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We consider a simple model of a quasi-one-dimensional conductor in which two order parameters (OP) may
coexist, i.e., the superconducting OP � and the OP W that characterize the amplitude of a charge-density wave
(CDW). In the mean field approximation, we present equations for the matrix Green’s functions Gik , where
the first subscript i relates to the one of the two Fermi sheets and the other, k, operates in the Gor’kov-Nambu
space. Using the solutions of these equations, we find stationary states for different values of the parameter
describing the curvature of the Fermi surface μ, which can be varied, e.g., by doping. It is established, in
particular, that in the interval μ1 < μ < μ2, the self-consistency equations have a solution for coexisting OPs �

and W . However, this solution corresponds to a saddle point in the energy functional �(�,W ), i.e., it is unstable.
Stable states are (1) the W state, i.e., the state with the CDW (W �= 0, � = 0) at μ < μ2 and (2) the S state,
i.e., the purely superconducting state (� �= 0, W = 0) at μ1 < μ. These states correspond to minima of �. At
μ < μ0 = (μ1 + μ2)/2, the state (1) corresponds to a global minimum, and at μ0 < μ, the state (2) has a lower
energy, i.e., only the superconducting state survives at large μ. We study the dynamics of the variations δ� and δW

from these states in the collisionless limit. It is characterized by two modes of oscillations, the fast and the slow
one. The fast mode is analogous to damped oscillations in conventional superconductors. The frequency of slow
modes depends on the curvature μ and is much smaller than 2�/� if the coupling constants for superconductivity
and CDW are close to each other. The considered model can be applied to high-Tc superconductors where the
parts of the Fermi surface near the “hot” spots may be regarded as the considered two Fermi sheets. We also
discuss relation of the considered model to the simplest model for Fe-based pnictides.
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I. INTRODUCTION

Over the last decade, substantial advances in spectroscopy
and THz technology have opened wide possibilities for
research in ultrafast dynamics of condensed matter systems.
A particular interest is dedicated to studies of nonequilibrium
evolution of order parameters (OPs) in systems with sponta-
neously broken symmetry (SBS). Experiments of this type
have been carried out on compounds exhibiting supercon-
ducting (SC) [1–3] and charge-density wave (CDW) [4–8]
OPs. Collective behavior of OP has also been pointed out in
superfluid He3 (see Ref. [9]) and ultracold atomic systems with
a fermionic or bosonic condensate [10–12].

Such studies are of particular interest in the context of
high-Tc superconductivity, where the nature of OP remains
yet unclear. In Fe-based pnictides, coexistence of SC and
spin-density wave (SDW) can provide rich and complicated
OP dynamics [13]. Recently, numerous theoretical proposals
[14–16] opting for coexistence of a charge, bond, or orbital
current order with superconductivity in cuprate compounds
have been put forward motivated by accumulating experimen-
tal evidence. According to theoretical studies [17], coexistence
and competition between OPs may also be related to the origin
of the mysterious pseudogap state.

Dynamics of OPs is closely related to collective modes.
CDW systems are known [18] to exhibit collective response
due to amplitude (amplitudon) and phase (phason) fluctuations
of OP. Superconductors also possess amplitude and phase
modes, however, their physical sense is different, resembling
Higgs physics in the electroweak theory [19]. For example,
oscillations of superconducting gap observed in pump-probe
experiments [1] are manifestations of the amplitude mode.

The phase (Carlson-Goldman [20]) mode can be observed only
near Tc merging with plasma oscillations at lower temperatures
due to Coulomb interaction [21,22].

Theoretical studies of amplitude modes in the SC state
began several decades ago [23–27]. A peculiar aspect of these
excitations is their damping even in the absence of relaxation
processes. This effect is analogous to Landau damping [28]
in collisionless plasma with superconducting OP � playing
the role of self-consistent electric field E. This has been
noted in Ref. [26] where it was shown that infinitesimal
deviations δ� from equilibrium value of SC gap � change
in time according to δ� ∼ cos[2�(t + t0)]/

√
�t . The square-

root attenuation is due to Laplace image of δ� having a
branch point instead of a pole (which is the case for Landau
damping). Recently, dynamics of � for finite perturbations
have been studied experimentally [1]. It has been found
theoretically that undamped oscillations of � are also possible
for some classes of initial perturbations [29–37]. Generaliza-
tions to the case of unconventional superconductivity, such as
d wave, have also been considered [38,39].

On the contrary, the field of OP dynamics in systems
exhibiting multiple coexisting OPs remains largely unexplored
theoretically. There exist a certain amount of papers on
collective dynamics of multiband SCs (Eremin et al. [40], etc.),
however, in that case the nature of coexisting OPs is the same.
In this paper, we study ultrafast dynamics of SC (�) and CDW
(W ) OPs in a model system allowing the appearance of two
OPs.

On the other hand, in the last decades a special interest is
devoted to the study of superconductors where aside from the
superconducting OP another OP may exist: the CDW [41,42]
(or quadrupole density wave [17]) in high-Tc superconductors
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or the spin-density wave (SDW) in Fe-based pnictides [42,43].
Recently, fast dynamics of the OPs after a sharp excitation have
been studied in these systems [44–47]. It is of interest to study
stationary states in such systems and dynamical behavior of
small deviations of the OPs from their stationary values.

In this paper, we study a simple system where the CDW
and superconductivity may arise. Namely, we consider a quasi-
one-dimensional metal with interactions corresponding to SC
and CDW pairing. The Fermi surface of the studied system
consists of two slightly curved planes which provide nesting
and promote CDW formation. Similar systems in absence of
superconductivity have been studied in Refs. [48–50]. Nesting
implies that Fermi surfaces coincide after a translation of one
of the Fermi sheets by a vector 2Q. In this case, an instability
arises leading to charge-density modulation δρ ∼ cos(2Qx).
We find analytically possible states in the system and their
dependence on the Fermi surface curvature μ(p⊥) which can
be varied, e.g., by doping. It will be shown that in a certain
interval of curvature μ (μ1 < μ < μ2), the self-consistency
equation indeed has a solution with nonzero � and W .
However, this state corresponds to a saddle point in the energy
functional �(�,W ) and hence is unstable. The stable states
are a state with a nonzero W and zero � at μ < μ2 and a
purely superconducting state with nonzero � and zero W at
μ > μ1. The dynamics of δ� and δW near these stationary
states is characterized by a fast and a slow mode. While the
fast mode is similar to damped oscillations of δ� in ordinary
superconductors [26], the slow mode characteristics depend
on μ in a crucial way.

