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Quantum limit in a magnetic field for triplet superconductivity in a
quasi-one-dimensional conductor
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We theoretically consider the upper critical magnetic field, perpendicular to a conducting axis, in a triplet quasi-
one-dimensional superconductor. In particular, we demonstrate that, at high magnetic fields, the orbital effects
against superconductivity in a magnetic field are reversible and, therefore, superconductivity can be restored. It is
important that the above mentioned quantum limit can be achieved in a presumably triplet quasi-one-dimensional
superconductor Li0.9Mo6O17 [J.-F. Mercure et al., Phys. Rev. Lett. 108, 187003 (2012).] at laboratory available
pulsed magnetic fields of the order of H = 500–700 T.
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High magnetic field properties of quasi-one-dimensional
(Q1D) conductors and superconductors have been intensively
studied since the discovery of the field-induced spin-density-
wave (FISDW) cascade of phase transitions [1–4]. Note
that the FISDW phenomenon, experimentally discovered in
the (TMTSF)2X compounds [1,2], where X = ClO4 and
PF6, was historically the first one which was successfully
explained in terms of quasiclassical three-dimensional to
two-dimensional (3D → 2D) crossover in high magnetic fields
[3,5–7]. At present, it has been established that different kinds
of quasiclassical dimensional crossovers in a magnetic field
are responsible for such unusual phenomena in layered Q1D
conductors as the field-induced charge-density-wave (FICDW)
phase transitions [3,5,8,9], Danner-Kang-Chaikin oscillations
[3,10], Lebed magic angles [3,11,12], and Lee-Naughton-
Lebed oscillations [3,13–16]. Note that a characteristic prop-
erty of the quasiclassical dimensional crossovers is that the
typical “sizes” of electron trajectories in a magnetic field
are much lager than the interplane or interchain distances in
layered Q1D conductors.

On the other hand, a different type of dimensional crossover
in a magnetic field—the so-called quantum dimensional
crossover [3]—was suggested in Ref. [17] to describe the mag-
netic properties of a superconducting phase. More specifically,
it was shown [17–22] that, at high enough magnetic fields, the
typical “sizes” of electron trajectories become of the order of
interplane distances and superconductivity can be restored as
a pure 2D phase. Note that the above mentioned conclusion is
valid only for some triplet superconducting phases which are
not sensitive to the Pauli paramagnetic effects in a magnetic
field. Due to this reason, Q1D superconductors (TMTSF)2X

were considered for many years to be the best candidates
for this reentrant superconductivity (RS) phenomenon, since
triplet superconducting pairing was suggested [23,24] to exist
in these materials. Recently, it has been shown [22,25,26]
that a d-wave singlet superconducting phase is more likely
to exist in the (TMTSF)2ClO4, therefore, the RS phenomenon
experimentally reveals itself in this compound only as a hidden
RS phase [22]. As for the superconductor (TMTSF)2PF6, the
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existing experimental data about the nature of the supercon-
ducting pairing in this compound are still controversial [3]. In
this difficult situation, it is important that a strong candidate
for triplet superconducting pairing—the Q1D superconductor
Li0.9Mo6O17—has been recently proposed [27–29]. In partic-
ular, it has been shown in Refs. [28,29] that a quantitative
description by a triplet scenario of superconductivity, with
a magnetic field applied along the conducting axis, can
account for the experimental field that exceeds the so-called
Clogston-Chandrasekhar paramagnetic limit [30] by five times
[27].

The goal of our paper is to show theoretically that
the triplet superconductivity scenario can be tested in the
Li0.9Mo6O17 superconductor in ultrahigh magnetic fields of
the order of H � 500–700 T, where triplet superconductivity
is shown to be restored with a transition temperature T ∗

c �
0.75Tc � 1.4–1.7 K. Note that the suggested effect is different
from the RS phenomenon [17–22] since we consider a
magnetic field, which has a nonzero out-off conducting plane
component. Therefore, at high magnetic fields, the 3D →
2D crossover [3,17] does not happen. Instead, a quantum
3D → 1D crossover happens. We call such a crossover the
Q1D → 1D quantum limit (QL) [31]. (Note that below we
apply the Fermi-liquid approach to the Q1D transition-metal
oxide Li0.9Mo6O17. The validity of the Fermi-liquid picture
as well as the Q1D nature of the electron spectrum in this
conductor have been firmly established in Refs. [27–29].)

