the much
harder quantum calculation on the full EAHM [11].

II. METHOD

Our extended Anderson-Hubbard model is a tight-binding
Hamiltonian which includes the usual two Hubbard terms—the
hopping integral t and on-site Coulomb repulsion U—plus
two additional terms, a nearest-neighbor Coulomb interaction
V and disordered site potentials εi :

H = −t
∑

〈i,j〉,σ
ĉ
†
iσ ĉjσ +

∑

i

Un̂i↑n̂i↓

+
∑

〈i,j〉

V

2
n̂i n̂j +

∑

i,σ

εi n̂iσ ; (1)

ĉ
†
iσ is the creation operator for an electron with spin σ at lattice

site i, n̂iσ = ĉ
†
iσ ĉiσ , and 〈i,j 〉 refers to nearest-neighbor pairs.

The site potentials εi are chosen from a flat distribution of
width �: P (εi) = �(�/2 − |εi |)/� where � is the Heaviside
function.

We focus on the atomic limit of this model, in which the
hopping t is set to zero. In this limit, the physics is classical in
the sense that the number of electrons on each site is always
an integer. In particular, the number of spin-up electrons on
any given site can be either zero or one, and likewise for spin
down.

We consider a two-dimensional square lattice with N sites.
In particular the data presented are for a 20×20 lattice with
periodic boundary conditions. We restrict ourselves here to
the case of half filling and equal spin populations. We use
a classical canonical-ensemble Monte Carlo simulation to
calculate thermodynamic average properties, with a particular
focus on the single-particle density of states (DOS) [17].

A simulation of a single disorder configuration begins
by randomly assigning a potential εi to each site i in the
lattice according to the distribution above. The simulation
proceeds by choosing an initial electronic configuration for
the system and then proposing moves for electrons which are
accepted with a probability consistent with detailed balance.
After a period of equilibration, the DOS is calculated and
averaged over Monte Carlo steps. For any nonzero value of �,
multiple disorder configurations are simulated and the results
are averaged.

To set the initial electronic configuration, N/2 spin-up elec-
trons and N/2 spin-down electrons are placed. We generally do
this randomly, but for comparison configurations such as Mott
(1111) and checkerboard (2020) order were also considered.

A single Monte Carlo step begins by randomly choosing
an electron to propose moving. Note that simply choosing a
site at random creates a bias towards moving electrons on
singly occupied sites. To address this, the program alternates
between choosing electrons from singly and doubly occupied
sites. Next, a possible new location for the electron is
chosen randomly. If the energy difference for the move

�E = Eproposed − Einitial is negative the move is always made,
whereas if it is positive the move is made with probability
e−�E/kBT .

The time to reach equilibrium was determined by studying
the time variation of the total energy and of the checkerboard
order parameter � = 1

2 (nA − nB) [13], where nA,B are the
numbers of electrons on the A and B sublattices of our bipartite
lattice. Equilibration times increase rapidly as temperature
is lowered, with weaker increases associated with lowering
U/V and �/V . For the results presented, equilibration times
between 250 000 and 20 million sweeps were used, where a
sweep is N Monte Carlo steps.

After the equilibration period, the DOS is calculated once
per sweep. In this classical system, there are only two energies
at which a given site can contribute to the DOS. An empty
site contributes only at the energy to add an electron: ω =
εi + nnnV − μ, the lower Hubbard orbital (LHO). nnn is the
number of electrons on neighboring sites, and μ = 1

2U + 4V

is the chemical potential at half filling. Doubly occupied
sites contribute only at ω = εi + nnnV + U − μ, the upper
Hubbard orbital (UHO), and singly occupied sites contribute
with half weight each at both the LHU and UHO frequencies.
The total DOS is simply the sum of the contributions from all
sites.

To calculate the thermal average DOS, we take an average
over many Monte Carlo sweeps. The energy and order-
parameter autocorrelation time for different parameter sets
were examined. The autocorrelation time is longer at lower
temperatures and lower values of U/V and �/V . Data
presented are averaged over 750 000 to 10 million sweeps,
always including at least 100 autocorrelation times. When � �=
0, a final average is taken over 1000 disorder configurations.

Consistency checks were done first by comparing with
the Boltzmann distribution in small systems. In addition, the
variation of the specific heat with temperature at � = 0 was
compared with earlier work in clean systems [13].