The system considered in this paper can potentially de-
scribe physics at a pair of opposite “hot spots” in cuprate
superconductors. The singular character of antiferromagnetic
fluctuations near the quantum-critical point (QCP) suggests
that the behavior of the system is determined by small vicinities
of eight “hot spots” on the Fermi surface connected with
antiferromagnetic wave vectors (π,π ) [51,52]. Knowing the
symmetry of the OP, one can simplify the problem to a smaller
number of hot spots. In Refs. [17,53], it has been shown that
antiferromagnetic fluctuations can lead to d-wave supercon-
ductivity (corresponding to experimental observations) or to
quadrupole density wave order (which is a d-wave CDW). In
this case, the pairing problem reduces to vicinities of only
opposite two hot spots, a situation which can be represented
by the two Fermi sheets of our model. It has been pointed
out that nonzero curvature of the Fermi surface makes SC
more favorable below Tc, leading to a superconducting ground
state [17,53]. However, if one considers interactions violating
particle-hole symmetry (such as Coulomb interaction), there
exists a possibility of coexistence of SC and charge order as
is shown in this paper. The evidence for coexisting charge
order comes from numerous experiments such as NMR
studies [54,55], hard [56,57] and soft [58,59] x-ray scattering,
and scanning tunneling microscopy (STM) [60]. Recent pump-
probe experiments on YBCO [61] and LSCO [62] provide
even more evidence for coexistence. However, an accurate
theoretical treatment of ultrafast dynamics in a system with
coexisting CDW and SC has not been provided yet.

The paper is organized as follows. In Sec. II, we present the
model and, using the Green’s functions approach, obtain the
expressions for these functions being 4×4 matrices. In Sec. III,

FIG. 1. (Color online) The considered quasi-one-dimensional
model.

we find the region of the parameter describing the curvature
of the Fermi surface, where the superconductivity and the
charge-density wave may, in principle, coexist provided their
interaction constants differ. In Sec. IV, we investigate the
dynamics of the order parameters at short times and find the
time dependence of � and W in a vicinity of stable extremal
points, i.e., near the points (�0,0) and (0,W0).

II. MODEL AND BASIC EQUATIONS

We consider a metal the Fermi surface of which consists
of two slightly curved sheets. The sheets are located at
px = k ± Q, and the curvature is described by the function
η(p⊥) with p⊥ = py,z (see Fig. 1). This model describes a
quasi-one-dimensional metal where a phase transition into a
state with two order parameters (OP) occurs. These OPs are
the amplitude � of the superconducting condensate and the
amplitude W of the charge-density wave.

Using the mean field approximation, the Hamiltonian H of
the system under consideration can be written in the form

H =
∑
k,α

{εα(k)[ĉ†↑α(k)ĉ↑α(k) + ĉ
†
↓α(k)ĉ↓α(k)]

+�[ĉ†↑α(k)ĉ†↓ᾱ(−k) + H.c.]

+W [ĉ†↑α(k)ĉ↑ᾱ(k) + ĉ
†
↓α(k)ĉ↓ᾱ(k) + H.c.]}, (1)

where H.c. means Hermitian conjugate, the index α = 1,2
(ᾱ = 2,1) denotes the right (left) sheet of the Fermi sur-
face (FS), and the electron energy is εα(k) = ± vk +
μ(p⊥) ≡ ±ξ + μ(p⊥) for α = 1,2; v = Q/mx , and 2Q de-
notes the nesting vector Q = (Q,0,0). The function μ(p⊥)
describes the curvature of the sheets of the FS; for example,
μ(p⊥) = η(p⊥) + μ0. The constant μ0 = Q2/2mx − EF de-
pends on doping. One can formally consider the sheets of the
FS as the bands 1 and 2, and the index α as the band index.

We introduce the operators â↑ = ĉ↑1, b̂↑ = ĉ↑2, as well as
Ĉmn = Ân for m = 1 and Ĉmn = B̂n for m = 2. The operators
Ân and B̂n are defined in Gor’kov-Nambu space by

Ân =
{

â↑(k), n = 1

â
†
↓(−k), n = 2.

(2)

The B̂n operators are expressed through b̂↑ operators
analogously.
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Thus, the Hamiltonian H in terms of the Ĉmn operators
reads as

H =
∑
k,α

Ĉ†ĤĈ, (3)

with

Ĥ = ξX̂30 + μX̂03 + �X̂11 + WX̂13, (4)

where X̂ij = ρ̂i · τ̂j is the Kronecker product of the Pauli
matrix ρ̂i operating in the “band” space, with the Pauli matrix
τ̂j operating in the particle-hole space (including the 2×2 unit
matrices ρ̂0 and τ̂0). For simplicity, we consider the order
parameters to be real, i.e., � = �∗ and W = W ∗.

We define the Green’s functions in terms of the operators
Č† and Č in the usual way. For example, the retarded and the
Keldysh Green’s function are, respectively,

ĜR(p,p′; t,t ′) = −i〈{Ĉ(p; t),Ĉ†(p′; t ′)}〉�(t − t ′) (5)

and

ĜK(p,p′; t,t ′) = 〈[Ĉ(p; t),Ĉ†(p′; t ′)]〉, (6)

with the commutator [. . . , . . .] and anticommutator {. . . , . . .}.
The retarded Green’s function obeys the equation

i∂t Ĝ
R − Ĥ · ĜR = 1̂δ(t − t ′). (7)

Note that the theory of quasi-one-dimensional conduc-
tors with the CDW in terms of the Green’s function
has been developed in Refs. [48–50]. Fourier transform-
ing with respect to the time difference ĜR(ε) = ∫

d(t − t ′)
ĜR(t − t ′) exp[iε(t − t ′)], we can find ĜR(ε) in the stationary
case

ĜR(ε) =
∑
i,j

bij (ε,ξ )X̂ij , (8)

where the coefficients bij (ε,ξ ) can be presented in the
form bij (ε,ξ ) = Nij (ε,ξ )/D. The denominator D deter-
mines the excitation spectrum and may be written as
D ≡ DR(ε) = [(ε + i0)2 − ε2

+][(ε + i0)2 − ε2
−] with

ε2
± = (

√
W 2 + ξ 2 ± μ)2 + �2, (9)

and the functions in the numerator are provided in the
Appendix.

