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Topological Blount’s theorem of odd-parity superconductors
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Blount’s theorem prohibits the existence of line nodes for odd-parity superconductors (SCs) in the presence of
spin-orbit coupling (SOC). We studied the topological stability conditions of line nodes under inversion symmetry
by generalizing the original statement and establishing a relation to surface zero-energy states. The topological
instability of line nodes in odd-parity SCs implies the disappearance of corresponding flat zero-energy surface
dispersions due to surface Rashba SOC, which provides an experimental means to distinguish line nodes in
odd-parity SCs from those in other SCs.
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I. INTRODUCTION

Nontrivial nodal structures are an important feature in
unconventional superconductors (SCs). The existence of nodes
provides a clue into the symmetry of Cooper pairings and is
influential in power law behaviors of temperature dependen-
cies such as the specific heat and NMR relaxation rates [1,2].
In the 1980s, heavy fermion materials attracted much attention
as a candidate of unconventional SCs. By taking into account
strong spin-orbital coupling (SOC) in heavy fermion materials,
Cooper pairs were classified based on the group theory where
symmetry operation on the crystal lattices is followed by the
spin. Using this, Blount proved the impossibility of line nodes
in odd-parity SCs [3]. By assuming a time-reversal-invariant
single-band spin-triplet Cooper pair, he showed that a large
region of zero gap is “vanishingly improbable” in the presence
of SOC. This statement is now known as Blount’s theorem.
Conversely, real candidate materials of heavy fermion odd-
parity SCs such as UPt3 [4] have often suggested the existence
of line nodes. This is because the actual influence of SOC in
bulk Cooper pairs is strongly suppressed by the Fermi energy
[5]. Indeed, as these materials always do, if the normal state has
inversion symmetry (IS) and time-reversal symmetry (TRS),
the SOC retains the spin degeneracy of the Fermi surface,
so its influence is merely a small deformation of the Fermi
surface or a perturbative contribution to the pairing interaction.
As such, the implication of Blount’s theorem had been
uncertain.

Whereas Blount used group theoretical arguments to prove
his theorem, there are other arguments for the stability of
line nodes [6,7] in which the nodal structures are classified
by topological invariants [8–10]. Without assuming a large
SOC, this method enables us to treat both the symmetric
and accidental nodes in a unified way, as well as include
the influence of normal states and multiband structures. In
particular, the topological method has an advantage in that it
may connect topological structures of bulk nodes to surface
flatbands via the bulk-boundary correspondence [11–18] [see
Fig. 1(b)]. In contrast to bulk Cooper pairs, the surface states
may be strongly affected by SOC because the boundary breaks
IS, inducing the surface Rashba SOC. Such an antisymmetric
SOC is directly coupled to the surface states as well as the
surface Cooper pair, lifting the spin degeneracy. Therefore
the topological classification has the potential to extend the

original Blount’s theorem and provide novel implications for
experimental measurement.

In this paper, we generalize Blount’s theorem in terms
of K theory [19,20] and extend it to surface flatbands. The
purpose of this paper is to prove the following statements:
(i) A line node in odd-parity SCs is topologically unstable with
or without TRS in the absence of additional symmetry. (ii) An
additional symmetry such as mirror symmetry or spin-rotation
symmetry (SRS) may stabilize the bulk line node in odd-parity
SCs, but the corresponding surface flatband is fragile and
disappears due to the surface Rashba SOC. Hence it is possible
to distinguish odd-parity Cooper pairs from even-parity or
noncentrosymmetric ones by the behavior of the flatband.

II. FORMULATION

We start with the Bogoliubov–de Gennes (BdG)
Hamiltonian:

H = 1

2

∑
k,α,α′

(c†kα,c−kα)H (k)

(
ckα′

c
†
−kα′

)
, (1)

where H (k) is given by

H (k) =
(

ε(k)αα′ �(k)αα′

�(k)†αα′ −ε(−k)Tαα′

)
. (2)

c
†
kα (ckα′ ) represents the creation (annihilation) operator of

an electron with momentum k. The suffix α represents other
degrees of freedom such as spin, orbital, and sublattice indices.
ε(k)αα′ and �(k)αα′ are the Hamiltonian in the normal state
and gap function, respectively. For the case of a single-band
spin-triplet Cooper pair, the gap function is given by �(k) =
id(k) · σσy , where σ is the Pauli matrix, and the d vector
satisfies d(−k) = −d(k) [di ∈ R (i = x,y,z) if TRS exists].
The BdG Hamiltonian naturally has particle-hole symmetry
(PHS) such that

CH (k)C† = −H (−k), C2 = 1. (3)

Also, TRS is defined by

T H (k)T † = H (−k), T 2 = −1, (4)
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FIG. 1. (Color online) (a) A line node of the pz-wave SC is
wrapped by S1. k0 indicates the position of the node. (b) The
projection of the line node on the two-dimensional plane with a fixed
kz. The zero-energy state appears at the black color area if the open
boundary condition for the z axis is imposed.

where C and T are antiunitary. In addition, we assume IS such
that

Pε(k)P † = ε(−k), P�(k)P T = ηP
C�(−k), (5)

where P acts on the creation (annihilation) operator as c
†
kα →

P ∗
αα′c

†
−kα′ (ckα′ → Pαα′c−kα′) and satisfies P 2 = 1. The factor

ηP
C specifies either even parity (ηP

C = 1) or odd parity (ηP
C =

−1) of the gap function. In the Nambu representation, we
denote P as P̃ = diag(P,ηP

CP ∗) [21]. The parity of the gap
function determines the commutation or anticommutation
relation between C and P̃ : [C,P̃ ] = 0 ({C,P̃ } = 0) for even-
parity (odd-parity) pairings. Also, note that [T ,P̃ ] = 0 because
P does not act on the spin space.

III. STABILITY OF NODE AND SYMMETRY

A node of SCs is a set of k satisfying det H (k) = 0. In
d dimensions, the node with codimension p + 1 defines a
(d − p − 1)-dimensional submanifold �. For example, a line
node in three dimensions has a codimension of 2, and it
defines a one-dimensional manifold along the node. If we
consider a symmetry-preserving small perturbation of H , the
node either slightly shifts its position or completely vanishes
due to the emergence of a gap. The former implies that the
node is topologically stable because it cannot vanish by small
perturbations.

To precisely define the topological stability of the node, we
consider a small p-dimensional sphere Sp wrapping around
the node at k0 ∈ � (see Fig. 1). Then the Hamiltonian defines
a map, k ∈ Sp �→ H (k) ∈ Q, from Sp to a classifying space
Q of matrices subject to symmetries defined in Eqs. (3), (4),
and (5). A homotopy equivalence class of the map is given
by the homotopy group πp(Q). If the node has a nontrivial
topological number of πp(Q), we cannot eliminate the node
because the Hamiltonian with the node does not continuously
connect to that with a gap.