III. RESULTS AND DISCUSSION

This section begins by considering the two limits of V =
0 and U = 0 to develop insight into the effects of U and
V separately. Next their combined effect is explored, and a
comparison is made with work on the full EAHM.

A. On-site interactions only

We begin our discussion by reviewing briefly the case
with only local interactions. In this case, the zero-temperature
DOS can be generated by simple arguments. In particular,
the contribution of each site to the DOS is independent of
the occupancies of any other sites. When the site potential
is greater than the chemical potential εi > μ, the site will
be empty, and it will contribute to the DOS at ω = εi − μ.
When εi < μ − U , the site will be doubly occupied, and it
will contribute to the DOS at ω = εi + U − μ. The remaining
sites will be singly occupied and will contribute to the DOS
with half the weight at both energies.

In the clean system at half filling, all sites are singly occu-
pied. Therefore, the zero-temperature DOS is two symmetric
peaks at −μ and U − μ [Fig. 1(a)]. When disorder is added,
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FIG. 1. (Color online) Density of states for a purely local interac-
tion: U = 8 and V = 0. (a) kBT = 0.1 and � = 0, (b) kBT = 0.1 and
� = 4, (c) kBT = 0.1 and � = 12, and (d) kBT = 10 and � = 12.

there is a continuous distribution of site potentials between
−�/2 and +�/2. So long as � < U , each site remains singly
occupied, but the contribution to the DOS from each site falls at
a slightly different frequency. The two peaks of the clean case
broaden into two bands [Fig. 1(b)], each of width �. When
� = U , the two bands touch. When � > U , it might appear
that the two bands overlap. However, the key change is that
some sites are now empty and some doubly occupied. These
sites each make their DOS contribution at a single energy.
Their contributions create a central plateau in the DOS which
is three times the height of the shoulders. In Fig. 1(c), the
labels indicate the occupancy of the sites contributing to the
DOS in each energy range.

In Fig. 1 panels (a) and (b), the thermal average DOS
obtained from our simulation closely matches the description
just given. In panel (c), however, there is a key difference:
The DOS near ω = 0 is suppressed. This is due to the
fact that the Monte Carlo simulation is run, by necessity,
at nonzero temperature. At nonzero temperature, there is a
temperature-driven ZBA which has been explored in detail [9].
Briefly, at nonzero temperature a site with potential ε just above
the chemical potential has a nonzero probability of being singly
occupied. If it is singly occupied as opposed to empty, it no
longer makes its full DOS contribution at ε − μ but instead
makes half its contribution at ε + U − μ. This therefore shifts
spectral weight from the Fermi level to the top of the spectrum,
where a small tail also appears.

As the temperature is increased, this thermal ZBA broadens
and eventually the height of the central plateau declines.
When kBT is the dominant energy scale, each of the four
occupancies—0, ↑, ↓, and 2—are equally likely at any site.
In this case, the DOS is simply the overlap of two flat bands
of width � centered at −μ and at U − μ. Fig. 1(d) shows the
approach to this limit.

B. Nearest-neighbor interactions only

We now turn to the case of no on-site interactions. This limit
allows us to see the effect of the nearest-neighbor interactions
most simply.

1. Low temperature

Figure 2(a) shows a sequence of DOS results with U =
0, low temperatures kBT /V = 0.1, and increasing values of
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FIG. 2. (Color online) Variation of the density of states with
increasing disorder strength. (a) U = 0, V = 1, kBT = 0.1, and five
disorder values as labeled. To the right of each DOS plot is a typical
configuration: Black squares are empty, white squares are doubly
occupied, and the small number of singly occupied sites are gray.
(b) The probability that an empty site will have a given number of
nearest-neighbor electrons. (c) The probability that an empty site will
have a given site potential.
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disorder �/V . The full DOS is indicated by the black line, and
overlaid on this are colored lines showing the contributions
from empty sites with specific numbers of nearest-neighbor
electrons.

At zero temperature, without on-site interactions, each site
will be either empty (E) or doubly occupied (D). Nearest-
neighbor interactions favor a checkerboard of E and D sites, as
shown in the example configuration to the right of the � = 0
panel. In a clean system at zero temperature, there are just two
types of sites: those which are empty and have eight electrons
on neighboring sites (E8), and those which are doubly occupied
with no electrons on neighboring sites (D0). The result is a
DOS with just two peaks, separated by a charge-density-wave
gap of 8V . In the � = 0 panel, the red peak on the right is
the contribution of empty sites with eight nearest-neighbor
electrons (E8).