First, let us demonstrate the suggested QL superconduc-
tivity phenomenon using qualitative arguments. Below, we
consider the electron spectrum of a Q1D conductor in a
tight-binding approximation,

ε(p) = −2tx cos(pxax) − 2ty cos(pyay) − 2tz cos(pzaz), (1)

where tx � ty > tz are overlap integrals of the electron wave
functions along the x, y, and z crystallographic axes, respec-
tively. Since tx � ty,tz, the electron spectrum (1) corresponds
to two slightly deformed pieces of the Fermi surface (FS) and
can be linearized near px � ±pF ,

ε(p) = ±vF (px ∓ pF ) − 2ty cos(pyay) − 2tz cos(pzaz), (2)

(see Fig. 1) where pF and vF are the Fermi momentum and
Fermi velocity, respectively. In a magnetic field, perpendicular

1098-0121/2014/90(2)/024510(5) 024510-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevB.90.024510


A. G. LEBED AND O. SEPPER PHYSICAL REVIEW B 90, 024510 (2014)

FIG. 1. The Q1D Fermi surface consists of two slightly corru-
gated sheets extending in the z direction. The triplet superconducting
order parameter changes its sign on the two sheets of the Q1D Fermi
surface.

to the conducting axis,

H = (0, cos α, sin α)H, A = (0, − sin α, cos α)Hx, (3)

(see Fig. 2) it is possible to write quasiclassical equations of
electron motion,

dp
dt

=
(

e

c

)
[v(p) × H], (4)

in the following way:

d(pzaz)

dt
= ωz(α)t,

d(pyay)

dt
= −ωy(α)t, (5)

FIG. 2. The magnetic field makes an angle α with respect to the
y axis, perpendicular to the conducting chains.

where

ωy(α) = evF ayH sin α/c, ωz(α) = evF azH cos α/c. (6)

Since the electron velocity components can be expressed as
functions of time,

vy(py) = ∂ε(p)/∂py = −2tyay sin[ωy(α)t],
(7)

vz(pz) = ∂ε(p)/∂pz = 2tzaz sin[ωz(α)t],

their trajectories in a real space are described by the following
equations:

y = ly(α)ay cos[ωy(α)t], ly(α) = 2ty/ωy(α),
(8)

z = −lz(α)az cos[ωz(α)t], lz(α) = 2tz/ωz(α).

As directly follows from Eq. (8), electron motion in a real
space in the magnetic field (3) is free along the conducting
axes and is periodic and restricted perpendicular to the axes.
If the magnetic field is strong enough,

H � H ∗ = max

{
2tyc

evF ay sin α
,

2tzc

evF az cos α

}
, (9)

then electron motion in the perpendicular directions becomes
localized on the conducting axes. This fact is directly seen
from Eqs. (8) and (9) since the characteristic “sizes” of the
electron trajectories ly(α)ay and lz(α)az become less than the
corresponding interchain distances ay and az. In this case,
electron motion is “one dimensionalized” and, as we show
below, the Cooper instability restores the superconducting
phase. [Note that the above suggested localization of the Q1D
electrons (2) on conducting chains is completely different
from another possible phenomenon—electron localization in
unreasonable high magnetic fields, which correspond to a flux
quantum per unit cell.]

Below, we study the QL superconductivity phenomenon by
means of quantitative quantum mechanical methods appropri-
ate for the problem under consideration. In a particular, in the
magnetic field (3), we use the Peierls substitution method [5],
based on the Fermi-liquid description of Q1D electrons (2):

px ∓ pF → ∓i(d/dx), pyay → pyay − ωy(α)/vF ,

pzaz → pzaz + ωz(α)/vF . (10)

As a result, the Schrödinger-like equation for electron wave
functions in the mixed (py,pz,x) representation can be written
as {

∓ ivF

d

dx
− 2ty cos

[
pyay − ωy(α)

vF

x

]
− 2tz cos

[
pzaz

+ ωz(α)

vF

x

]}
ψ±

ε (py,pz,x) = δεψ±
ε (py,pz,x), (11)

where the electron energy is counted from the Fermi energy,
δε = ε − εF , εF = pF vF . Note that in Eq. (11) we disregard
electron spin since below we consider such a triplet super-
conducting phase where the Pauli paramagnetic effects do not
reveal themselves. It is important that Eq. (11) can be solved
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analytically:

