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Simple Bayesian method for improved analysis of quasi-two-dimensional scattering data
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A new method is presented for the analysis of small angle neutron scattering data from quasi-two-dimensional
systems such as flux lattices, Skyrmion lattices, and aligned liquid crystals. A significant increase in signal to
noise ratio and a natural application of the Lorentz factor can be achieved by taking advantage of the knowledge
that all relevant scattering is centered on a plane in reciprocal space. The Bayesian form ensures that missing
information is treated in a controlled way and can be subsequently included in the analysis. A simple algorithm
based on Gaussian probability assumptions is provided which provides very satisfactory results. Finally, it is
argued that a generalized model-independent Bayesian data analysis method would be highly advantageous for
the processing of neutron and x-ray scattering data.
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I. INTRODUCTION

The study of flux line lattices (FLLs) in type-II supercon-
ductors is a major use of the small angle neutron scattering
(SANS) technique [1–3]. In their so-called “mixed state” these
materials contain a spatially periodic magnetic field pattern.
Due to their wave nature and intrinsic magnetic moment,
neutrons diffract from these magnetic structures in a manner
which make them a powerful tool for the investigation of FLLs.

The mixed state occurs when type-II superconductors are
subject to an external magnetic field H above their lower
critical field Hc1. In this phase, the field penetrates the
bulk superconductor, creating regions of suppressed order
parameter, surrounded by screening supercurrents. Coherence
of the superconducting pair wave-function means that each of
these regions, known as vortices or flux lines, corresponds to
a single flux quantum, �0 = h/2e. Repulsion between flux
lines causes a two-dimensional (2D) lattice to form, which
would be close-packed hexagonal in a perfectly isotropic
system [4]. In real materials, however, the nature of the
superconducting pairing and anisotropies in the Fermi surface
can cause distortions and even phase transitions in the flux
lattice. For example, in single crystal niobium, temperature
and field-dependent transitions are found in the FLL [5], which
even reflect topological considerations due to the so-called
“hairy-ball theorem” [6].

SANS can give information about the structure of the FLL,
and also about the field contrast and lattice perfection. The
contrast is related to the London penetration depth, and hence
superfluid density. The way this varies as the temperature
approaches zero can tell us about the presence of nodes in
the superconducting gap, indicating unconventional pairing
symmetry. The lattice perfection is affected by pinning of the
flux lines and by thermal fluctuations.

In a uniform field in most materials the FLL is essentially
2D in nature, consisting of parallel rods aligned with the mag-
netic field. The 2D array of rods gives a single plane of spots in
reciprocal space, at positions q equal to the reciprocal lattice
points Ghk . The width of the spots perpendicular to the recip-
rocal lattice plane is given by the correlation length along the
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field direction in real space, and their integrated intensity is de-
termined by the Fourier component of the field contrast B(q).

Figure 1(a) shows the experimental geometry; Figs. 1(b)
and 1(c) show the reciprocal lattice and Ewald sphere relevant
to the FLL problem. Diffraction will only occur when the
momentum transfer between the neutron and the lattice
�q = �(kf − ki) is equal to a point in the reciprocal lattice
Ghk , where ki and kf are, respectively, the incoming and
outgoing neutron wave vectors. For elastic scattering (where
|kf | = |ki |) the Ewald sphere construction is often used to
illustrate this, and in the case of the 2D FLL, it implies that the
only diffraction signal to occur will be on the locus of points
where the sphere determined by |ki | intersects the reciprocal
lattice plane containing Ghk . This is a circle passing through
the origin at q = 0, with a radius depending on |ki | and the
angle between the lattice plane and the beam direction. The
points where this circle passes through a reciprocal lattice point
Ghk correspond to the Bragg condition for a given lattice point.
However, the present method makes no assumptions about the
form of the lattice and works for any form of 2D scattering, for
example, from an aligned nematic liquid crystal [7]. It would
also work in non-2D cases where other points in reciprocal
space are far enough away not to cut the Ewald sphere.