The self-consistency equations for � and W have the form

� = i
λSC

4

∫
dξ Tr{X̂11 · ĜK(t,t)} (10)

and

W = i
λCDW

4

∫
dξ Tr{X̂13 · ĜK(t,t)}, (11)

with λSC and λCDW being the effective interaction constants
for the superconducting and CDW OPs, respectively. Here, the
Keldysh function ĜK(t,t ; ξ ) at equal times t = t ′ is expressed
through ĜR(A)(ε),

ĜK(t,t ; ξ ) =
∫

dε

2π
[ĜR(ε,ξ )f̂ (ε) − f̂ (ε)ĜA(ε,ξ )], (12)

where the matrix function f̂ (ε) is the distribution function; in
equilibrium, f̂ (ε) = 1̂ tanh(εβ) with β = (2T )−1.

Note that the interaction constants λSC and λCDW are
assumed to be different. In cuprates they are equal if one takes
into account only antiferromagnetic fluctuations [17,53]. Any
additional interaction which can be different for superconduct-
ing and CDW OPs leads to different interaction constants. Such
factors as an external magnetic field, which suppresses � and
does not affect W , or impurity scattering, which suppresses W

and does not affect �, may be regarded as leading to different
effective interaction constants.

III. COEXISTENCE OF SUPERCONDUCTIVITY AND CDW

First, we find the points on the plane {�,W } at which the
self-consistency equations (10) and (11) are satisfied. The posi-
tion of these points depends on temperature T and on the func-
tion μ(p⊥) that describes the curvature of the Fermi surfaces.
We have to solve two self-consistency equations (10) and (11)
which contain the Keldysh function. In equilibrium, this func-
tion is equal to ĜK(ε,ξ ) = [ĜR(ε,ξ ) − ĜA(ε,ξ )] tanh(εβ),
where the retarded (advanced) Green’s functions ĜR(A)(ε,ξ )
are given by Eq. (8). This expression for ĜK(ε,ξ ) has to
be plugged into Eqs. (10) and (11). Thereafter, one has to
perform integration over ε and ξ . The integration over ξ gives
the quasiclassical Green’s functions ĜK

qcl. The quasiclassical
approach in the theory of systems with CDW was used in
Refs. [48,50], and in systems with SDW in Refs. [13,63,64].
In terms of the quasiclassical Green’s functions, the self-
consistency equations can be written as follows:

�/λSC = �(2πT )
Em∑
ω=0

BK
11(ω) (13)

and

W/λCDW = W (2πT )
Em∑
ω=0

BK
13(ω), (14)

where the upper limit is a cutoff energy Em. The integration
over energy ε is replaced by summation over the Matsubara
frequencies ω = πT (2n + 1).

These equations can be obtained by a variation of the
functional

�(�,W,μ) = −(2πT )
Em∑
ω=0

Re(P ) + �2

2λSC
+ W 2

2λCDW
, (15)

where Re(P ) means the real part of the function P . The
expressions for BK

11(3) are obtained from Eqs. (8) and (12).

The function P (�,W,μ) is P =
√

(ςSCω + iμ)2 + W 2 with
ςSCω =

√
ω2 + �2. One can perform the summation to infinity

by subtracting from Eqs. (13) and (14) the corresponding
equations for the ĜK

qcl in the BCS theory, i.e., the func-

tions �/ςSC and W/ςCDW, where ςSC =
√

ω2 + �2
0 and

ςCDW =
√

ω2 + W 2
0 with �0 and W0 equal to �BCS and WBCS;

�0 = �BCS and W0 = WBCS. Thus, we obtain

0 = �F1(�,W,μ), (16)

0 = WF2(�,W,μ), (17)
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where

F1 = (2πT )
∞∑

ω=0

{
Re

[
(ςSC + iμ)ς−1

SC P −1
] − (

ω2 + �2
0

)−1/2}
(18)

and

F2 = (2πT )
∞∑

ω=0

[
Re(P −1) − (

ω2 + W 2
0

)−1/2]
. (19)

Note that, strictly speaking, one has also to perform
integration over momenta in the y and z directions. If μ

is small, this integration leads to a replacement of μ(p⊥)
in Eqs. (16) and (17) by averaged values μav or, to be
more exact, by μ2 → 〈μ2〉⊥ because all the functions in
these equations depend on μ2. This approximation may lead
only to a change of numerical factors in final results. In
particular, we can write the dependence μ(p⊥) in the form
μ = μ0 − μφ cos(2φ) in a quasi-one-dimensional supercon-
ductor, and μ = μ0 + μφ cos(2φ) in a minimal model of
pnictides with hole and electron bands, where 2φ = p⊥a⊥,
a⊥ = a(0,1,1). We will see later that if the interaction con-
stants λSC,CDW are close to each other (|λSC − λCDW| � λSC),
then the characteristic μ is small, i.e., μ � {W,�}. In this
case, we have μav =

√
μ2

0 + μ2
φ/2.

Equations (16) and (17) can be written in an equivalent
form

�

[
ln(TSC/T ) − (2πT )

∞∑
ω=0

[
Re

(
ςSC + iμ

ςSCP

)
− 1

ω

]]
= 0,

(20)

W

[
ln(TCDW/T ) − (2πT )

∞∑
ω=0

[
Re

(
1

P

)
− 1

ω

]]
= 0, (21)

where the critical temperatures TSC and TCDW for the super-
conducting and the CDW OPs in the absence of the CDW and
superconductivity, respectively, are introduced.

One can see that Eqs. (16) and (17) allow the trivial
solutions: � = 0 and W = 0. In addition, there are also
other solutions for � and W . If W = 0, then for � we
have � = �BCS ≡ �0. At μ = 0, the solutions of Eqs. (16)
and (17) are � = �BCS and W = WBCS ≡ W0. In particular,
at �0 = W0 (equal interaction constants), solutions exist only
if the curvature of the Fermi surface can be neglected (μ = 0).