Here we may assume without loss of generality that the
BdG Hamiltonian near a node k0 is given by

Hk0 ( p) := H (k0 + p) �
p+1∑
i=1

vipiγi, (6)

where vi is an expansion coefficient, | p| � 1, and the γ

matrices (γ1, . . . ,γp+1) satisfy the Clifford algebra, {γi,γj } =
2δij . Hk0 ( p) describes the dispersion of p near the node,

which is determined by ε(k) and �(k) of the underlying BdG
Hamiltonian [22]. Imposed symmetry of Hk0 ( p) depends on
whether the node k0 is located on a symmetric point satisfying
k0 = −k0 + G, where G is a reciprocal lattice vector. If
k0 = −k0 + G, the position of the node remains unchanged
under C, T , P̃ . Thus the symmetry operation on Hk0 is
identical to the underlying BdG Hamiltonian (2). Conversely,
if k0 	= −k0 + G, the position of the node changes into its
inverse under C, T , and P̃ . Thus these operations are not the
symmetry of Hk0 . Appropriate symmetries are given by the
combination of them such that

(CP̃ )Hk0 ( p)(CP̃ )† = −Hk0 ( p), (7)

(T P̃ )Hk0 ( p)(T P̃ )† = Hk0 ( p). (8)

Topological stability of nodes at k0 = −k0 + G have been
discussed in Refs. [10,23], in which PHS and TRS were
taken into account separately. In addition, the topological
stability of nodes are directly connected to the Altland-
Zirnbauer (AZ) symmetry classes [24,25] of the bulk electronic
state [18,26]. However, nearly all the nodes in SCs appear
on the Fermi surface and obey k0 	= −k0 + G. Thus it is
valuable to discuss the node stabilities with the symmetries
described by Eqs. (7) and (8) as a physically realistic situation.
Hereafter, we use the combined symmetries to classify stable
nodes.

IV. PHS, TRS, AND LINE NODE

To identify the classifying space of Hk0 , we employ the
Clifford algebra extension method [27–31], which enables us
to reduce the problem to the description of possible Dirac
mass terms. However, Hk0 has no mass term. Nevertheless,
we can apply this method to it by regarding one of the γ

matrices as the mass term, e.g., γp+1, because the base space
Sp is compacted. According to Eqs. (7) and (8), we impose
only CP̃ on SCs with IS, and both CP̃ and T P̃ on SCs with
IS and TRS. Herein, we denote the former (latter) systems
as a P+D (P+DIII) class, the classifying space of which
depends on either the even parity ([C,P̃ ] = 0) or odd parity
({C,P̃ } = 0).

By systematically searching for the possible mass terms,
we achieve the classifying spaces and topological numbers
for each class and each codimension, as listed in Table I, in
which we add the topological classification without IS (D and
DIII classes) for comparison. These classifying spaces are
calculated by the Clifford algebra extension method, which
is shown in Appendix 2. We label the classifying spaces
as Ci (i = 0,1) and Rj (j = 0,1,2, . . . ,7) according to the
conventional way [27–31]. Note that the higher-dimensional
homotopy groups in the present case are calculated by
πp(Ci) = π0(Ci+p) and πp(Rj ) = π0(Rj+p). In particular,
when p = 1, Table I shows the line node stability. Hence
topologically stable line nodes can exist for the DIII and
P+DIII classes with even parity [6,7,14]. In fact, this accounts
for the stability of line nodes in noncentrosymmetric SCs
such as CePt3Si [32,33] and high-Tc materials [34–36].
Conversely, Table I implies that line nodes in odd-parity SCs
are topologically unstable with or without TRS. The latter
statement is one of the main results of the present article.
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TABLE I. Node classifications, which occur at k0 	= −k0 + G,
in the system with C, T , and P̃ . The first, second, third, and fourth
columns show the symmetry classes, symmetry constraint for each
class, parity of gap functions, and classifying space Q, respectively.
The remaining columns show the topological classification for p = 0,
1, and 2. In 3D, each codimension represents a surface node, line node,
and point node, respectively.

Class Symmetry Parity Q p = 0 p = 1 p = 2

D {1} N/A C0 Z 0 Z
DIII {CT } N/A C1 0 Z 0

P+D {CP̃ } Even R2 Z2 0 2Z
Odd R6 0 0 Z

P+DIII {CP̃ ,T P̃ } Even R3 0 2Z 0
Odd R5 0 0 0

V. ADDITIONAL SYMMETRY AND LINE NODE

We now take into account other material-dependent sym-
metries that could stabilize a line node in odd-parity SCs. In
particular, a line node can be invariant under reflection or spin
rotation, which may yield an extra topological obstruction for
opening a gap.

A. Reflection

For simplicity, assume that the reflection plane is perpen-
dicular to the z axis. Then the reflection symmetry requires
that

M̃H (kx,ky,kz)M̃
† = H (kx,ky, − kz), (9)

with M̃ = diag(M,ηM
C M∗). The commutation relations be-

tween M̃ and C, T , and P̃ are defined by M̃S = ηM
S SM̃

(S = C,T ,P̃ ), where ηM
S = ±1. Without loss of generality,

we choose a phase of M such that M2 = −1. The reflection

can be a mirror reflection, which is a proper reflection in the
presence of SOC, but the following arguments are applicable
to any type of reflection.

We calculate the classifying space by adding M̃ in the
underlying Clifford algebras, where M̃ satisfies {γz,M̃} =
[γx,y,M̃] = 0. As a result, the topological node stabilities
under the reflection symmetry are obtained [Table II(A)], in
which we specify ηM

S of M̃ by MηM
C ηM

P for the P+D class and
MηM

C ηM
P ,ηM

C ηM
T for the P+DIII class (see Appendix 2). For the

single-band spin-triplet SC with TRS, the symmetry operations
are given by C = τxK , T = iσyK , and P̃ = τz, where τi

and σi are the Pauli matrices describing the Nambu and spin
spaces, respectively, and K represents the complex conjugate.
Thus, mirror reflection with respect to the xy plane is labeled
as M++ (M̃ = iτzσz) or M−− (M̃ = iτ0σz). That is, a line
node is unstable as Blount proved. Conversely, we provide
counterexamples of the Blount’s argument for the M+ and
M+− cases [37]. The M+ mirror reflection can be realized in
a SC without TRS, whereas M+− can be achieved in a SC
with TRS if they have a particular normal state and multiband
structures. This is shown in Appendix 3.