The effect of the finite correlation length along the field
direction is to thicken the lattice plane, causing the spots to
have a finite width in the direction normal to the plane. The
wavelength spread, beam size, and divergence also serve to
broaden the final diffracted beam, as does the mosaic spread of
the sample [8]. If the correlation length is the dominant source
of broadening then the spreading will have a Lorentzian form in
reciprocal space; however if instrumental resolution is the main
factor, it is likely to be more Gaussian. For this example we
will assume a Lorentzian shape with full width half maximum
(FWHM) �, but a different function is straightforward to
implement.

During a diffraction experiment, the angle between the
incoming neutron beam and the magnetic field is varied by
rotating the entire sample environment, including the sample
and the magnet, about an axis passing through the sample.
This has the effect of bringing different reciprocal lattice spots
in and out of the Bragg condition, as the Ewald sphere passes
through them. In general the field and sample can be rotated
about two perpendicular axes, by angles referred to as ω and φ,
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(a) (b) (c)

FIG. 1. (Color online) (a) Schematic diagram of a typical experimental setup. The incoming neutrons have a wave vector ki , outgoing
neutrons have wave vector kf , where |kf | = |ki | = 2π/λ, and λ is the neutron de Broglie wavelength. Each pixel in the multidetector
corresponds to a different direction of kf . (b) Section through the Ewald sphere and reciprocal lattice in the scattering plane. The field and
hence reciprocal lattice is rotated by an angle, ω, with respect to ki . (c) Reciprocal lattice plane showing circles where the Ewald sphere
intersects for different rotations ω around qy . If all scattered intensity is in this plane, then only pixels close to a circle will contain relevant
data. The inset in panel (c) shows the region of reciprocal space for which relevant data is collected when the field is “rocked” from −ω to +ω

about a single axis in the y direction.

to access different regions of reciprocal space. We will mostly
refer to rotation about a single axis for clarity, but this method
works for any combination of ω and φ. Strictly speaking we
should specify an order in which the rotations occur, as they
do not commute; however if the angles are small this will
not be important. A 2D detector placed several meters away
records the diffracted intensity at small angles (∼1◦) to the
beam axis. To produce an entire diffraction pattern, a series of
measurements are taken at different rotation angles.

II. DATA ANALYSIS

The traditional method of producing a diffraction pattern
from such an experiment is to sum the counts on each pixel
in the multidetector over frames (i.e., individual exposures
at given rotations) taken over a range of angles which
encompass the Bragg condition for all relevant diffraction
spots. Backgrounds are subtracted using measurements taken
either in zero field or above the superconducting transition
temperature. This is necessary as the diffracted intensity from
the FLL is relatively weak and superimposed on a |q|−4

background. The q = 0 point is determined by a measurement
of the undiffracted “direct” beam, which is also used to
determine the absolute diffracted intensity in subsequent
processing. The counts are also usually normalized to reflect
the integration time, or total neutron flux, giving a result in
“counts per standard monitor” which accounts for different
measuring times.

While simple to understand and implement, the simple
“rocking sum” described has a number of disadvantages. One
is that the rate at which the Ewald sphere will pass through
a spot depends on the angle between the relevant reciprocal
lattice vector and the rotation axis. As shown in Figs. 1(b)
and 1(c), the reciprocal lattice plane is initially tangent to
the Ewald sphere at ω = 0. Then the plane is rotated by ω

about an axis, also within the plane, passing through the point
where they touched. The intersection between the sphere and
the plane is a circle, fixed at one point on its circumference,
expanding in radius in a direction perpendicular to the axis

of rotation. The circle will take the smallest range of ω to
pass through a finite sized spot in this direction and will cross
the other spots over an angular range larger by a factor of
1/| cos(α)|, where α is the angle between the q vector of
the spot and the perpendicular to the rotation axis. This is
known as the Lorentz factor and means that spots closer to
the rotation axis will have have a correspondingly higher
integrated intensity. One must therefore divide this by the
Lorentz factor to calculate the total integrated intensity for
individual spots in q space.

The other problem is that an unweighted sum of detector
counts will include many angles for which any individual pixel
is not at or close to the Bragg condition. In that case noise
will be accumulated, but no signal. This is an especially big
problem when the quality of the lattice is very good, with
a long correlation length, as each spot will only appear in a
narrow range of angles (with a FWHM known as its “rocking
curve width”).