If � = 0, the solution for W depends on the curvature μ

and the dependence W (μ) has the same form as the solu-
tion �(h) in BCS superconductors with an exchange field h

(compare the dashed line in Fig. 3 with Fig. 1 of Ref. [65]).
In a certain interval of μ (correspondingly h) the function
W (μ) is a multivalued function. The descending part of
this dependence corresponds to unstable states, and therefore
a nonuniform state [the Larkin-Ovchinnikov-Fulde-Ferrell
(LOFF) state] arises in superconductors, � = �(r), in this
interval of h. In the considered system, the LOFF state means
a spatial modulation of the CDW amplitude in some interval
of the curvature μ with a characteristic length of the order
∼vF/�W . All these points are located at the extremes of the

FIG. 2. (Color online) The order parameters � (blue solid line)
and W (green solid line) on the curvature μ at T = 0 as follows
from the nontrivial solutions of the self-consistency equations (16)
and (17). In (a) the interaction constants are taken to be close, while
in (b) λCDW � λSC. Moreover, the short-dashed lines show the trivial
solutions of Eqs. (16) and (17) for the corresponding order parameter.
Note that μ, W , and � are measured in W0.

functional �(�,W ) because at these points this functional
has extremes (a minimum, maximum, or saddle point), i.e.,
δ�(�,W ) = ∂�� · δ� + ∂W� · δW = 0.

Aside from the extremal points �0 = (0,0), �S = (�0,0),
and �W = (0,W0), there exists a point �X = (�X,WX) which
corresponds to coexistence of the SC and CDW order param-
eters. The phase diagram for the dependence �(μ) and W (μ)
for W0/�0 > 1 and arbitrary μ is calculated from Eqs. (16)
and (17) numerically and presented in Fig. 2. Note that μ is
normalized to the value W0, the amplitude of the CDW at zero
T at � = 0 and μ = 0. As was mentioned in Sec. II, in case
of small curvature, the parameter μ used in figures means the
normalized μav. In order to get a qualitative behavior of �

and W at values μ which are not small, we assume that μ

does not depend on momenta p⊥. Setting in these equations
W = 0 or, accordingly, � = 0, we obtain the solutions plotted
in Fig. 3, i.e., a μ-independent � or the charge-density wave
OP showing a LOFF-type dependence W (μ). Not all these
solutions correspond to a minimum in the energy of the
system. We will see that, at least at small μ, the coexisting

FIG. 3. (Color online) The order parameters � (blue solid line)
and W (dashed green line) on the curvature μ at T = 0 in the case if
one of them vanishes. Clearly, as follows from the self-consistency
equations (16) and (17), � is independent of μ in case W = 0, while,
if � = 0, W resembles the LOFF-type dependence. Note that μ, W ,
and � are measured in W0.
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FIG. 4. (Color online) Panels (a)–(c) show the dependence of the
order parameters on temperature for different values of r = exp(γ ):
in (a) r = 1.2, in (b) r = exp(1), and in (c) r = 5.0. The solid lines
correspond to superconducting order parameter while the dashed to
charge-density wave. The color encoding is as follows. Red and blue
lines show the solutions of the self-consistency equations for two
values of the curvature μ, the one being close to μ1 and the other to μ2.
The solid black line shows the solution for �(T ) in case W = 0 being
independent on μ; the dashed black and green lines show the solution
for W (T ) for the two values of the curvature μ, correspondingly to μ

close to μ1 (black) and to μ close to μ2 (green). Panel (d) shows the de-
pendence of μ1 (solid lines) and μ2 (dashed lines) on temperature T .
Here, black lines correspond to r = 1.2, blue lines to r = exp(1),
and red lines to r = 5.0. Note that the temperature T is normalized
to TSC and μ is measured in W0. One can see that having fixed μ

in the “coexistence” region one can exit it after a certain value of
temperature, as is clear from panel (d). Thus, there are abrupt jumps
in the temperature dependencies of the order parameters. The curves
for W at � = 0 in panels (b) and (c) for μ close to μ2 result from the
fact that, in this region, W is a multivalued function of μ; a LOFF-type
dependence is found. The values of μ1 and μ2 are, respectively, in
(a) 0.385 and 0.4; in (b) 0.6 and 0.74; in (c) 0.6 and 0.82.

OPs are unstable because this solution corresponds to a saddle
point of the energy functional. The case of small μ which
corresponds to almost equal coupling constants λCDW � λSC

will be analyzed in details below.
In Figs. 4(a)–4(c) we show also the temperature dependence

of coexisting OPs �(T ) and W (T ) which are found from
the self-consistency equations (20) and (21). Following,
we present some analytical formulas describing the phase
diagram.

First, we consider the system at μ = μ1 where the OP
W turns to zero (cf. Fig. 2). The position of this point can be
found for arbitrary large curvature μ in an analytical form.
Indeed, in the limit of small W , one can expand the function
P (W ) � P0[1 + W 2/2P 2

0 ], where P0 = ςSC + iμ. Carrying
out simple calculations in Eqs. (16) and (17), we arrive at the

equations

�

[
M1 − 1

2

(
W

�

)2

I2

]
= 0, (22)

W

[
M2 −

(
μ

�

)2

I1 − 1

2

(
W

�

)2

I3

]
= 0, (23)

where

M1 = (2πT )
∞∑

ω=0

[
(ω2 + �2)−1/2 − (

ω2 + �2
0

)−1/2]
(24)

and

M2 = (2πT )
∞∑

ω=0

[
(ω2 + �2)−1/2 − (

ω2 + W 2
0

)−1/2]
. (25)

The asymptotic values of these functions are

M1 =
{

ln(�0/�), T � �0

7ζ (3)
(
�2

0 − �2
)/

8(πT )2, T � �0(T )
(26)

M2 =
{

ln(W0/�), T � �0

7ζ (3)
(
W 2

0 − �2
)/

8(πT )2, T � �0(T ).
(27)

Thus, at low temperatures M2 = ln W0/� = γ + ln �0/�

with γ ≡ ln(W0/�0). Furthermore, the functions Ii in
Eqs. (22) and (23) are given by

I1 = (2πT )
∞∑

ω=0

1

ςSC
(
ς2

SC + μ2
) , (28)

I2 = (2πT )
∞∑

ω=0

(
ς2

SC − μ2
)

ςSC
(
ς2

SC + μ2
)2 , (29)

I3 = (2πT )
∞∑

ω=0

(
ς2

SC − μ2
)
ςSC(

ς2
SC + μ2

)3 . (30)

From Eqs. (22) and (23), we find the critical value of
curvature μ1, where the OP W turns to zero,

� = �0, (31)

m2
1I1(m1) = M2 − M1, (32)

where m1 ≡ μ1/�0 is the dimensionless curvature.
In the limiting cases of small and large γ we obtain at low

temperatures T � �0 (for definiteness we assume that γ > 0,
i.e., W0 > �0):

μ1 = �0

{√
γ
(
1 + 1

3γ
)
, γ � 1

1
2 exp(γ ), γ � 1.