B. Spin rotation

For bulk Cooper pairs, the influence of SOC is strongly sup-
pressed by the Fermi energy. Thus SRS exhibits approximate
good symmetry. For convenience, we consider π -SRS such
that [H (k),Ũ ] = 0, where Ũ = diag(U,ηU

C U ∗) and U 2 = −1
[38]. We define the commutation relations between Ũ and C,
T and P̃ by ŨS = ηU

S SŨ and ηU
S = ±1 (S = C,T ,P̃ ). Using

the Clifford algebra extension method, the stability of nodes
is calculated [Table II(B)], where we specify ηU

S by UηU
C ηU

P

for the P+D class and UηU
C ηU

P ,ηU
C ηU

T for the P+DIII class (see
Appendix 2). From Table II(B), we find a stable line node in
the U++ class. In the single-band spin-triplet SC with TRS,
the π -SRS belongs to U++ or U−−. Thus the system may

TABLE II. Classification of nodes with IS and (A) reflection symmetry or (B) π -SRS. The fourth
column of (A) and (B) lists the types of reflection symmetry and SRS classes, respectively. Here the
superscripts of M(U ) represent the commutation relation with CP̃ and CT , i.e., MηM

C
ηM
P (UηU

C
ηU
P ) for

the P+D class and MηM
C

ηM
P

,ηM
C

ηM
T (UηU

C
ηU
P

,ηU
C

ηU
T ) for the P+DIII class.

(A) PHS, TRS, IS (odd parity), and reflection symmetry

Class Symmetry Parity Reflection Q p = 0 p = 1 p = 2

P+D {CP̃ ,M} Odd M+ R7 0 Z Z2

M− R5 0 0 0
P+DIII {CP̃ ,T P̃ ,M} Odd M++ R6 0 0 Z

M−+ R4 2Z 0 0
M+− C1 0 Z 0
M−− R5 0 0 0

(B) PHS, TRS, IS (odd parity), and π -SRS
Class Symmetry Parity SRS Q p = 0 p = 1 p = 2
P+D {CP̃ ,Ũ} Odd U+ C0 Z 0 Z

U− R6 0 0 Z
P+DIII {CP̃ ,T P̃ ,Ũ} Odd U++ C1 0 Z 0

U−+ R5 0 0 0
U+− R4 2Z 0 0
U−− R6 0 0 Z
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support SRS-protected line nodes if U++. It is noteworthy that
the U++ class includes the polar phase in 3He superfluid [1,3],
in which the π -SRS is given by Ũ = iτzσz when d ‖ z.

VI. SURFACE FLAT DISPERSION

Finally, we discuss the implications of our results. We first
would like to mention that our results do not provide a strong
constraint on the existence of bulk line nodes in odd-parity
SCs. As mentioned above, SRS could exhibit good symmetry
in the bulk. As such, for odd-parity SCs with TRS, SRS in
the U++ class permits a topological stable bulk line node.
Furthermore, even for those without TRS, the M+ reflection
symmetry obtained by combining the mirror reflection with
SRS allows for a stable bulk line node, as is seen in Table II(A).
Nevertheless, our results do provide a strong implication for
the corresponding surface states. The point is that the surface
Rashba SOC, which breaks the SRS, cannot be neglected.
The influence of the surface Rashba SOC is not suppressed by
the Fermi energy; therefore the bulk-boundary correspondence
does not hold for the SRS-protected line nodes in actual
materials. Also, it should be noticed that IS, in general,
breaks in a system with a boundary. However, the IS protected
line nodes for even parity superconductors are topologically
stable even without IS, the statement of which is shown in
Appendix 4.

To illustrate the effect of the surface Rashba SOC, we nu-
merically calculated the energy spectra for three-dimensional
(3D) single-band odd-parity SCs with a gap function for
the polar state [1] and E2u state of the UPt3 B phase [4],
respectively. The normal state is given by ε(k) = −2t(cos kx +
cos ky + cos kz) − μ, where we assume a spherical Fermi
surface, i.e., μ = −4t . For the gap function, we consider
�(k) = �0 sin kzσx for the polar state [see Figs. 2(a) and 2(c)]
and �(k) = �0 sin kz(cos kx + 2i sin kx sin ky − cos ky)σx for
the E2u state of the UPt3 B phase [see Figs. 2(b) and 2(d)].
For both cases, a line node exists on the kz = 0 plane. Each
line node is protected by U++, as observed in Table II(B),
and M+, as observed in Table II(A) [39]. The system has
an open boundary condition in the z direction and periodic
boundary conditions for the x and y axes. In addition, we
take into account the effect of the surface Rashba SOC as
εR(k) = ±λ(sin kyσx − sin kxσy) for small distances from the
open boundary, in which we take +1(−1) for the top (bottom)
surface. Numerically calculating the surface energy spectra,
we obtain the zero-energy state in the absence of the surface
Rashba SOC, which is shown by the black region in Figs. 2(a)
and 2(b) [11,40,41]. However, once we take the surface
Rashba SOC into account, nearly all the zero-energy states
disappear for both gap functions [see Figs. 2(c) and 2(d)].
This is because the Rashba SOC breaks the SRS; namely,
the line node is unstable under the Rashba SOC, and this
instability generates a gap in a large region of the surface
state. In contrast, the zero-energy surface flatbands in high-Tc

cuprates or noncentrosymmetric SCs are stable under the
surface Rashba SOC because the line nodes are only protected
by TRS [11,15,16].

The instability of the zero-energy state in odd-parity SCs
can be tested using tunneling spectroscopy because of the
splitting or broadening the of zero-bias conductance peak,

ky
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FIG. 2. (Color online) Energy spectra at the (001) face of the
odd-parity SC with a line node as a function of surface momentum
(kx,ky). μ = −4t , �0 = 0.3t , and λ = 0.3t . The distance between
upper (z = L) and lower (z = 0) surfaces is L = 90. For (a) and (c),
d = �0(0,0,kz), while for (b) and (d), d = �0[0,0,kz(kx + iky)2]. In
(a) and (b), we ignore the Rashba SOC, whereas in (d) and (f), we
include it in the distance 1 � z � 5 and 85 � z � 90. The color scale
shows the energy. The black region represents a zero-energy state.

which provides a clear distinction from the sharp peak in high-
Tc materials [34–36,42,43].

VII. SUMMARY AND DISCUSSION

We rebuilt the stability condition of line nodes in odd-
parity SCs using the topological classification. The topological
arguments update the Blount’s theorem such that a line-
node-associated flat zero-energy surface state is improbable
in odd-parity SCs. Our updated Blount’s theorem can be
applied to various unconventional SCs such as UPt3 [4], UBe13

[44], UNi2Al3 [45], and CuxBi2Se3 [46] because they are
odd-parity SC candidates. Whereas a symmetry-protected line
node was also proposed for nonsymmorphic odd-parity SCs
[47], in which the line node is protected by twofold screw
symmetry. Here the twofold screw operator is composed of
a twofold rotation operator and a translation operator. The
corresponding surface flat dispersion might disappears since
any surface breaks the translation symmetry.

While we mainly focused on line nodes in odd-parity SCs,
our classification is also applicable to other nodal structures.
It is noteworthy that point nodes in the E1u state of UPt3 B
phase [48] and CuxBi2Se3 [49,50] belong to the M++ class in
Table II(A), and they are topologically stable.