One way of handling the noise issue described above would
be to do a weighted sum of counts, instead of equally weighting
the counts at each rocking angle. The intensity in a given spot
will have a Lorentzian shape as a function of rocking angle,
with a peak centered at the relevant Bragg angle, if the intrinsic
longitudinal broadening of the flux lattice diffraction pattern is
dominated by the longitudinal coherence length. The weights
for each rocking angle can be optimized so as to reflect the
fraction of the peak intensity captured at each pixel for a given
frame, if the rocking curve width has a known value.

This method is effectively a fit to the peak intensity.
However it runs into problems when the Bragg condition is
never reached. This will happen close to the rocking axis,
where the Ewald sphere never cuts the reciprocal lattice plane.
In that case, every single weighting coefficient will be close to
zero, and subsequent normalization will only serve to amplify
the noise in these areas.

There are several ways this can be handled, but one of
the most justifiable and logically consistent is to use Bayes’
theorem, which brings with it several advantages, as we
discuss below.
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III. BAYESIAN INFERENCE OF
DIFFRACTION INTENSITY

The problem can be stated in the following terms. We
wish to infer the integrated diffracted intensity I (q) for a
region of reciprocal space at a given momentum transfer
q = (qx,qy,0) in the reciprocal lattice plane [i.e., the plane
in reciprocal space passing through (0, 0, 0) perpendicular to
the field direction, which is defined as the (0, 0, 1) direction].
This coordinate system is fixed with respect to the field and
sample; the rocking angle ω defines the beam direction ki ,
and the detector pixel position determines kf and hence the
momentum transfer q = (qx,qy,qz). In the simplest case we
make one assumption: that the diffraction pattern is 2D, except
for a constant longitudinal correlation length, over the entire
q range, i.e., that all diffracted intensity can be described by
the in-plane intensity and a single Lorentzian or Gaussian
maximum perpendicular to the plane, such that

I3D(qx,qy,qz) = f (qz)I2D(qx,qy,0), (1)

where a Lorentzian rocking curve shape gives

f (qz) = 1

π

1
2�(

1
2�

)2 + q2
z

(2)

or a Gaussian gives

f (qz) = 1√
2πγ

exp

(
q2

z

2γ 2

)
, (3)

with � being the FWHM in Eq. (2) and γ being the rms
width for Eq. (3). We refer to the former from now on, but
all considerations apply equally to a Gaussian shape. f (qz) is
normalized so that

∫ ∞
∞ f (qz)dqz = 1. It should be noted that

f (qz) has units of [1/qz].
This model makes no assumptions about the form of the

in-plane intensity, either the diffraction pattern itself or the
resolution effects. It explicitly rules out any modulation other
than the correlation length 2/� along the z direction which
is the same for all Bragg planes of the FLL, though it could
easily be extended to account for anisotropic �.

We have a set of data consisting of an array of counts
from a 2D detector taken at a set of rocking angles {ωj },
already normalized and background subtracted (N.B., sets of
multiple values or data points are denoted by curly brackets).
The intensity at pixel i in frame j is referred to as Dij , with
an error σij determined from Poisson statistics.

In terms of an inference problem, we wish to know the
probability, for a given set of points at {qi}, that the integrated
intensity has a particular value {Ii}, given the experimental
data {Dij }, and a FWHM �. For convenience and clarity we
select {qi} to be equivalent to the detector pixels, which for a
given |k| and small rotation angles can be assumed to have the
same qx and qy for each ωi . We consider the case in which the
neutrons are selected to be (approximately) monochromatic
by a velocity selector. The time of flight mode, when a large
range of neutron wavelengths is present during a measurement,
can also be treated in the same way, but in that case the
choice of q values at which to calculate the intensity is not
as straightforward.

The expected measurement at pixel i in frame j is given by
fij Ii according to Eq. (1). This is a function of (qx,qy)i , the
integrated intensity Ii , rocking angle ωj , and rocking curve
width � in reciprocal space. � can initially be estimated
from the angular rocking curve width η for a particular flux
lattice diffraction spot (later we make this a parameter to be
determined).