When a small amount of disorder is added (� = 0.5 and
1.5), the narrow peaks broaden into bands. In addition, two
other changes occur: new peaks appear and the tops of the
bands are not flat but slanted.

New peaks appear because of the formation of domains in
the checkerboard order. While nearest-neighbor interactions
continue to favor charge ordering, the disorder potential favors
the placement of double occupancy at sites of below average
potential. The competition between these results in domains.
The formation of domains for any nonzero disorder in two
dimensions is a nontrivial point which has been examined
in detail in the context of the random-field Ising model
(RFIM) [18], onto which the atomic limit of the EAHM
may be mapped when U = 0. For a domain of size L,
the interaction energy cost is proportional to the length of
the boundary, scaling as Ld−1 where d is the dimension.
Meanwhile the potential energy savings of the domain scale as
Ld/2. When Ld/2 < Ld−1, the system will remain ordered,
whereas when Ld/2 > Ld−1 domains will form. A more
detailed argument [19] has shown that in two dimensions the
RFIM forms domains for any nonzero value of disorder, with
the size of the domains decreasing as the ratio of disorder to
interaction strength increases.

Returning to our system, at the boundaries between do-
mains, there are sites with neither zero nor eight nearest-
neighbor electrons, resulting in the appearance of new bands
in the DOS. The example configuration to the right of the
�/V = 0.5 panel shows a vertical domain boundary, on
which there are empty sites with only three neighbors doubly
occupied (E6) and doubly-occupied sites with only three
neighbors empty (D2). These sites contribute two new bands to
the DOS. Diagonal boundaries have a higher energy cost than
vertical or horizontal boundaries and occur more frequently
at higher disorder. (See the � = 1.5 and � = 3.5 example
configurations.) Here there are E4 and D4 sites, resulting in
another pair of new bands around ω = 0.

In addition to the broadening of bands and the appearance
of new bands, disorder causes variation in height within each
band.

At low levels of disorder the bands slant almost linearly
downward toward the Fermi level. To understand this, consider
the lowest band in the � = 1.5 panel. The low-frequency side
comes from the contribution of D sites at particularly low
potential sites, whereas the high-frequency side comes from

the contribution of D sites at particularly high potential. The
energetic preference for placing double occupancy at sites with
below average potential is being accommodated by the forma-
tion of domains. Therefore, double occupancy occurs more
often at low potential sites than high potential sites, creating
this slant in the DOS. Likewise, high potential sites are more
likely to be empty and hence the bands at positive frequencies
are higher at the high frequency side. As the disorder is further
increased, the slanted bands overlap, resulting in a continuous
DOS which has a minimum at zero frequency.

At the two largest values of disorder shown, the bands are
flat at the outside edge, retaining a downward slope only on
the side closer to zero frequency. At high disorder strength,
the idea of domains of checkerboard order becomes less
useful in deciphering the pattern of occupation. In the example
configuration at �/V = 7.5 the patches of checkerboard order
are smaller, and by � = 15 many patches consist of just a
single doubly occupied (empty) site surrounded by four empty
(doubly occupied) sites. How can we tell whether these patches
are occurring any more frequently than they would in a random
arrangement?

A useful quantity to consider is the probability that an
empty site will have a number nnn of nearest-neighbor
electrons, P (E|nnn). For a clean system at zero temperature,
this distribution is maximally asymmetric: P (E|nnn = 8) = 1
and P (E|nnn �= 8) = 0. (See � = 0 in Fig. 2.) On the other
hand, at infinite temperature, where the occupancy of each
site is entirely random, this distribution becomes symmetric
about nnn = 4: At infinite temperature, the probabilities are
simply dictated by the number of ways of arranging the
nnn neighboring electrons. When only empty and doubly
occupied sites are considered, there are 24 possible nearest-
neighbor configurations, and P (E|8) = 1/16, P (E|6) = 4/16,
P (E|4) = 6/16, etc. The asymmetry of P (E|nnn) is a conve-
nient measure of the influence of nearest-neighbor interactions.