Finally, we would like to mention that our method also
works for Dirac materials such as graphene [51] and organic
conductors [52]. For example, if we consider the TRS (T 2 = 1)
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and inversion symmetry (P 2 = 1), a combined symmetry is
T P ([T ,P ] = 0). By the same calculation with the SC state,
we obtain Q = R0. The first homotopy group is π1(R0) = Z2,
i.e., the Dirac cone is stable in two-dimensional systems such
as graphene. Also, we can predict a stable Dirac cone in a
3D system because π2(R0) = Z2, which will provide a clue to
novel topological materials.
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APPENDIX

1. Stability of nodes and topological invariant

We discuss the connection between node stabilities and
topological invariants. To be concrete, we consider a time-
reversal invariant (TRI) superconductor without inversion
symmetry. Assuming that a system is three dimensional
and the Fermi surface is spherical, let us first consider a
two-dimensional node, i.e., �(k) = 0 over the spherical Fermi
surface. The BdG Hamiltonian is given by

HBdG(k) = (k2/2m − μ)τz ⊗ 12×2, (A1)

where m, μ, and 12×2 are a mass of electron, a chemical
potential, and a 2 × 2 identity matrix, respectively. When we
expand HBdG(k) around a point k0 on the Fermi surface, the
Hamiltonian close to the node is given by

Hk0 ( p) := HBdG(k0 + p) � v0 · p τz ⊗ 12×2, (A2)

where | p| � 1 and v0 = k0/m (|k0| = √
2mμ). To make a

superconducting gap on the Fermi surface, it is necessary
to find a symmetry-preserving mass term (SPMT) denoted
by γM [53,54], which is anticommute with Hk0 . Since the
underlying Hamiltonian has PHS C = (τx ⊗ 12×2)K and TRS
T = (12×2 ⊗ iσy)K and the node satisfies k0 	= −k0, the
SPMT has to satisfy {γM,T C} = 0. We readily find the SPMT
as γM = τy ⊗ σy . Thus the two-dimensional node (or gapless
superconductor) is unstable.

Next, we consider the line node stability. The BdG
Hamiltonian is given by

HBdG(k) = (k2/2m − μ)τz ⊗ 12×2 + v�kzτy ⊗ 12×2, (A3)

where v� is an amplitude of the gap function. There is the line
node at kz = 0 on the Fermi surface. The Hamiltonian close
to the nodal point k0 = (

√
2mμ cos θ,

√
2mμ sin θ,0) is given

by

Hk0 ( p) = v0 · p τz ⊗ 12×2 + v�pzτy ⊗ 12×2. (A4)

In this Hamiltonian, we cannot produce the superconducting
gap due to the absence of the SPMT. Therefore the line node
is stable.

As discussed above, the node stabilities are determined by
the existence of the SPMT. In what follows, we show that
the node stability relates to a topological invariant. For the
sake of completeness, we restrict our attention to the TRI
superconductor without inversion symmetry.

To see the topological invariant, we assume the Hamiltonian
with a sufficiently large matrix dimension and regard the
normal dispersion as a “mass term.” Note that we define a
mass term to characterize degrees of freedom of Hk0 based on
Refs. [27–31], which is not a real mass term. In the case of the
two-dimensional node, a 2N × 2N Hamiltonian is given by

Hkp ( p) = v0 · p τz ⊗ 1N×N . (A5)

The Hamiltonian has a chiral symmetry {H,T C} = 0. Now, we
redefine T C = τx ⊗ 1N×N for convenience sake. The general
form of the Hamiltonian is given by

H ′
kp

( p) = eiτx⊗Aeiτ0⊗B(v0 · p τz ⊗ 1N×N )e−iτ0⊗Be−iτx⊗A,

(A6)

where A and B are N × N Hermitian matrices and
eiτx⊗Aeiτ0×B ∈ U (N ) × U (N ). Here, we choose the Hamil-
tonian H ′

k0
to remain the commutation relation with T C

unchanged. Since [eiτ0×B,Hkp ] = 0, the total degrees of
freedom of H ′

k0
are U (N ) × U (N )/U (N ) = U (N ), which

is the classifying space labeled by C1. Since U (N ) is the
connected space, π0[U (N )] = 0, i.e., all of the mass terms are
connected in terms of the unitary operation. This means that
we can freely add the SPMT in H ′

kp
and thus the Hamiltonian

with the two-dimensional node continuously deforms to that
with a full gap. This result is the same as the above argument
of the SPMT.

Secondly, in the case of the line node, a 2N × 2N

Hamiltonian is given by

Hkp ( p) = v0 · p τz ⊗ D + v�pzτy ⊗ 1N×N, (A7)

where C represents normalized N × N Hermitian matrices
(D2 = 1N×N ). The Hamiltonian Hkp satisfies {Hk0 ,T C} = 0.
Using an N × N unitary matrix UN×N ∈ U (N ), D is, in
general, given by

D = UN×N diag(1n×n, −1m×m)U †
N×N, m + n = N.

(A8)

We readily see that D is invariant under diag(Un×n,Um×m) ∈
U (n) × U (m). In addition, we have the freedom of choice
about m ∈ Z. Therefore the total degrees of freedom of the
mass term is

⋃
m[U (n + m)/(U (n) × U (m))]. In the N →

∞ limit, the classifying space becomes [U (n + m)/(U (n) ×
U (m))] × Z, which is formally labeled by C0. Since π0(C0) =
Z, the Hamiltonian with the line node cannot continuously
transform into that with the gap. Thus the line node is
topologically protected as discussed above. We summarize
the classifying space Cq and Rq and the zeroth homotopy
group of them at Table III. The higher homotopy groups
are determined by the zeroth homotopy group because of
the relations πp(Ci) = π0(Ci+p) = π0(Ci+p+2) and πp(Rj ) =
π0(Rj+p) = π0(Rj+p+8), where the last equalities come from
the Bott periodicity [20].

024516-5



KOBAYASHI, SHIOZAKI, TANAKA, AND SATO PHYSICAL REVIEW B 90, 024516 (2014)

TABLE III. Bott periodicity of the classifying space for (a)
complex case Cq and (b) real case Rq . The last columns show the
zeroth homotopy group of each classifying space.