The FWHM � along the field direction in Å−1 for a spot
centered on q = (qx,qy,0) and rocking axis parallel to the
vector r is given by

� = 2
|q × r|

|r| tan(η/2), (4)

where η is the rocking curve FWHM in degrees. Conversely η

is given by

η = 2 tan−1

(
�|r|

2|q × r|
)

. (5)

In the usual case of a rock about a vertical or horizontal
axis, |q×r|

|r| is equal to qx or qy , respectively.
For a set of measurements {Dij } at a given pixel i, we want

to know the best estimate of Ii ; i.e., what is the conditional
probability P (Ii |{Dij },H) where H represents our model
and background knowledge and includes things like � and
the measurement errors? Items to the right of the | sign
indicate known information which may affect the probability
of Ii . Including H indicates there may be additional relevant
parameters which can be explicitly taken into account if need
be. We take the approach of introducing parameters when it
becomes apparent they are necessary, which is intended to
minimize the amount of computation needed.

A. Single pixel

Bayes’ theorem gives, for a single frame and pixel,

P (Ii |{Dij },H) = P ({Dij }|Ii,H)P (Ii |H)

P ({Dij }|H)
. (6)

P ({Dij }|Ii,H) is known as the likelihood and P (Ii |H) is the
prior, representing our starting knowledge in the form of a
probability distribution. P ({Dij }|H) can usually be treated as
a normalizing constant. This does not depend on Ii and ensures∫

P (Ii |{Dij },H)dIi = 1.
The data will have a probability distribution which is a

convolution of two Poisson distributions from the foreground
and the background. If the number of counts is �10, this will
approximate closely a Gaussian of mean fij Ii and a variance
σ 2

ij equal to the sum of foreground and background variances.
For a single frame j , the likelihood is given by

P (Dij |Ii,H) = (
2πσ 2

ij

)−1/2
exp

[
− (Dij − fij Ii)2

2σ 2
ij

]
. (7)

Let’s assume the prior P (Ii |H) is a Gaussian with mean μ

and variance ξ 2, i.e.,

P (Ii |H) = (2πξ 2)−1/2 exp

[
− (Ii − μ)2

2ξ 2

]
. (8)

The justification for this is discussed below, but note that ξ

has different units from the sample error σij and represents
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the prior uncertainty on the total integrated intensity over the
entire rock, not the measured intensity in any frame.

It can be shown that because each measurement is con-
ditionally independent, i.e., given Ii , any measurement gives
no further information about the next, then likelihoods can be
multiplied [9]:

P ({Dij }|Ii,H) =
∏
j

P (Dij |Ii,H)

= const. ×
∏
j

exp

[
− (Dij − fij Ii)2

2σ 2
ij

]

= const. × exp

[
−1

2

∑
j

(
Dij − fij Ii

σij

)2 ]
.

(9)

Substituting Eqs. (8) and (9) into Eq. (6), remembering that
the denominator is a normalizing constant, gives

P (Ii |{Dij },H) = const. × exp

{
−1

2

[(
Ii − μ

ξ

)2

+
∑

j

(
Dij − fij Ii

σij

)2]}
. (10)

To find the optimum value of Ii , we maximize Eq. (10), or
equivalently its logarithm:

−1

2

∂

∂Ii

[(
Ii − μ

ξ

)2

+
∑

j

(
Dij − fij Ii

σij

)2]

= Ii − μ

ξ 2
+

∑
j

[−fij (Dij − fij Ii)

σ 2
ij

]
= 0. (11)

Collecting terms in Ii ,

Ii

⎛
⎝ 1

ξ 2
+

∑
j

(fij )2

σ 2
ij

⎞
⎠ = μ

ξ 2
+

∑
j

fijDij

σ 2
ij

, (12)

i.e., the value of Ii which maximizes P (Ii |{Dij },H) is

Ii = μ/ξ 2 + ∑
j fijDij /σ

2
ij

1/ξ 2 + ∑
j f 2

ij /σ
2
ij

. (13)

This can be written as

Ii = I0 +
∑

j

wijDij , (14)

where I0 is proportional to the prior mean and uniform across
all pixels, and the weights wij are given by

wij = fij /σ
2
ij

1/ξ 2 + ∑
j f 2

ij /σ
2
ij

. (15)