(33)

At high temperatures T � �0(T ), we find

μ2
1 = W 2

0 (T ) − �2
0(T )

2
, (34)
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where W 2
0 (T ) and �2

0(T ) are determined by the usual BCS
expressions

W 2
0 (T ) = [8π2/7ς (3)]TCDW(TCDW − T ), (35)

�2
0(T ) = [8π2/7ς (3)]TSC(TSC − T ), (36)

where TSC and TCDW are the critical temperatures of the
phase transition into the ordered state with CDW and SC,
respectively, in the limit of zero curvature. In Fig. 4(d),
the temperature dependence μ1(T ) is shown. It is seen that
μ1 increases with T , which is easily obtained analytically
for temperatures close to TSC from Eq. (34) inserting the
dependencies in Eqs. (35) and (36).

Moreover, one can obtain analytical formulas describing
the behavior of the OPs W and � near the point where the
amplitude of the CDW is small, W � �0. These formulas
can be obtained easily from Eqs. (16) and (17). We restrict
ourselves with low temperatures and obtain for m ≡ μ/�0

1
2W̃ 2[I2(m) − I3(m)] = m2I1(m) − m2

1I1(m1), (37)

−ln(�/�0) = 1
2W̃ 2I2(m). (38)

In the vicinity of μ1 we find

1

2
W̃ 2 = I1(m1)

m2 − m2
1

I2(m1) − I3(m1)
, (39)

−ln(�/�0) = 1
2W̃ 2I2(m1), (40)

where W̃ = W/�0. These equations are valid if
(m2 − m2

1) � m2
1. If m1 � 1, then I2(m1) − I3(m1) � 2m2

1
and I1 � I2 = 1. Note that the coefficient I2(m1) is positive
at small m1 and changes sign at m1 � 1.5 (at T � �0). This
means that � decreases with the appearance of the CDW
at m1 < 1.5 and increases at m1 > 1.5. In the latter case,
it exceeds the value �0 in the absence of the CDW [see
Fig. 2(b)]. For small γ and m1 (m2

1 � γ ), we obtain from
Eq. (39)

W̃ 2 = (
m2 − m2

1

)/
m2

1, (41)

�2 − �2
0 = −(1/2)W̃ 2I2(m1). (42)

Next, consider μ = μ2 where � turns to zero. We determine
the second critical value μ2 assuming for concreteness low
temperatures and small values of μ which correspond to small
γ , i.e., to small differences between the coupling constants
λSC and λCDW. To this end, we expand P (0,W,μ) in powers of
μ up to the terms μ4, inclusively. Substituting this expansion
into Eqs. (16) and (17) one obtains

−lnW̃ + m̃2
2

(
1 + 2

3 m̃2
2

) = 0, (43)

ln(W0/W ) = 0, (44)

where m̃2 ≡ μ2/W0. From Eq. (44) we find W = W0. Thus,
as follows from Eq. (43),

m̃2
2 = γ

1 + 2
3 m̃2

2

� γ

(
1 − 2

3
γ

)
. (45)

FIG. 5. Dependence of μ1 and μ2 on r = exp(γ ) = W0/�0. The
short dashed vertical line marks the value γ = 1 where the function
μ1(r) has a maximum. The curvature μ is measured in W0.

Therefore, the difference between the critical values of the
curvature μ2 = m̃2W0 and μ1 = m1�0 is related as

μ2 − μ1

μ1
� 1

3
γ. (46)

We see that for small γ ≡ ln(W0/�0) = (λCDW − λSC)/
λ2

SC, i.e., for small difference between the coupling constants
λCDW and λSC, the region of coexistence of two OPs determined
by Eq. (46) is very narrow and disappears for γ → 0. In Fig. 5,
we plot the dependence of μ1 and μ2 on the ratio between
the interaction constants r = exp(γ ) obtained numerically for
arbitrary γ . However, we will see that the case of coexisting
OPs corresponds to a saddle point of the functional �(�,W ).

Now, we determine the character of the extremal points. To
this end, we have to analyze the second variation of �(�,W )
in Eq. (15):

δ2� = 1

2

[
∂2�

∂�2
(δ�)2 + ∂2�

∂W 2
(δW )2 + 2

∂2�

∂�∂W
(δ�δW )

]

= A(δ�)2 + B(δW )2 + 2C(δ�δW ). (47)

As is known, if at some point (�m,Wm) the quadratic
form is positive definite (negative definite), the functional
�(�,W ) has a minimum (maximum) at this point. If it is
semi-indefinite, this point is a saddle point. The first case
is realized if A is positive (negative) and D ≡ AB − C2 is
positive. The saddle point corresponds to the case D < 0.
Consider different extremal points:

(a) In the case � = W = 0, we obtain

A = F1(0,0,μ) = − 1
2 ln(�0/T ) < 0, (48)

B = F2(0,0,μ) = − 1
2 ln(W0/μ) < 0, (49)

C = 0. (50)

This point corresponds to a maximum of �(�,W ) for
arbitrary μ.

024511-6



DYNAMICS OF ORDER PARAMETERS NEAR STATIONARY . . . PHYSICAL REVIEW B 90, 024511 (2014)

FIG. 6. (Color online) Two situations for μ < μ0 (a) where the
minimum of � at W0 is lower than the one at �0, and μ > μ0

(b) where the situation is reverted. In the case (a) the state with
W = W0 �= 0 and � = 0 is favored, while in case (b) one has
� = �0 �= 0 and W = 0.

(b) In the case � = �0 and W = 0, we have

A = �2
0

2
(2πT )

∞∑
ω=0

1

ς3
sc

> 0, (51)

B = F2(�0,0,μ) = 1
2

(
m2 − m2

1

)
, (52)

C = 0. (53)

This point represents a minimum of the functional � if
μ2 > μ2

1, and a saddle point if μ2 < μ2
1.

(c) In the case � = 0 and W = W0, one gets

A = F1(0,W0,μ) = 1
2

(
m2

2 − m2
)
, (54)

B = 1 > 0, (55)

C = 0. (56)

This point corresponds to a minimum of � if μ2 < μ2
2 and to

a saddle point if μ2 > μ2
2. Thus, in the interval μ1 < μ < μ2

the functional �(�,W ) has two minima located at the points
�S and �W (see Fig. 6).