(a) Complex case

q mod 2 Classifying space Cq π0(Cq )

0 [U (n + m)/U (n) × U (m)] × Z Z
1 U (n) 0

(b) Real case
q mod 8 Classifying space Rq π0(Cq )

0 [O(n + m)/O(n) × O(m)] × Z Z
1 O(n) Z2

2 O(2n)/U (n) Z2

3 U (2n)/Sp(n) 0
4 [Sp(n + m)/Sp(n) × Sp(m)] × Z Z
5 Sp(n) 0
6 Sp(n)/U (n) 0
7 U (n)/O(n) 0

2. Clifford algebra extension method

In this section, we show the concrete calculation in Tables I
and II in the main text. First, we briefly review a Clifford
algebra extension method based on Refs. [20,29,30]. First, we
define a set of complex Clifford algebras Clq , which has p

generators satisfying

{γi,γj } = 2δij (i,j = 1, . . . p). (A9)

On the other hand, a set of real Clifford algebras Clp,q has p

generators satisfying γ 2
i = −1 (i = 1, . . . ,p) and q generators

satisfying γ 2
p+j = 1 (j = 1, . . . ,q). The generators satisfy the

commutation relation such that

{γi,γj } = 0 if i 	= j. (A10)

For example, Clp and Clp,q are equivalent to the following
algebras:

Cl0 = C, Cl1 = C ⊕ C (A11)

and

Cl0,0 = R, Cl1,0 = C, Cl0,1 = R ⊕ R,
(A12)

Cl2,0 = H, Cl0,2 = R(2),

where H is a quaternion and R(2) is a 2 × 2 real matrix.
We note that “=” represents isomorphism on the algebra. In
addition, we have some properties on Clp,q , which is useful to
discuss the extension problem, as follows:

Clq,p+2 = Clp,q ⊗ Cl0,2, (A13)

Clq+2,p = Clp,q ⊗ Cl2,0, (A14)

Clp+1,q+1 = Clp,q ⊗ Cl1,1, (A15)

Clp,q+8 = Clp,q ⊗ Cl0,8, = Clp,q ⊗ R(16), (A16)

Clp+q = Clp,q ⊗ Cl1,0 = Clp,q ⊗R C, (A17)

Clp+2 = Clp ⊗ C(2), (A18)

where R(16) and C(2) are a 16 × 16 real matrix and a 2 × 2
complex matrix, respectively.

TABLE IV. Relationship between the symmetry class, the Clif-
ford algebra extension, and the classifying space in the system
with inversion symmetry. The first, second, and third columns show
the symmetry class, the symmetry constraints, and the parity of
gap functions, respectively. The fourth and fifth columns show
the Clifford algebra extensions and the corresponding classifying
spaces.

Class Symmetry Parity Extension Classifying space

D {1} N/A Clp → Clp+1 Cp

DIII {T C} N/A Clp+1 → Clp+2 Cp+1

P+D {CP̃ } Even Cl0,p+2 → Cl0,p+3 Rp+2

Odd Cl2,p → Cl2,p+1 Rp−2

P+DIII {CP̃ ,T P̃ } Even Cl0,p+3 → Cl0,p+4 Rp+3

Odd Cl3,p → Cl3,p+1 Rp−3

The Clifford algebra extension method leads the classifying
space systematically. The relationship between the Clifford
algebra extension and the classifying space is summarized as
follows:

Clp → Clp+1 ⇔ Cp, (A19)

Clp,q → Clp,q+1 ⇔ Rq−p, (A20)

Clp,q → Clp+1,q ⇔ Rp+2−q, (A21)

where the left-hand side of Eqs. (A19)–(A21) represents the
Clifford algebra extension and the right-hand side of these is
the corresponding classifying spaces. The last equation (A21)
is derived from Eq. (A20) by using the property (A13). Also,
we can confirm the Bott periodicity for both the real and
complex representations by utilizing the property (A16) and
(A18), since R(16) and C(2) do not affect in the extension for
each representation.

We show concrete calculations of the Clifford algebra
extension method in the system with inversion symmetry,
reflection symmetry, and π -SRS at Tables IV, V, and VI. For
example, in the P+D class with odd parity, i.e., (CP̃ )2 = −1,
the Hamiltonian of a (p + 1)-codimensional node is given by

Hk0 ( p) =
p+1∑
i=1

kiγi, (A22)

which satisfies {Hk0 ,CP̃ } = 0. In addition, we intro-
duce a “complex structure” J (J 2 = −1), which is
anticommutative with CP̃ and is commutative with
Hk0 . To see the classifying space of Hk0 , we regard
γp+1 as a “mass term.” As a result, the Clifford al-
gebras extension is given by {γ1, . . . ,γp,CP̃ ,JCP̃ } →
{γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ }, where {. . . } represents a set of
the Clifford algebras satisfying Eq. (A10). This extension
means that Cl2,p → Cl2,p+1, so the classifying space is Rp−2

by Eq. (A20). Also, the topological invariant is given by
π0(Rp−2) = π0(Rp−2+8) = πp(R6).

When the Hamiltonian (A22) has a reflection symmetry M̃

(M̃2 = −1) additionally, we need to modify this extension
problem. We assume {γ1,M̃} = [γi 	=1,M̃] = [J,M̃] = 0
so that the reflection affects k1 as k1 → −k1, i.e., k1

is momentum transverse to the reflection plane and a
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TABLE V. Relationship between the symmetry class, the Clifford algebra extension, and the
classifying space in the system with inversion symmetry and reflection symmetry. The fourth column
represents the mirror classes, in which a superscript means a commutation relation with C, T , and
P̃ , i.e., MηM

C
ηM
P for the P+D class and MηM

C
ηM
P

,ηM
C

ηM
T for the P+DIII class, respectively. The fifth and

sixth columns show the Clifford algebra extensions and the corresponding classifying spaces for each
mirror class.

Class Symmetry Parity Mirror Extension Classifying space

P+D {CP̃ ,M̃} Odd M+ Cl2,p+1 → Cl2,p+2 Rp−1

M− Cl3,p → Cl3,p+1 Rp−3

P+DIII {CP̃ ,T P̃ ,M̃} Odd M++ Cl3,p+1 → Cl3,p+2 Rp−2

M−+ Cl4,p → Cl4,p+1 Rp−4

M+− Clp+3 → Clp+4 Cp+3

M−− Cl3,p → Cl3,p+1 Rp−3

node lies on the reflection symmetric subspace. The
Clifford algebra extension depends on whether the
reflection symmetry commutes or anticommutes with
CP̃ . When [CP̃ ,M̃] = 0 (M+ class), the Clifford algebra
extension is given by {γ1, . . . ,γp,CP̃ ,JCP̃ ,γ1M̃} →
{γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ ,γ1M̃}. Hence, the
classifying space is Rp−1. On the other hand,
when {CP̃ ,M̃} = 0 (M− class), the Clifford algebra
extension is given by {γ1, . . . ,γp,CP̃ ,JCP̃ ,Jγ1M̃} →
{γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ ,Jγ1M̃}. That is, the classifying
space is Rp−3. By repeating the same calculation for each
case, we obtain Tables IV and V.