The error on Ii can be found by assuming that the posterior
probability is Gaussian, which is true in this case as it
is formed from the product of Gaussian functions. For a
Gaussian function f (x) with mean x0, the variance is given by

f (x0)/f ′′(x0), i.e.,

σ 2
total =

⎛
⎝ 1

ξ 2
+

∑
j

f 2
ij

σ 2
ij

⎞
⎠

−1

. (16)

So the best estimate of Ii , including error, is given by

Ii = μ/ξ 2 + ∑
j fijDij /σ

2
ij

1/ξ 2 + ∑
j f 2

ij /σ
2
ij

±
⎛
⎝ 1

ξ 2
+

∑
j

f 2
ij

σ 2
ij

⎞
⎠

−1/2

. (17)

B. Multiple pixels

When dealing with the entire detector, we can do the same
thing for each pixel. The values of fij will be different for
each position and will depend on the geometry of the setup,
the neutron wavelength, and the value of �. The GRASP data
analysis package [10], which was used to display and process
the data (i.e., subtract backgrounds, normalize by total monitor
counts, etc.), provides information about the values of q at each
pixel position and information about the Ewald sphere. This
can be used to calculate qz for any pixel and hence fij , given
�, δω, and δφ , where we introduce the latter to represent any
misalignment of the field with the coordinate axes defined in
the experimental setup. These are included by subtraction from
the diffractometer angles reported in the measurement file.

Usually we wish to know the optimum values of {Ii}, �, δω,
and δφ , i.e., those which maximize the posterior probability. To
find these we make the rather strong simplifying assumption
that all pixels are independent, implying their individual prob-
abilities can be multiplied to form a joint posterior probability
for all pixels. First, the optimum integrated intensity {Ii} for
each pixel is calculated analytically as a function of �, δω,
and δφ using Eq. (17), and the probability for each pixel is
calculated using Eq. (10). It is quite straightforward to then
numerically maximize the (log) joint posterior probability with
respect to �, δω, and δφ , using priors which are broad Gaussians
encompassing all likely values for all three.

When diffraction spots are visible in the raw data, which
is usually the case, it is useful to mask the regions without
diffracted intensity and exclude them from the probability
calculation. When the optimum values of �, δω, and δφ have
been determined, these can be used to calculate the entire
diffraction pattern.

The independent pixel assumption does not take account
of the finite in-plane instrumental resolution, which dominates
the spot shape. The present method therefore preserves in-
plane correlations. This should not affect the values of, for
example, total integrated intensities over a whole diffraction
spot, but may mean that errors are underestimated.

The misalignment δω,δφ depends on the experimental setup,
not the sample, except in cases where pinning to twin planes
is extremely strong. It can therefore be determined using a
reference sample which gives a strong signal, such as niobium,
and regarded as fixed for subsequent measurements.

The errors {σij } should be averaged over all frames for each
pixel. This reduces noise and avoids unwanted correlations
between weights and frame number.
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C. Choice of prior

In general we do not want our prior to significantly influence
the result in regions where the data is informative, i.e., where
the Ewald sphere has crossed the reciprocal lattice plane.
This requirement means that the prior variance should be
significantly larger than that of data and preferably should have
a significant probability at the “correct” intensity. We also wish
to avoid introducing any extra structure, so it must be applied
uniformly across the detector. This can be accomplished while
still leaving some freedom in areas where the data are not very
informative. There is more than one approach we can take, each
with different advantages; the choice is largely determined by
how we would like to present the result, ideally in a pleasing,
yet accurate, manner.

Beyond its 2D nature, for a FLL diffraction pattern the prior
information we have is this: most pixels to have zero intensity,
with a finite number of spots at q vectors with a simple
symmetry and a positive intensity corresponding to the highest
count value found in any individual frame. To reflect this
accurately would require a complicated prior which assumes
rather too much about the form of the diffraction pattern.
Therefore for reasons of transparency and ease of calculation
we use the Gaussian prior shown in Eq. (8), with mean μ = 0,
and variance ξ 2 chosen large enough to encompass the range of
intensities expected. So long as the prior is much broader than
the likelihood function of the data, relevant data will quickly
dominate the posterior probability density function. Setting
μ = 0 can lead to negative as well as positive values, but it
has the advantage that in the absence of relevant information
it gives zero average intensity.