(d) In the case � = �x and W = Wx , we obtain

A = �2
0

2
(2πT )

∞∑
ω=0

1

ς3
sc

> 0, (57)

B = W 2
x

2�2
x

I3, (58)

C = Wx

2�x

I2. (59)

One can show that the value of D = AB − C2 is small, but
negative. This means that this point is a saddle point.

Thus, we can conclude that if the value of the curvature μ

is less than μ1, the functional � has a minimum in the W state
with the CDW, i.e., point �W = (0,W0), and a saddle point in
the superconducting state, i.e., the point �S = (�0,0). In case
μ > μ2 the minimum corresponds to a purely superconducting
state (�0,0), while the CDW state corresponds to a saddle

FIG. 7. (Color online) The case � = �X and W = WX. Since
the quadratic form corresponding to δ2� is negative definite at
�X = (�X,WX), this point is a saddle point.

point. Outside the interval {μ1,μ2} there are no coexisting
OPs. On the contrary, in the interval μ1 < μ < μ2, the system
has the coexisting OPs (�X,WX). However, this state is not
stable since it corresponds to a saddle point. In this interval
of curvature μ, the system has two minima corresponding
to purely superconducting or charge-density wave states.
Absolute minimum at μ < μ0 corresponds to the CDW state
�W = (0,W0), and it moves to the superconducting state
�S = (�0,0) at μ > μ0. At some value μ0 (μ1 < μ0 < μ2),
the energies of these states are equal to each other. In Figs. 6
and 7, we sketch the discussed situation.

One can easily find the value of μ0. In order to do
this, we calculate the difference δ�(�,W,μ) = �(0,W0,μ)
− �(�0,0) at low temperatures. If this quantity is positive, the
superconducting state (�0,0) has a lower energy than the state
with the CDW (0,W0). One can easily calculate the difference
δ�(�,W,μ) for small μ using the expansion of P (�,W,μ):

P (x,y) � P0
[
1 − 1

2 (x2 + y2) − 1
8x4 − 3

4x2y2 − 5
8y4

]
(60)

with P0 =
√

ς2
SC + W 2, x2 = μ2/P 2

0 , y2 = −x2(1 − z2), and
z2 = W 2/P 2

0 . Substituting this expansion into Eq. (15) and

FIG. 8. (Color online) Qualitative phase diagram for the transi-
tion from the CDW into the SC state. The free energy has a minimum
at �W for μ < μ2 and a saddle point for μ > μ2, whereas at �S

the minimum exists for μ > μ1 and a saddle point for μ < μ1. In
the range μ1 < μ < μ2, the free energy has two minima with one
of them being lower up to a value μ = μ0 and higher after μ0 (cf.
Fig 6). Thus, at μ = μ0, transition takes place from the CDW into the
SC state if increasing μ, or vice versa if decreasing. The transition
is first order since the point �X is unstable being a saddle point
(cf. Fig. 7).
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going over to the integration (2πT )
∑Em

0 (. . .) → ∫ Em

0 (. . .)dω,
we obtain

δ� � 1
2

[
μ2 − (

W 2
0 − �2

0

)]
. (61)

Taking into account that W 2
0 /�2

0 = exp(2γ ) � 1 + 2γ + 2γ 2,
we find that the curvature corresponding to equal energies of
the superconducting state and the state with the charge-density
wave is equal to

μ0 = �0

√
γ (1 + γ ) = (1/2)(μ1 + μ2). (62)

Therefore, the W state with � = 0 has the lowest energy
at μ < μ0, but at μ > μ0 pure superconducting state with
W = 0 becomes more energetically favorable and the system
is switched from one to another via a phase transition of the
first type (see Fig. 8).

IV. DYNAMICS OF THE ORDER PARAMETERS

Here, we study dynamics of the OPs at short times when re-
laxation processes due to inelastic scattering can be neglected.
We follow the approach of Ref. [26] where the fast dynamics
of the superconducting OP � in ordinary superconductors
was studied. This approach was generalized for a nonlinear
regime [30,32,33,66] and applied to the study of dynamics
of superfluid in “cold” atoms [34–36]. Following this line,
Volovik [67] investigated the dynamics of the vacuum energy
and cosmological constants after a sharp kick. In this approach,
it is assumed that the system is in a stationary state with some
distribution function f (ε) which may have an equilibrium
form. At some moment t = 0 the system is suddenly driven
from this state (by a laser pulse, for example), and then the
system evolves in time in the absence of external perturbations.

As noted in Ref. [26], this problem is similar to the
problem of time evolution of the distribution function and self-
consistent electric field E in a collisionless plasma. The latter
problem was solved by Landau [28] who showed that the elec-
tric field E oscillates with the plasma frequency and is damped
even in the absence of collisions due to a specific mechanism
(Landau damping). In the system under consideration, the OPs
� and W play the role of the electric field. As it was shown in
the aforementioned references, in the case of a single OP �,
the asymptotic behavior of � in time is described by a simple
function δ�(t) ∼ δ�0 cos(2�0t)/

√
2�0t . In this case, the os-

cillations damp not exponentially as it takes place in a plasma,
but in a power-law fashion [the Laplace transform δ�(s) has
branching points in contrast to a pole in case of plasma].

In order to obtain the temporal dependence of δ�(t) and
δW (t), we need to find the Keldysh function ĜK(t,t). This
function obeys the equations

i∂t Ĝ
K − Ĥ(t) · ĜK = 0 (63)

and

− i∂t ′Ĝ
K − ĜK · Ĥ(t ′) = 0. (64)

Subtracting these equations from each other and setting t = t ′,
one obtains an equation for ĜK(t,t):

i∂t Ĝ
K − [Ĥ(t),ĜK] = 0, (65)

where Ĥ(t) is given by Eq. (4).

We linearize Eq. (65) with respect to the deviations
ĝ(t) ≡ δĜK(t,t) and make the Laplace transformation

ĝL(s) =
∫ ∞

0
dt ĝ(t) exp(−st). (66)

The equation for ĝL(s) acquires the form

isĝL − [Ĥ0,ĝL] = ĝ(0) + δ�L
[
X̂11,Ĝ

K
0

] + δWL
[
X̂13,Ĝ

K
0

]
,

(67)

where ĝ(0) is the deviation of the Keldysh function δĜK(t,t)
at t = 0; δ�L and δWL are the Laplace transforms of
δ�(t) and δW (t), respectively. Note that the Hamiltonian
Ĥ0 = ξX̂30 + μX̂03 + �0X̂11 + W0X̂13 does not depend on
time.