Finally, we discuss the Hamiltonian with π -SRS Ũ , where
Ũ 2 = −1 and [γi,Ũ ] = [J,Ũ ] = 0 (i = 1,2, . . . ,p + 1). The
Clifford algebra extension depends on either [CP̃ ,Ũ ] = 0
or {CP̃ ,Ũ} = 0 in the P+D class. They are labeled by U+
and U−, respectively. The Clifford algebra extension
for each case is given by {γ1, . . . ,γp,CP̃ ,JCP̃ } ⊗
{Ũ} → {γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ } ⊗ {Ũ} in the
U+ class and {γ1, . . . ,γp,CP̃ ,JCP̃ } ⊗ {J Ũ} →
{γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ } ⊗ {J Ũ} in the U− class.
Here, {A} ⊗ {B} means that A and B are commutative
to each other. In the former case, the classifying space
is Cp+2, since Ũ gives the complex structure by Eq.
(A17), whereas the latter shows the classifying space
Rp−2, since J Ũ just block diagonalizes Hk0 , which has no
effect on the classification. In the P+DIII class, we need

to include the symmetry T P̃ in the underlying Clifford
algebra. For instance, in the U++ class, the Clifford algebra
extension is given by {γ1, . . . ,γp,CP̃ ,JCP̃ ,CT } ⊗ {Ũ}
→ {γ1, . . . ,γp,γp+1,CP̃ ,JCP̃ ,CT } ⊗ {Ũ}. Hence, the
classifying space is Cp+3, since Ũ 2 = −1. By repeating
the same calculation for the other classes, we obtain
Table VI. To complete the node stabilities under inversion
symmetry, we also show the topological node stabilities under
reflection symmetry and π -SRS in the even-parity case [see
Tables VII(C) and VII(D)].

3. Examples for the M+ and M+− classes

As seen in Table II(A), a stable line node is allowed for
the M+ and M+− classes, which are conflict with the original
Blount’s argument. In this section, we show that the stability of
the line node comes from that of the Fermi surface intersecting
with the reflection plane. In what follows, we construct the
concrete BdG Hamiltonians belonging to the M+ class and
the M+− class.

First, we discuss the M+ class. The corresponding BdG
Hamiltonian is given by

H (k) =
(

ε(k) − μ − hσz iv�kz

−iv�kz −ε(k) + μ + hσz

)
, (A23)

where h is a magnetic field of the z direction that breaks
TRS. The PHS, the inversion symmetry, and the reflection

TABLE VI. Relationship between the symmetry class, the Clifford algebra extension, and the
classifying space in the system with inversion symmetry and SRS. The fourth column represents the
SRS classes, in which a superscript means a commutation relation with C, T , and P̃ , i.e., UηU

C
ηU
P for

the P+D class and MηU
C

ηU
P

,ηU
C

ηU
T for the P+DIII class, respectively. The fifth and sixth columns show

the Clifford algebra extensions and the corresponding classifying spaces for each SRS class.

Class Symmetry Parity SRS Extension Classifying space

P+D {CP̃ ,Ũ} Odd U+ Clp+2 → Clp+3 Cp+2

U− Cl2,p → Cl2,p+1 Rp−2

P+DIII {CP̃ ,T P̃ ,Ũ} Odd U++ Clp+3 → Clp+4 Cp+3

U−+ Cl3,p → Cl3,p+1 Rp−3

U+− Cl4,p → Cl4,p+1 Rp−4

U−− Cl3,p+1 → Cl3,p+2 Rp−2
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TABLE VII. Classification of nodes with IS (even parity) and (C) reflection symmetry or (D) π -SRS. The fourth column of (C) and (D)
list the types of reflection symmetry and SRS classes, respectively. Here the superscripts of M(U ) represent the commutation relation with
CP̃ and CT , i.e., MηM

C
ηM
P (UηU

C
ηU
P ) for the P+D class and MηM

C
ηM
P

,ηM
C

ηM
T (UηU

C
ηU
P

,ηU
C

ηU
T ) for the P+DIII class. The fifth and sixth columns show the

Clifford algebra extensions and the corresponding classifying spaces, respectively. The following columns represent the topological number
for each reflection and SRS class.

(C) PHS, TRS, IS (even parity), and reflection symmetry

Class Symmetry Parity Reflection Extension Classifying space p = 0 p = 1 p = 2

P+D {CP̃ ,M} Even M+ Cl0,p+3 → Cl0,p+4 Rp+3 0 2Z 0
M− Cl1,p+2 → Cl1,p+3 Rp+1 Z2 Z2 0

P+DIII {CP̃ ,T P̃ ,M} Even M++ Cl0,p+4 → Cl0,p+5 Rp+4 2Z 0 0
M−+ Cl1,p+3 → Cl1,p+4 Rp+2 Z2 0 2Z
M+− Cl0,p+3 → Cl0,p+4 Rp+3 0 2Z 0
M−− Clp+3 → Clp+4 Cp+1 0 Z 0

(D) PHS, TRS, IS (even parity), and π -SRS

Class Symmetry Parity SRS Extension Classifying space p = 0 p = 1 p = 2

P+D {CP̃ ,Ũ} Even U+ Clp+2 → Clp+3 Cp Z 0 Z
U− Cl0,p+2 → Cl0,p+3 Rp+2 Z2 0 2Z

P+DIII {CP̃ ,T P̃ ,Ũ} Even U++ Clp+3 → Clp+4 Cp+1 0 Z 0
U−+ Cl0,p+3 → Cl0,p+4 Rp+3 0 2Z 0
U+− Cl0,p+4 → Cl0,p+5 Rp+4 2Z 0 0
U−− Cl1,p+3 → Cl1,p+4 Rp+2 Z2 0 2Z

symmetry are given by C = (τx ⊗ 12×2)K , P̃ = τz ⊗ 12×2,
and M̃xy = τz ⊗ iσz, respectively. From the definition, the
symmetries satisfy [CP̃ ,M̃] = 0 and the Hamiltonian (A23)
has the line node at kz = 0 on the Fermi surface. On the mirror
plane, i.e., kz = 0, the Hamiltonian is block diagonalized by
M̃xy , whose eigenvalues are given by ±i. Thus, the matrix
(A23) is decomposed into the mirror sector labeled by H (+i)

and H (−i) such as

H (kx,ky,kz = 0)

= H (+i)(kx,ky,kz = 0) ⊕ H (−i)(kx,ky,kz = 0), (A24)

where

H (±i) = ±
(

ε(k) − μ − h 0

0 −ε(k) + μ − h

)
. (A25)

Since H (+i) and H (−i) have the same structure, we only
consider the +i sector. The upper left and lower right elements
of (A25) represent the Fermi surface of the spin up and the
spin down, respectively. When h > μ, the Fermi surface of
the spin-down component vanishes, since −ε(k) + μ − h = 0

does not have a real solution. [Note that ε(k) = k2/2m]. In
such a situation, there is no mixing term which opens a gap in
the Fermi surface of the spin-up component in the +i sector.
Thus the line node is stable.