Figure 2(b) shows the evolution of P (E|nnn) for the same
disorder values shown in (a). There is a clear trend towards
greater symmetry as the disorder is increased. Nonetheless,
even at disorder strength � = 15, the distribution remains
asymmetric. Figure 3 provides a cartoon picture of how the
asymmetry of P (E|nnn) leads to a ZBA. Panel (a) shows
the contribution to the DOS from all sites with a particular
site potential. This consists of five peaks, corresponding to the
five possible numbers of nearest-neighbor electrons. Panel (b)
shows the contribution from all sites for which ε > 0 under
the assumption that all these sites are empty and that P (E|nnn)
is independent of ε. The form is a series of steps. Starting
from the high-frequency end, the step heights are proportional
to P (E|8), P (E|8) + P (E|6), P (E|8) + P (E|6) + P (E|4), etc.
Panel (c) shows the contribution from sites with ε < 0,
assuming in this case that they are all doubly occupied and
that P (D|nnn) is independent of ε. This is just the curve in
(c) reflected across ω = 0. Finally, panel (d) shows the sum
of these two contributions. Because P (E|nnn) is skewed to
the right, the contribution of the empty sites in panel (c)
has an upward curvature around ω = 0. Therefore, when it
is added to the contribution from the doubly occupied sites,
a dip occurs around ω = 0. If P (E|nnn) and P (D|nnn) were
symmetric, the two contributions would sum to a uniform
DOS.
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FIG. 3. (Color online) A simplified picture of the ZBA seen in the
� = 15 panel of Fig. 2(a). (a) The DOS contribution of all sites with
potential ε = 5 using P (E|nnn) as shown in Fig. 2(b). (b) The DOS
contribution from all sites with ε > 0 assuming that all these sites are
empty and P (E|nnn) is independent of ε. (c) The DOS contribution
from all sites with ε < 0 assuming that all these sites are doubly
occupied and P (D|nnn) is independent of ε. (d) The total DOS within
the above approximations.

The ZBA shown in the �/V = 15 panel of Fig. 2(a) does
not have sharp steps, but is instead smooth. In the discussion
above we assumed that all sites with ε > 0 were empty. This
could be expressed as a statement that if a site is empty, the
probability that it has a site potential ε is zero for ε < 0 and
uniform for all ε > 0; i.e., P (E|ε) is a step function. This is
not, in fact, the case. Figure 2(c) shows the evolution of P (E|ε)
for the same disorder values shown in (a). At low values of
disorder, P (E|ε) is almost uniform across the full range of
ε. At intermediate values it develops a near-linear slant, but
still extends over the full range of ε. [This is the origin of
the slanted bands for � = 0.5, 1.5, and 3.5 in Fig. 2(a).] For
strong disorder, P (E|ε) goes to zero for low values of ε, flattens
out again at high values of ε, with a transition around ε = 0
which remains smooth and quite broad even at � = 15. It is
this gradual variation in P (E|ε) around ε = 0 which creates a
smooth ZBA, whereas sharp steps are still seen at the edges of
the band because P (E|ε) becomes flat at large values of ε.

To summarize, when U = 0, at low disorder there is a hard
charge-density-wave gap. When disorder is strong enough that
the bands in the DOS overlap, the DOS is sharply suppressed
at the Fermi level due to the near-linear slant of P (E|ε),
reflecting the preference for sites of relatively high potential to
remain empty. In this regime, the width of the local minimum
around ω = 0 is related to the disorder strength �, although
complicated by the details of how the individual bands overlap.
Finally, when disorder is strong, a smoother, shallower ZBA
comes from the persistent asymmetry of P (E|nnn), reflecting
the continued preference for empty sites to have larger numbers
of nearest neighbors. In this latter regime, the width of the ZBA
is proportional to the interaction strength V .

With the two distributions P (E|nnn) and P (E|ε) providing
a framework, we can now proceed to explore the temperature
dependence as well as the behavior when U �= 0.

2. Temperature dependence

Figure 4(a) shows the effect of increasing temperature, still
for U = 0. The first panel corresponds to the same parameters
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FIG. 4. (Color online) Variation of the density of states with
increasing temperature. (a) � = 7.5, U = 0, V = 1, and four tem-
peratures as labeled. (b) The probability that an empty site will have a
given number of nearest-neighbor electrons. (c) The probability that
an empty site will have a given site potential.

as the � = 7.5 panel of Fig. 2(a). Here, the contribution to the
DOS from the small number of singly occupied sites is shown
in green. The first major change introduced by increasing the
temperature is an increase in the number of singly occupied
(S) sites. This in turn causes two main changes in the DOS.
First, sites may now have odd numbers of nearest-neighbor
electrons, increasing the number of possible values from five
to nine. As a result there are more bands and hence more steps
in the DOS. Second, the ZBA comes from empty and doubly
occupied sites, and since the fraction of empty and doubly
occupied sites goes down the ZBA is reduced.