Now, we find the form of ĜK
0 (t,t) for the equilibrium case

when f̂eq(ε) = 1̂ tanh(εβ). In principle, the initial distribution
function n(ε) may differ from the equilibrium form. In
this case, tanh(εβ) = [1 − 2neq(ε)] should be replaced by
[1 − 2n(ε)]. The matrix ĜK

0 (t,t) can be written in the form

ĜK
0 (t,t) = (2π )−1

∫
dε[ĜR(ε) − ĜA(ε)] tanh(εβ). (68)

We obtain (see Appendix)

ĜK
eq(t,t) = −i

[
N̂ev(ε+) tanh(ε+β)

(ε2+ − ε2−)ε+
− N̂ev(ε−) tanh(ε−β)

(ε2+ − ε2−)ε−

]
(69)

with N̂ev(ε+) to be extracted from Eqs. (A2)–(A10).
A solution for the equation for ĝL(s) [Eq. (67)] can be found

in a general form. However, simple analytical expressions can
be given in some limiting cases. We consider oscillations of δ�

and δW near the points b = (�0,0) and c = (0,W0) which are
stable for μ > μ1 and μ < μ2, respectively. For simplicity, we
assume that the coupling constants λSC and λCDW are almost
equal. This means that μ ∼ μ1,2 ∼ γ ≡ (λCDW − λSC)/λ2

SC is
small. For the case of small μ, we obtain

g11(s) = a1δ� + b1δW + A11, (70)

g13(s) = b3δ� + a3δW + A13, (71)

where the coefficients a and b depend on ξ and s, and are given
by the expressions

ia1 = 4ξE2
CDWD−1χ, ib1 = 4W�D−1χ, (72)

ia3 = 4

[
E2

SC

D − μ2�2
(
D + 8E2

)
2E2D2

]
χ, b3 = b1, (73)

with χ = tanh(Eβ)/E, E2 = E2
SC + W

2
, E2

SC = �2 + ξ 2,
E2

CDW = W 2 + ξ 2, and D = s2 + 4(E2
SC + W 2). The coef-

ficients A11 = g11(0) and A13 = g13(0) denote the initial
perturbations of the superconducting and charge-density wave
order parameters, respectively, and consist of the terms
entering ĝ(0) ≡ ĝin [see Eq. (67)]. We do not analyze here
the exact form of these initial perturbations. All other terms
are negligibly small.
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Consider the temporal behavior of small perturbations
δ�(t) and δW (t) in the vicinity of the point �S = (�0,0).
Substituting Eqs. (70) and (71) into the self-consistency
equations (10) and (11), we obtain

(s2 + 4�2)F(s)δ�(s) = δ�in

sλSC
, (74)

[
−γ + s2F(s) + 2μ2�2

0

〈D + 8E2
s

E2
sD2

χ

〉]
δW (s) = δWin

sλSC
,

(75)

where

F(s) =
〈

1

Dχ

〉
≡

∫ ∞

0
dξ

1

D(s,ξ )
χ. (76)

We see that Eq. (74) has the same form as in the case
of ordinary superconductors [26]. The function δ�(s) has
branching points at s = ±i2�0, and therefore the asymp-
totic time dependence of δ�(t) at t�0 � 1 is given by
δ�(t) ∼ 2δ�in cos(2�0t)/

√
�0t . That is, the deviation δ�(t)

oscillates with frequency ωhigh = 2�0/� and is weakly
damped in the power-law fashion (see Fig. 9).

Consider now the behavior of δW (s) at small s (s � �0).
The integrals over ξ can be easily calculated and we obtain for
δW (s)

[−γ + s2/4�2
0 + μ2/�2

0

]
δW (s) = δWin

sλSC
. (77)

As is seen from this equation, the function δW (s) has
the poles s = ±i2(μ2 − γ�2

0) � ±i2(μ2 − μ2
1) if μ � μ1.

Therefore, given a deviation of the amplitude of the CDW
from zero (the point �S) δW oscillates with a small frequency
ωlow �

√
2(μ2 − μ2

1)/� (see Fig. 9).
The behavior of the deviations of the OPs near the point

�W = (0,W0) is similar with replacement �0 ↔ W0. That
is, the high-frequency damped oscillations are characterized
by the frequency ωhigh = 2W0/�, and the frequency of slow

FIG. 9. (Color online) Near the point �S = (�0,0), the blue line
denotes the fast oscillating and damped superconducting order param-
eter with a high frequency ωhigh = 2�0/�, and the green line denotes
the charge-density wave order parameter oscillating at a much lower
frequency ωlow �

√
2(μ2 − μ2

1)/�. Near the point �W = (0,W0),
the behavior is inverted replacing �0 ↔ W0, accordingly adapt-
ing the frequencies as ωhigh = 2W0/� and ωlow �

√
2(μ2

2 − μ2)/�,
respectively.

oscillations is ωlow �
√

2(μ2
2 − μ2)/�, i.e., these oscillations

may occur in the region of stability of the CDW state.1

V. DISCUSSION

We have studied stationary states and time evolution of
deviations of two OPs, δ� and δW , from their stationary
values in a system with two OPs: the superconducting OP,
�, and the amplitude of the charge-density wave, W . We
have used a simple model which allows for both OPs, i.e.,
a quasi-one-dimensional conductor with the Fermi surface
consisting of two nearly flat sheets. This model mimics, to
some extent, the behavior of materials exhibiting two OPs with
more complicated Fermi surfaces; cuprates with hot spots on
the Fermi surface [52] or Fe-based pnictides [42,43,68–71].
The static properties of systems with superconducting pairing
and charge-density wave, which are similar to the considered
system, were studied in Refs. [27,72,73].

We have used microscopic equations for the Green’s
functions in the Keldysh technique and in the mean field
approximation. The interaction constants λSC and λCDW are
assumed to be different. Only under this assumption and
at nonzero Fermi surface curvature μ, the self-consistency
equations have a solution for coexisting OPs, � and W. This
solution exists for curvature having values in the interval
{μ1,μ2}, but the state described by this solution is unstable
because it corresponds to a saddle point of the energy
functional �(�,W,μ).