Second, we consider the M+− class. The corresponding
BdG Hamiltonian is given by

H (k) =
(

ε(k) − μ − λσz ⊗ sx iv�kz

−iv�kz −ε(k) + μ + λσz ⊗ sx

)
,

(A26)

where si (i = x,y,z) is additional degrees of freedom such
as an orbital and λ is a coupling constant between σz

and sx . The PHS, the TRS, the inversion symmetry, and
the reflection symmetry are given by C = (τx ⊗ 14×4)K ,
T = (12×2 ⊗ iσy ⊗ sz)K , P̃ = τz ⊗ 14×4, and M̃xy = τz ⊗
iσz ⊗ sx , respectively. From the definition, the symmetries
satisfy [CP̃ ,M̃] = {T C,M̃} = 0, and the Hamiltonian (A26)
has the line node at kz = 0 on the Fermi surface. Since
M̃2 = −1, H (kx,ky,kz = 0) is similarly decomposed into
4 × 4 matrices: H (+i) and H (−i). These are given by

H (±i) = ±

⎛
⎜⎜⎜⎝

ε(k) − μ − λ 0 0 0

0 ε(k) − μ − λ 0 0

0 0 −ε(k) + μ − λ 0

0 0 0 −ε(k) + μ − λ

⎞
⎟⎟⎟⎠, (A27)

where the basis of H (+i) is 1/
√

2(ck,↑1 + ck,↑2, − ck,↓1 +
ck,↓2, − c

†
−k,↑1 + c

†
−k,↑2,c

†
−k,↓1 + c

†
−k,↓2). The subscripts ↑

(↓) and 1(2) represent the spin and the additional degrees of
freedom, respectively. When λ > μ, the Fermi surface of the
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electronic states 1/
√

2(−ck,↑1 + ck,↑2,ck,↓1 + ck,↓2) becomes
unstable. In such a situation, Eq. (A27) does not have any
mixing term which produces a gap, so the line node is stable.

4. Zero-energy state and inversion-symmetry-protected
line node

In this section, we discuss how inversion-symmetry-
protected nodes behave when inversion symmetry is absent. In
particular, we argue that an inversion-symmetry-protected line
nodes for even parity superconductors generate zero-energy
flat dispersion at a certain surface. In the preceding study, the
relation between a line node, which is protected by TRS, and a
surface-zero-energy state has been established in Refs. [11,14].
Thus, we presume that the bulk-boundary correspondence
exists in the D and DIII classes. We here construct a map
from the P+D (P+DIII) class to the D (DIII) class, namely,
we discuss the topological stability of a line node when we omit
the inversion symmetry in the underlying BdG Hamiltonian.
In what follows, we split the main statement into the four
statements, (a), (b), (c), and (d), to complete all of the classes
in Table I and II in the main text.

First of all, we show that (a) a node is unstable in the D
(DIII) class if the node is unstable in the P+D (P+DIII) class.
To see this, we use the following equivalent statements:

(1) A topological invariant does not exist.
(2) There exists a mass term, which preserves symmetries

and is anticommutative with Hk0 .
(3) A node is unstable.

To show (a), we assume that there exists a mass term γM

([J,γM ] = 0) in the P+D class such that

{CP̃ ,γM} = {Hk0 ,γM} = 0. (A28)

Also, in the P+DIII class, there exists the mass term satisfying
the following conditions:

{CP̃ ,γM} = [T P̃ ,γM ] = {Hk0 ,γM} = 0. (A29)

Alternatively, Eq. (A29) is written by

{CP̃ ,γM} = {CT,γM} = {Hk0 ,γM} = 0. (A30)

Equations (A28) and (A30) imply that the mass term always
makes a gap in the underlying Hamiltonian with and without
inversion symmetry. Namely, γM is the mass term in the D
(DIII) class as well.

Second, we show that (b) when the classifying space
becomes the complex class by adding an additional symmetry,
a node is stable in the D (DIII) class if the node is stable in
the P+D (P+DIII) class. The proof of this statement consists
of three steps: (b-1) We derive conditions of an additional
symmetry U which is required to become the complex class.
(b-2) Both the D and the P+D classes are topologically
nontrivial when p is even. Similarly, both the DIII and the
P+DIII classes are topologically nontrivial when p is odd.
(b-3) Under the map f , which omits the inversion symmetry
in the underlying Hamiltonian, a topologically nontrivial
Hamiltonian of the P+D (P+DIII) class is mapped into that
of the D (DIII) class when p is even (odd).

In the step (b-1), the additional symmetry U is defined by

{U,γi} = [U,γj 	=i] = [U,J ] = 0 (i = 1,2, . . . ,m), (A31)

where U 2 = εU and εU = ±1. Then the condition to become
the complex class is directly derived from the Clifford algebra
extension method; the results are given by

(1) P+D class
(i) [CP̃ ,U ] = 0 and m is even, where m satisfies

(−1)
m(m+1)

2 εU = −1.
(ii) {CP̃ ,U} = 0 and m is even, where m satisfies

(−1)
m(m+1)

2 εU = +1.
(2) P+DIII class

(iii) [CP̃ ,U ] = [T C,U ] = 0 and m is even, where m

satisfies (−1)
m(m+1)

2 εU = −1.
(iv) {CP̃ ,U} = [T C,U ] = 0 and m is even, where m

satisfies (−1)
m(m+1)

2 εU = +1.
(v) [CP̃ ,U ] = {T C,U} = 0 and m is odd, where m

satisfies (−1)
(m+1)(m+2)

2 εUεCT = −1.
(vi) {CP̃ ,U} = {T C,U} = 0 and m is odd, where m

satisfies (−1)
(m+1)(m+2)

2 εUεCT = +1,
The factor εCT is defined by (CT )2 = εCT = ±1. Note that
the reflection symmetry and the π -SRS correspond to m = 1
and m = 0, respectively. Hence, the M+− class belongs to the
case (v), whereas the U+ and the U++ classes belong to cases
(i) and (iii), respectively.

From the calculation of the step (b-1), the “complex struc-
ture” U ′ of cases (i)–(vi), i.e., U ′ is commutative with all under-
lying Clifford algebras, is given by (i),(iii) U ′ = γ1 · · · γmU ,
(ii),(iv) U ′ = Jγ1 · · · γmU , (v) U ′ = CT γ1 · · · γmU , and (vi)
U ′ = JCT γ1 · · · γmU , respectively.

Next, to prove step (b-2), we relate the P+D (P+DIII)
class to the D (DIII) class. This is accomplished by defining
a map f , which omits the inversion symmetry P̃ in the
underlying symmetries. In the P+D class, the map f is given
by

f : {γ1, . . . ,γp+1,JCP̃ ,CP } ⊗ {U ′}
→ {γ1, . . . ,γp+1} ⊗ {U ′}. (A32)

Since the system always belongs to the complex class, the
classifying spaces are Cp+2 in the P+D class and Cp in the D
class. Thus the classifying space is invariant under the map f

due to the Bott periodicity. In the same fashion, in the P+DIII
class, the map f is defined by

f : {γ1, . . . ,γp+1,JCP̃ ,CP̃ ,CT } ⊗ {U ′}
→ {γ1, . . . ,γp+1,CT } ⊗ {U ′}. (A33)

The classifying spaces are Cp+3 in the P+DIII class and Cp+1

in the DIII class; i.e., the classifying space remains unchanged
under the map f . As a result, step (b-2) is confirmed.