In addition to the changes associated with increasing single
occupancy, increased temperature also dramatically reduces
the asymmetry of both P (E|nnn) and P (E|ε). Figures 4(b) and
4(c) show the evolution of P (E|nnn) and P (E|ε) for the same
temperatures as in (a). At high temperature, the probabilities
for a site to have 0, ↑, ↓, or 2 electrons are all roughly
equal, independent of the site potential or the local electron
configuration. P (E|ε) becomes flat because the occupancy
of a site is no longer associated with the site’s potential.
Moreover, the probability of a site having nnn nearest neighbors
becomes proportional simply to the number of arrangements
which give this value, resulting in a distribution which is
peaked at nnn = 4. The reduced asymmetry in both P (E|nnn)
and P (E|ε) further washes out the ZBA. Interestingly, at
intermediate temperatures, P (E|ε) actually becomes slightly
steeper, probably due to a lowering of domain wall energies
when singly occupied sites are present. This can be seen in the
DOS in the increased slant of the steps at the edge of the band.
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FIG. 5. (Color online) Variation of the density of states with
increasing nearest-neighbor interaction strength. (a) � = 7.5, U = 5,
kBT = 0.1, and five V values as labeled. (b) The probability that a
singly occupied site will have a given site potential.

C. Including both on-site and nearest-neighbor interactions

Having considered the effects of U and V separately, we
now address their combined effect. First, we will start at a
fixed nonzero value of U and gradually turn on V . Then, we
will start from a fixed nonzero value of V and gradually turn
on U .

1. V dependence

Figure 5(a) shows a sequence of DOS results starting
from panel (c) of Fig. 1 and increasing nearest-neighbor
interactions. Figure 5(b) shows the evolution of P (S|ε) for
the same parameter values as (a). The V = 0 case was
discussed in Sec. III A, but we revisit it here briefly in the
context of the distribution P (S|ε). At zero temperature and
without nearest-neighbor interactions, P (S|ε) is uniform over
the range μ − U < ε < μ, as indicated by the dashed line in
Fig. 5(b). As a result, the LHO and UHO S contributions to
the DOS run uniformly from ω = −U to ω = +U , as shown
in Fig. 1(c). Nonzero temperature has the effect of spreading
single occupancy over a broader range of site potentials, as
seen in the V = 0 curve in Fig. 5(b). The result is a slight
increase in the S-site DOS contribution at ω = 0, due to the
overlap of the tails in the distribution, but a net decrease in the
DOS as discussed in Sec. III A. When V becomes nonzero,
one effect is to generate a ZBA in the E and D contributions
for all the reasons discussed in Sec. III B. In addition, the S

sites also contribute to the ZBA. Nearest-neighbor interactions
narrow the range of site potentials at which single occupancy
occurs: For example, a site with ε = μ − δ which would have
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FIG. 6. (Color online) Variation of the density of states with
increasing on-site interaction strength. � = 7.5, V = 1, kBT = 0.1,
and eight U values as labeled.

been singly occupied when V = 0, if it has a large enough
number nnn of nearest-neighbor electrons (nnnV − δ > 0) will
instead have a minimum grand potential when it is empty. As
V increases, the distribution becomes rounded and slightly
narrower, so the LHO and UHO S contributions no longer sit
flush with each other but pull back to form a ZBA.

Summarizing, when U is nonzero and V is turned on, the
conversion of S sites to E and D sites results in a ZBA in the
S contribution to the DOS which enhances the ZBA in the E
and D contribution discussed above. This S contribution to the
ZBA results in an interesting reentrant behavior when U is
varied.