The stable states are either the purely superconducting
state (�,0) at μ > μ1, or the nonsuperconducting state
with a nonzero CDW (0,W ) at μ < μ2. In the interval
μ1(T ) < μ < μ2(T ), these states correspond to two minima in
the energy functional �(�,W,μ). The state with the CDW has
a lower energy than the superconducting state at μ < μ0, while
at μ > μ0 the superconducting state becomes energetically
more favorable. Thus, at μ = μ0 the system is switched from
one state to another via the first-order phase transition. A
general analysis of phase transitions in a system with two
OPs on the basis of a phenomenological Ginzburg-Landau
functional has been carried out in Ref. [74].

We have studied the dynamics of the OPs near the states
�S = (�,0) and �W = (0,W ) assuming that the curvature
is small μ ∼ γ�0 � �0, where γ = (λCDW − λSC)/λ2

SC. It
turns out that a perturbation of � in the first case and W

in the second case oscillates with the frequency ω1 = 2�0/�

(correspondingly with the frequency ω2 = 2W0/�) and slowly
decays as ∼√

�0t/� (point �S) and as ∼√
W0t/� (point �W).

“Transverse” perturbations, i.e., perturbations of W near the
point �S and of � near the point �W oscillate with smaller
frequencies, i.e., ∼

√
μ2 − μ2

1 at point �S and ∼
√

μ2
2 − μ2 at

point �W. Note that near the point �S the OP W oscillates
around the zero value, while near the point �W the time-
averaged value of �(t) is zero. At μ > μ2 the point �W, and
at μ < μ1 the point �S become unstable being a saddle point.

1Note that Barlas and Varma [39] also came to conclusions about
two frequencies of oscillations of � and amplitude of the CDW on
the basis of a phenomenological model.
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We believe that a generalization of our model to cuprates
is straightforward, giving a possibility to obtain quantitative
predictions for experiments on fast dynamics of the OPs in
these materials. It would be interesting to carry out Fourier
analysis of the oscillation spectrum in experiments on the study
of fast dynamics in systems with two OPs (cuprates, Fe-based
pnictides, etc.). The presence of the second (lower) frequency
would mean that the second OP (maybe hidden) is present in
the system.

Note also that the considered model is analogous to the
simplest model of Fe-based pnictides [13,63,75,76]. One can
see that Eqs. (8) and (9) and Eqs. (A8) and (A11) of Ref. [13]
are almost identical to Eqs. (16) and (17) and Eqs. (A12)
and (A13) of this paper. The amplitude of the SDW m

there corresponds to the amplitude of the CDW W here.
However, the results are different. The coexistence curves
for the OPs in this paper in Fig. 2 can be obtained from
those of Ref. [13] (Fig. 1) by reflection with respect to the
vertical line crossing the point μ0. In addition, the state with
coexisting OPs � and W is unstable in the present case, while
the state with coexisting OP � and m is stable. This difference
is apparently due to an additional parameter in the case of
Fe-based pnictides where the nesting parameter μ is not a
constant, but depends on the angle ϕ which characterizes the
position of the ellipse of the two-dimensional Fermi surface
with respect to crystallographic axis μ = μ0 + μϕ cos ϕ. If
μϕ = 0, there is no coexistence of the OPs in pnictides similar
to the present case.

Note added in proof. Recently, we became aware of the
papers [77,78], in which a similar problem was studied mainly
numerically using another approach and model.

ACKNOWLEDGMENTS

We appreciate the financial support from the DFG by
the Project EF 11/8-1; K.B.E. gratefully acknowledges the
financial support of the Ministry of Education and Sci-
ence of the Russian Federation in the framework of In-
crease Competitiveness Program of NUST “MISiS” (Grant
No. K2-2014-015); P.A.V. acknowledges the financial support
of Russian Quantum Center (RQC).

APPENDIX: EXPRESSIONS FOR
THE GREEN’S FUNCTION

1. Retarded Green’s function

We make the Fourier transformation of Eq. (7) with respect
to the time difference (t − t ′)

(ε + i0 − Ĥ) · ĜR = 1̂. (A1)

Inverting this equation, we obtain for the matrix ĜR Eq. (8)
with bij (ε,ξ ) = Nij (ε,ξ )/D and numerators Nij :

N00(ε,ξ ) = −ε(ξ 2 + �2 + W 2 − ε2 + μ2), (A2)

N01(ε,ξ ) = 2W�μ, (A3)

N03(ε,ξ ) = μ(ξ 2 − �2 + W 2 + ε2 − μ2), (A4)

N10(ε,ξ ) = 2Wεμ, (A5)

N11(ε,ξ ) = �(ξ 2 + �2 + W 2 − ε2 + μ2), (A6)

N13(ε,ξ ) = W (ξ 2 + �2 + W 2 − ε2 − μ2), (A7)

N22(ε,ξ ) = 2�μξ, (A8)

N30(ε,ξ ) = ξ (ξ 2 + �2 + W 2 − ε2 − μ2), (A9)

N33(ε,ξ ) = 2εμξ. (A10)

The retarded Green’s function ĜR(ε) can be represented as

ĜR
0 (ε) = N̂ (ε)

(ε2 − ε2+)(ε2 − ε2−)

= N̂ (ε)

ε2+ − ε2−

{
1

2ε+

[
1

ε + i0 − ε+
− 1

ε + i0 + ε+

]

− 1

2ε−

[
1

ε + i0 − ε−
− 1

ε + i0 + ε−

]}
, (A11)

where ε2
± = (

√
W 2 + ξ 2 ± μ)2 + �2. One can see that only a

part of N̂ (ε) even in ε, N̂ev(ε), gives a nonzero contribution to
the integral in Eq. (68).

2. Quasiclassical Green’s functions for order parameters

One can easily obtain the quasiclassical expressions for the
matrices ĜK

qcl(ε) = (i/π )
∫

dξ ĜR(ε,ξ ). We write here the for-

mulas for the elements g11 = [ĜK
qcl(ε)]11 and g13 = [ĜK

qcl(ε)]13

that determine the OPs � and W :

g11 = � Re

(
ςSC + iμ

ςSCP

)
, (A12)

g13 = W Re

(
1

P

)
. (A13)

Equations (A12) and (A13) are used in Sec. III.
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