Finally, to show step (b-3), we construct topologically
nontrivial Dirac Hamiltonians of the cases (i)–(vi), which have
no SPMT. We describe the Dirac Hamiltonians concretely as
follows:

(1) Dirac Hamiltonian of cases (i) and (ii)
We assume without a loss of generality that m = 0 and
(CP̃ )2 = −1. The Dirac Hamiltonians of case (i) are given
by

H0 = k1τx, CP̃ = iτyK, U = iτx,

H2 = H0 ⊗ σx + k212×2 ⊗ σy + k3τx ⊗ σz,
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CP̃ = (iτy ⊗ 12×2)K, U = iτx ⊗ 12×2,

...

H2n = H2n−2 ⊗ lx + k2n12n×2n ⊗ ly

+ k2n+1τx ⊗ 12n−2×2n−2 ⊗ lz,

CP̃ = (iτy ⊗ 12n×2n)K, U = iτx ⊗ 12n×2n, (A34)

where τi , σi , and li (i = x,y,z) are Pauli matrices, respectively.
Similarly, we obtain case (ii) by replacing U = iτx ⊗ 12n×2n

with U = τx ⊗ 12n×2n.
(2) Dirac Hamiltonian of cases (iii) and (iv)

We assume without a loss of generality that m = 0, (CP̃ )2 =
−1 and (CT )2 = 1. The Dirac Hamiltonians of case (iii) are
given by

H1 = k1τx ⊗ σx + k2τx ⊗ σz,

CP̃ = (iτy ⊗ 12×2)K,

U = iτx ⊗ 12×2, CT = 12×2 ⊗ σy,

H3 = H1 ⊗ sx + k314×4 ⊗ sy + k4τx ⊗ 12×2 ⊗ sz,

CP̃ = (iτy ⊗ 14×4)K,

U = iτx ⊗ 14×4, CT = 12×2 ⊗ σy ⊗ sx,

...

H2n+1 = H2n−1 ⊗ lx + k2n+112n+2×2n+2 ⊗ ly

+ k2n+2τx ⊗ 12n×2n ⊗ lz,

CP̃ = (iτy ⊗ 12n+2×2n+2)K,

U = iτx ⊗ 12n+2×2n+2,

CT = 12×2 ⊗ σy ⊗ sx ⊗ · · · ⊗ lx, (A35)

where τi , σi , si , and li (i = x,y,z) are Pauli matrices,
respectively. Case (iv) is given by replacing U = iτx ⊗ 12n×2n

with U = τx ⊗ 12n×2n.
(3) Dirac Hamiltonian of cases (v) and (vi)

We assume without a loss of generality that m = 1, (CP̃ )2 =
−1, and (CT )2 = 1. The Dirac Hamiltonians of case (vi) are
given by

H1 = k1τx ⊗ σx + k2τx ⊗ σz,

CP̃ = (iτy ⊗ 12×2)K,

U = i12×2 ⊗ iσz,

CT = 12×2 ⊗ σy,

H3 = H1 ⊗ sx + k314×4 ⊗ sy + k4τx ⊗ 12×2 ⊗ sz,

CP̃ = (iτy ⊗ 14×4)K,

U = 12×2 ⊗ iσz ⊗ 12×2,

CT = 12×2 ⊗ σy ⊗ sx,

...

H2n+1 = H2n−1 ⊗ lx + k2n+112n+2×2n+2 ⊗ ly

+ k2n+2τx ⊗ 12n×2n ⊗ lz,

CP̃ = (iτy ⊗ 12n+2×2n+2)K,

U = 12×2 ⊗ iσz ⊗ 12n−2×2n−2,

CT = 12×2 ⊗ σy ⊗ sx ⊗ · · · ⊗ lx, (A36)

where τi , σi , si , and li (i = x,y,z) are Pauli matrices, respec-
tively. Case (v) is given by the same Dirac Hamiltonian with
U = 12×2 ⊗ σz ⊗ 12n−2×2n−2. Note that the general forms of
Eqs. (A34), (A35), and (A36) are achieved by acting a unitary
operation due to the uniqueness of the Clifford algebras.

As described the above, the higher-dimensional Dirac
Hamiltonian is inductively derived by the lowest-dimensional
one. The higher-dimensional Dirac Hamiltonian of (i)–(vi)
does not have a mass term with or without the inversion
symmetry P̃ if there is no mass term in the lowest-dimensional
one by the property of Pauli matrices. Thus we focus only
on the lowest-dimensional one. In case (i), when we omit
the inversion symmetry P̃ in the Hamiltonian H0, the Dirac
Hamiltonian and the symmetry become

H0 = k1τx, U = iτx. (A37)

Obviously, there is no mass term satisfying {H0,γM} =
[U,γM ] = 0 in Eq. (A37). Thus a topologically nontrivial
Hamiltonian of the P+D class is mapped to that of the D class.
In a similar way, we can verify the absence of the mass term
under the map f in the lowest-dimensional Hamiltonian of the
cases (ii)–(vi). As a result, the statement (b) is confirmed.

Finally, we show that (c) a line node is stable in the D class
with reflection symmetry if the line node is stable in the M+
class and (d) a line node is stable in the DIII class if the line
node is stable in the P+DIII with even parity. In what follows,
we attack the statements (c) and (d) individually.

For the case of (c), the M+ class has the topologically
stable line node as shown in Table II(A), whereas the D class
with reflection symmetry also has the topological stable line
node since Q = C1 and π1(C1) = Z. In this case, we can
construct the map from a topological nontrivial Hamiltonian
of the M+ class to that of the D class with reflection symmetry.
To see this, we create the Dirac model of M+ class as
follows:

H1 = k1τz ⊗ σx + k2τz ⊗ σz,

CP̃ = (iτy ⊗ 12×2)K, (A38)

M̃ = τz ⊗ iσz.

Equation (A38) does not have a SPMT with or without CP̃ .
Thus, the line node remains stable under the map from the
P+D class to the D class.

Next, for the case of (d), both the P+DIII class with even
parity and the DIII class have the topologically stable line node
as shown in Table I. Similarly, we can construct the map from a
topologically nontrivial Hamiltonian of the P+DIII class with
even parity to that of the DIII class. The Dirac model of this
case is given by

H1 = k1τz ⊗ 12×2 + k2τy ⊗ σy,

CP̃ = (τx ⊗ 12×2)K, (A39)

CT = τx ⊗ iσy.

By Eq. (A39), there is no SPMT, regardless of the existence
of CP̃ . Thus, the line node remains stable under the map from
the P+DIII class to the DIII class.
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