2. U dependence

Figure 6 shows a sequence of DOS results starting from the
� = 7.5 panel of Fig. 2(a) and increasing on-site interactions.
We see similar features as in Fig. 5(a) appearing here in
the reverse order. When U is zero, there is a ZBA in the
E- and D-site contribution as discussed in Sec. III B. The
addition of on-site interactions generates single occupancy. As
in the case of nonzero temperature, this creates more steps at
the edges of the band. Meanwhile, at the center of the band, the
ZBA is softened because the first sites to be singly occupied
are near the Fermi level and hence contribute to the DOS
near zero frequency. Again, this contribution would be flat for
−U < ω < +U if kBT = 0 and V = 0. At the lowest values
of U the thermal broadening effect dominates resulting in a
slight peak in the S-site contribution at zero frequency, similar
to that seen in Fig. 5(a). At higher U values, the narrowing
of P (S|ε) due to V is resolved, resulting in a ZBA in the
S-site contribution. This causes the ZBA to become deeper
again. Finally, at the largest values of U , single occupancy
dominates and a Mott gap forms.
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3. Comparison with quantum case

Similarities between the atomic-limit results presented here
and the DOS of the EAHM when hopping is included [11]
can provide insight into the more computationally intensive
quantum problem for some parameter ranges. In particular,
Fig. 1 of Ref. [11] shows the evolution of the DOS with
increasing nearest-neighbor interaction analogous to Fig. 5
here. The narrow t-dependent ZBA seen in Ref. [11] at low V

values is clearly different physics from what is seen here.
However, in both the quantum and the classical results a
broad anomaly seen when 4V/U = 1.2 (V = 2.4t in Fig. 1 of
Ref. [11] and V = 1.5 in Fig. 5 of this paper). Moreover, at
4V/U = 1.6 the results with hopping show two broad slanted
bands entirely consistent with the E8 and D0 bands in the
atomic limit. Why in the quantum case are only two bands
seen, separated by a hard gap, while in our MC work the
DOS contains multiple bands and remains continuous? The
quantum calculations used a very small sample size such that
the domain size probably remained larger than the sample for
all disorder configurations.

This insight helps resolve a point of confusion in Ref. [11].
In Fig. 5 of that work it was unclear whether the narrow ZBA
which appeared at U = 4 was the emergence of the kinetic-
energy-driven ZBA for parameter values in which the clean
system has CDW order or whether it was different physics.
Comparing with our Fig. 6 it seems very likely that the narrow
ZBAs seen in Ref. [11] Fig. 5 for U = 4 and U = 6 are a result
of atomic-limit physics and distinct from the KE-driven ZBA.

A quantum-classical crossover has also recently been noted
in a Hartree-Fock study without local interactions [20].

IV. CONCLUSION

With the broad goal of developing a theoretical frame-
work for understanding zero-bias anomalies in disordered
strongly correlated systems, we have studied the relatively
simple classical problem of the atomic limit of the extended
Anderson-Hubbard model. Our results shed light on two
distinct issues.

First, regarding ZBAs in atomic-limit systems, we
have characterized the equivalent of the Efros-Shklovskii
Couloumb gap in a tight-binding model with nearest-neighbor
interactions. At low disorder strengths, the DOS suppression

can be sharp with a width that is not set by V but rather by
details of the overlap of bands coming from groups of sites
with the same number of nearest-neighbor electrons. At large
disorder strengths, there is a smooth, shallow region of DOS
suppression with an energy width proportional to the nearest-
neighbor interaction strength V . The origin of this ZBA is
residual charge ordering, namely the increased probability for
empty sites to have more than the average number of nearest
neighbors and for doubly occupied site to have fewer. While
adding on-site interactions might be expected to suppress this
ZBA by introducing single occupancy, there is an interesting
re-entrant behavior in which, after a weakening of the ZBA at
low values of U , the ZBA deepens again at higher U values.

Second, the DOS in this classical system bears a strong
resemblance to results obtained from much more compu-
tationally intensive exact diagonalization studies of the full
EAHM (i.e., with hopping) for U < 4V . The implication is
that in this parameter range the interplay of interactions and
disorder dominate the behavior while hopping has a negligible
effect. We may conclude that the physical origin of the broad
ZBA seen in the exact diagonalization studies in this regime is
primarily the residual charge-ordering effect seen in our Monte
Carlo studies. In addition, our work provides a starting point
for further exploration of the quantum case treating hopping as
a small parameter. Along the lines of the ensemble of two-site
systems used earlier to study the AHM [7], an ensemble of
small clusters could be constructed in which the frequency of
specific occupancy patterns is set by those found in Monte
Carlo studies of larger lattices.

While many subtleties arise when mapping tight-binding
models onto real systems, this work is another step towards
an alternative framework for interpreting tunneling and pho-
toemission spectra on insulating strongly correlated materials,
providing, for example, new diagnostics for determining the
strengths of correlations in new materials.
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