One option to determine ξ is to use a value equal to the
maximum intensity recorded in any pixel (excluding the direct
beam), normalized by π�/2 to give an integrated intensity.
This is a fairly good representation of our true state of
knowledge, as we do not know if there are any spots in the
unmeasured regions. The main problem with this prior is that
it still produces rather large amounts of unsightly noise in
these areas. This can be dealt with by masking these regions
as described below. Alternatively the prior variance can be
reduced until the noise is at an acceptable level, though care
should be taken that the measured regions are not significantly
affected.

Another possibility is to use a separate prior variance for
each pixel, determined in the same way but using (a few times)
the maximum number of counts in the individual pixels over
the whole range of rocking angles. This has the effect of
reducing the noise and giving a nicer looking result, but it
will also tend to suppress weak signals, or those where fij is
small for all angles but there is some evidence of a signal.

Masking of unmeasured regions can be carried out by
comparing the prior and posterior probabilities. In regions
of the detector in which the Bragg criterion is never reached,
the data collected carry little information about the in-plane
intensity. In this case the posterior variance will be close to
that of the prior. These areas can be found by taking the ratio of
the prior to posterior variances and masking pixels where this
ratio is above a certain threshold. Alternatively, the uncertainty
on the final result could be encoded in a color mapped display
of the results, for example, as a color saturation value.

One can also consider a prior based on the peak intensity,
rather than the integrated intensity (this is equivalent to
normalizing the scaling factors fij such that f (0) = 1, but
keeping everything else the same). In practice this is very
much less useful, due to strong correlations between the peak
width and height, so the integrated intensity is a better choice.

As all of these methods are applied identically to each
pixel, there is no chance of introducing any additional structure
beyond that indicated by the data. So long as the priors are not
too strong, which is satisfied by the methods described, the
data will dominate in the “measured” regions and the effect of
the prior is confined to the places where the inferred intensity
is weakly constrained.

IV. RESULTS

Figure 2 shows diffraction patterns from BaFeAs(1−x)Px

(x = 0.3) at 5 T, obtained by rocking about a vertical axis [11].
Note in Fig. 2(b) the difference in intensity of the on-axis and
off-axis spots, and the absence of spots at the top and bottom.
Figure 2(d) shows the summed intensities in the marked sector
boxes as a function of angle ω. Off-axis spots will have larger
FWHM, by a factor of 1/|cos(α)|, where α is defined above.
This means that they will accumulate more intensity in a
summed rock.

Figure 3 shows a typical map of the weighting coefficients
wij for a frame taken at a single angle from a rock about
the y axis, calculated using Eq. (15). As expected, there is
a maximum corresponding to the position where the Ewald
sphere intersects the reciprocal lattice. More surprisingly, there
is also a region around the rocking axis where a large weighting
factor appears. This is due to a small value of the denominator
in Eq. (15), when all values of fij are �1 but the prior does
not quite dominate. If the rocking curve width is broad, there
may be relevant data present from the tails of the peak and,
remarkably, a diffraction spot can be recovered which was not
actually measured. Another slightly counterintuitive effect that
can occur, particularly with narrow rocking widths or rocks
in more than one direction, is that maxima in the weighting
factor of one frame produce minima in the others, again via
the denominator of Eq. (15).

Figure 4 shows the result using original data from Fig. 2,
with and without smoothing (applied after all processing) and
masking. In Fig. 4(d) the cumulative estimate for the integrated
intensity of two on-axis diffraction spots is shown, along with
error bars corresponding to ±1σ . As the data arrives, the
estimated intensity of each spot converges, within errors, to
a single value. In this example only one, vertical, rocking axis
has been used, partly to illustrate the results with incomplete
reciprocal space coverage. These data can be combined with
that from a rock about a horizontal axis to give a more complete
set of information about all spots with useful intensity over the
entire detector area.