ψ±
ε (py,pz,x)

= exp

(±iδεx

vF

)
exp

{
± 2ily(α)

(
sin

[
pyay

−ωy(α)

vF

x

]
− sin[pyay]

)}
exp

{
∓ 2ilz(α)

(
sin

[
pzaz

−ωz(α)

vF

x

]
− sin[pzaz]

)}
. (12)

Since electron wave functions are known (12), we can define
the finite temperature Green’s functions by means of the
standard procedure [32]:

g±
iωn

(py,pz; x,x1) =
∫ +∞

−∞
d(δε)[ψ±

ε (py,pz; x)]∗

×ψ±
ε (py,pz; x1)/(iωn − δε), (13)

where ωn is the so-called Matsubara frequency.
In this paper, we consider the following gapless triplet

superconducting order parameter in Li0.9Mo6O17, which, as
shown in Refs. [28,29], well satisfies the experimental data
[27]:

�̂(px,x) = Î sgn(px)�(x), (14)

where Î is a unit matrix in spin space, and sgn(px) changes
the sign of the triplet superconducting order parameter on two
slightly corrugated sheets of the Q1D FS (2) (see Fig. 1).

We use the Gor’kov equations for unconventional super-
conductivity [33,34] to obtain the so-called gap equation for
the superconducting order parameter �(x). As a result, we
derive the following equation:

�(x)

= g

2

∫
|x−x1|>d

2πT dx1

vF sinh
[ 2πT |x−x1|

vF

] �(x1)

×J0

{
4ly(α) sin

[
ωy(α)(x−x1)

2vF

]
sin

[
ωy(α)(x+x1)

2vF

]}

×J0

{
4lz(α) sin

[
ωz(α)(x−x1)

2vF

]
sin

[
ωz(α)(x+x1)

2vF

]}
,

(15)

where g is the electron coupling constant and d is the cutoff
distance.

Note that the QL superconductivity phenomenon is directly
seen from Eq. (15). Indeed, at high enough magnetic fields (9),
the parameters ly(α) and lz(α) become less than 1. Under this
condition, arguments of the Bessel functions in Eq. (15) go to
zero and the superconducting transition temperature goes to
its value in the absence of magnetic field Tc:

lim
H→∞

T ∗
c (H ) → Tc. (16)

It is also important that Eq. (15) predicts that superconductivity
in a triplet Q1D superconductor without impurities can survive
at any magnetic field, including magnetic fields lower than that
in Eq. (9). Nevertheless, we point out that for magnetic fields
less than (9), the superconducting transition temperatures are

very low and an account of a small amount of impurities would
presumably kill the superconducting phase.

For experimental applications of our results, it is important
to calculate how quickly superconductivity tends to Tc(0) in
Eq. (16). For this purpose, we expand each Bessel function in
Eq. (15) to second order with respect to the small parameters
ly(α),lz(α) � 1:

J0{· · · }J0{· · · } � 1

−4l2
y(α) sin2

[
ωy(α)(x − x1)

2vF

]
sin

[
ωy(α)(x + x1)

2vF

]

−4l2
z (α) sin2

[
ωz(α)(x − x1)

2vF

]
sin

[
ωz(α)(x + x1)

2vF

]
.

(17)

In the second approximation with respect to the small
parameters ly(α) and lz(α), it is possible to use in the integral
gap equations (15) and (17) the following trial function:

�(x) = �(y) = const. (18)

In this approximation, we can also average Eqs. (15) and (17)
over the variable x + x1 and, after using the following formula,

1

g
=

∫ +∞

d

2πTcdz

sinh
( 2πTcz

vF

) , (19)

we obtain

T ∗
c (H )=Tc

{
1 − l2

y(α) ln

[
γωy(α)

πTc

]
−l2

z (α) ln

[
γωz(α)

πTc

]}
,

(20)

where γ is the Euler constant. From Eq. (20) it is directly seen
that, at high enough magnetic fields (9), Eq. (16) is valid.