It is evident from inspection that this method gives a
significant improvement in the signal to noise ratio. However it
is hard to give this an exact value, as it relates to the fraction of
the rocking curve which contains relevant data, which varies
across the detector. One can make an estimate for the data
shown here of about a factor of 2, thanks to the narrow rocking
curve width.
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FIG. 2. (Color online) (a) Data taken at a single angle ω. Only certain spots fulfill the Bragg condition to within the experimental resolution.
(b) Sum of data taken over a range of angles encompassing all first-order Bragg reflections attainable by rotation about a vertical axis. (c) Result
of Bayesian weighted method, using individual pixel priors, as described in Sec. III C. (d) Sum of intensity inside boxes shown in panel (b)
plotted as a function of rocking angle. The width of the peaks is a measurement of the longitudinal coherence of the flux lattice, and the total
integrated intensity under the peaks is proportional to the square of B(q). The data in both panels (a) and (b) have backgrounds taken in the
normal state subtracted from them. A small amount of smoothing (convolution with a 3 × 3 pixel Gaussian) has been applied to panels (a)–(c)
after all other processing. The direct beam in the center of the detector is masked.

An implementation of this method using MATLAB is
available from the author.

V. DISCUSSION

A. Simplifying assumptions

The method shown above is deliberately as simple as
possible, so as to be easily understood and reproduced as
required. It is subject to the following approximations and
limitations:

(i) The diffraction pattern is treated as strictly 2D, plus
a single perpendicular coherence length. This could easily

be extended to different coherence lengths along different
axes, but it will fail to correctly account for any out of plane
scattering beyond this.

(ii) Probability distributions for the data are initially treated
as Gaussian-in reality the foreground and background should
be treated as two separate Poisson distributions, possibly with
different scaling factors.

(iii) No account of finite in-plane resolution is taken. This
could be incorporated into further modeling of the diffraction
pattern or treated as a deconvolution problem. The presence
of correlations between pixels means that the calculated errors
on “box sums”, summed intensity over several pixels, may
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FIG. 3. (Color online) Weighting factors wij for a single frame
using (a) uniform prior and (b) individual pixel priors, as described in
Sec. III C. Note the crescent shape where the Ewald sphere cuts the
lattice place, but also the maxima at the top and bottom, which are
the result of the denominator in Eq. (15). In panel (b) these are less
prominent as the prior is suppressed by the low counts in these regions,
though more noise is evident. A 3 × 3 pixel Gaussian smoothing has
been applied to both figures.

be incorrect; however, the optimum values should reflect
the true integrated intensity (again assuming everything is
Gaussian).

(iv) The maximum posterior probabilities for the rocking
width and misalignment values are used. In principle with
additional computational effort one could marginalize these
out as nuisance parameters, i.e., integrate over all possible
values weighted by the posterior probability.

A way in which the presented method can fail to improve
on the usual unweighted sum is if there is a very broad
rocking curve, much larger than the range of angles measured.

In this case all frames will contain relevant information, so
there will not be a large improvement in the signal to noise
ratio. The misalignment and rocking curve width will not be
strongly constrained by the data, so unless there is information
about this from other sources, the weighting factors may not
be accurate, even for the best fit solution. This is actually
somewhat reassuring, as the Bayesian method will not make a
bad sample into a good one!

B. Philosophical issues

Many objections to Bayesian methods relate to so-called
“subjective” priors. The prior is, however, unavoidable, as any
other approach is equivalent to an implicit, usually uniform
prior. In the limit of very large amounts of high quality data, the
choice of prior will be largely irrelevant; however in scattering
experiments we are often limited by statistical noise, and we
wish to extract the maximum information from data collected
in a limited region of reciprocal space with finite resolution.
In this case, the choice of a suitable prior can be extremely
useful.

In the present case we can divide the prior into two
components. The first is the prior as understood in the usual
sense of a prior probability distribution for the parameters
of interest, i.e., P ({Ii},�,δθ ,δφ|H), which can be separated
as P ({Ii}|H)P (�|H)P (δθ |H)P (δφ|H) if all are independent.
In general, so long as no zero values are included, and
the sharpness or curvature (i.e., information content) of the
prior distribution is much smaller than that of the likelihood,
this part of the prior will make very little difference to
the final result after accounting for the data. On the other
hand, using a broad but informative prior encompassing a
physically reasonable range of parameters can help the solution
to converge numerically in a way that may not happen if a
uniform prior is chosen and the data are not good enough
in quality or quantity. Previous measurements carried out
with the same or different techniques can also be used to
produce an informative prior. This can be very useful, as often
different measurement methods (x-ray vs neutron scattering,
for example) can have different sensitivities or resolution in
different parts of parameter space.

The second component to the prior is more subtle, it
essentially comprises the choice of model (or set of models)
to be considered and contains information about symmetries
of the system. This is contained within the background
information H.

The combination of the two types of prior determines the
parameter space of interest; the larger the parameter space, the
more data required to come to a conclusion. This means in
particular that prior information about symmetry can have a
huge effect. In the current case the reduction from 3D to 2D
reciprocal space means a large increase in the signal to noise
ratio, as one can average over the irrelevant dimensions.

An interesting question remains as to whether or not the
entire background information H can be described in this way.
That is to say, what information is necessary to fully define
a statement of probability as a state of knowledge once a
record of all experimental results has been taken into account?
Is the choice of model space and symmetry enough, or is
some other information required? This is a philosophical,
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FIG. 4. (Color online) (a) Result of Bayesian weighted sum of data from Fig. 2, with prior mean μ set to zero, and uniform s.d. ξ determined
by the maximum spot intensity. Note that spots are recovered at the top and bottom, even though they never reach the Bragg criterion. Gaussian
smoothing has been applied to the weighted sum with a 3 × 3 pixel resolution. (b) The same as panel (a) without smoothing. (c) Areas with
σ > 0.2ξ are masked, where σ is the error on the posterior intensity. (d) Sum of intensity inside boxes in panel (c) as a function of angle. These
converge on the final result at different positions, depending on the angle at which the peak appears. Data taken at angles after passing through
the peak of the rocking curve at the Bragg condition make very little difference to the final result.

or perhaps mathematical, point, but raises an important
issue when considering how to represent actual probabilities,
which in practice are always conditional, in an unambiguous
way.

VI. CONCLUSIONS

The results shown on flux lattices demonstrate that Bayesian
techniques can provide very large improvements in the
quality of data analysis. The resulting scattering patterns more
accurately represent the integrated intensities than simple sums
of the data. They can include the usual (Lorentz) corrections
in a natural way, by working in a model space suited to
the problem. A very simple Gaussian analytical treatment is

more than adequate. This has the advantage of transparency
as well as speed of implementation. The maximum posterior
probability solution was chosen, with rocking curve width
and field misalignments with the coordinate axes left as free
parameters.

The case of the FLL may be particularly suited to this
problem, due to its 2D nature, but it is by no means the only
such system, another example being Skyrmion lattices [12].
Often there is also a lot of accumulated data about instru-
ment characteristics or accumulated experimental data from
previous experiments. These can all be naturally taken into
account using Bayesian methods, and there are many examples
of such work over the years in a wide variety of fields [13–17].
Due to the relatively complex nature of the analysis, which
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often gives similar if not identical results to more traditional
methods (though the exceptions are of significant interest),
this has mostly been carried out by motivated individuals with
a model hard-coded into the analysis. However the methods
themselves are completely general and model independent.
As computers get cheaper and more powerful with respect
to the cost of gathering data, it is starting to make sense to
provide general tools for model-independent Bayesian data
analysis. By separating the modeling from the calculations
and using standardized methods for data reduction it would no
longer be necessary to reinvent the wheel for each problem.
A dataflow programming language, such as LABVIEW/G,
would be the most natural way of encapsulating this process,
particularly as many of the calculations are inherently parallel.
This would require an agreed data format for conditional
probability distributions, meeting the requirements detailed
above to include all necessary background information. This
would particularly suit facility-based techniques such as

neutron and synchrotron radiation scattering, which have
institutional computing support and a well-characterized data
archival procedure. We have shown how this method is highly
advantageous for one particular system, and we look forward
to its widespread adoption.
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