For experimental applications of our results it is important
to estimate the value of T ∗

c (H ) in Eq. (20) for the presumably
triplet [27–29] Q1D superconductor Li0.9Mo6O17 in the
experimental range of magnetic fields. Using known values of
the parameters ay , az, vF , ty , and tz (see Table I in Ref. [28]),
it is possible to find that

ωy(H = 1 T,α = π/2) = 0.76 K,

ωz(H = 1 T,α = 0) = 0.57 K,

ly(H = 1 T,α = π/2) = 116, (21)

lz(H = 1 T,α = 0) = 49.

Our next step is to input these parameters into Eq. (20)
and to plot T ∗

c (α) as a function of α at given H . (We recall
that the superconducting transition temperature in the absence
of a magnetic field is equal to Tc = 2.2 K.) In Fig. 3, we
plot the angular dependence of the QL superconducting phase
transition temperature for two values of a magnetic field, H =
500 and 700 T. As seen from Fig. 3, the maximum values of
T ∗

c (H ) correspond to an angle α∗ � 58◦ in both cases, with the
highest T ∗

c (H = 700 T) � 1.7 K. Note that region of validity
of Eq. (20) corresponds to the condition |T ∗

c (H ) − Tc| � Tc,
therefore, we conclude that Fig. 3 correctly represents the
calculated transition temperatures near its maxima for both
values of the magnetic field. It is important that magnetic fields
of the order of H = 500–700 T are currently experimentally
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FIG. 3. (Color online) The QL superconducting transition tem-
perature dependence of the angle α for magnetic fields of 500 and
700 T. Both maxima occur at an angle of α ≈ 58◦. The maximum
temperature at 700 T is approximately 1.7 K.

available as destructive pulsed magnetic fields. Note that there
exist several serious difficulties to investigate the low tempera-
ture superconducting phases in a pulsed magnetic field. One of
them is that the characteristic time of the pulse has to be longer
than the superconducting relaxation time. Another obvious
difficulty is that it is necessary to maintain low temperature
in a sample during the pulse. All these and other related
problems have been successfully solved in experimental work
[35], where the superconducting phase in an optimally doped
yttrium barium copper oxide (YBCO) sample is studied in
magnetic fields up to H = 400 T and temperatures down
to T = 1.6 K by a contactless radio frequency transmission
technique.

In the paper, we have demonstrated that superconductivity
can be restored in a triplet Q1D superconductor in a magnetic
field, perpendicular to its conducting axis, as the quantum
limit (QL) superconducting phase. It happens if a magnetic
field is high enough [see Eq. (9)] to localize electrons on
conducting chains of a Q1D conductor. Note that such “one
dimensionalization” of a Q1D electron spectrum promotes also
the FISDW instability [5–7] and non-Fermi-liquid properties
[3]. Therefore, we suggest that superconducting instability is
a leading one and that electron wave function delocalizations
between adjacent chains are high enough for the Fermi-liquid
picture to survive. Note that the FICDW instability [8,9] is not
expected in high magnetic fields since the Pauli paramagnetic
effects significantly decrease the FICDW transition tempera-
ture [36]. We suggest to carry out the corresponding experi-
ment on the presumably triplet superconductor Li0.9Mo6O17

in feasibly available pulsed magnetic fields of the order of
H = 500–700 T and temperatures less than T ∗

c � 1.4–1.7 K.
We have also determined the most convenient geometry of
the experiment which, as shown, corresponds to an inclination
angle of α = 58◦ [see Eq. (3) and Fig. 2]. It is important that
the QL superconductivity phenomenon is not very sensitive
to possible deviations in geometry from the most convenient
one, as seen from Eq. (20) and Fig. 3. If the result of the
suggested experiment is positive, it will confirm the triplet
superconductivity scenario [27–29] in the above mentioned
compound and establish the survival of superconductivity in
ultrahigh magnetic fields.

One of us (A.G.L.) is thankful to N. N. Bagmet and N. E.
Hussey for useful discussions. This work was supported by the
NSF under Grant No. DMR-1104512.
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D. Jérome, J. B. Christensen, and K. Bechgaard, Phys. Rev. Lett.
98, 147002 (2007).

[26] C. Bourbonnais and A. Sedeki, Phys. Rev. B 80, 085105
(2009).

024510-4

http://dx.doi.org/10.1103/PhysRevLett.51.2333
http://dx.doi.org/10.1103/PhysRevLett.51.2333
http://dx.doi.org/10.1103/PhysRevLett.51.2333
http://dx.doi.org/10.1103/PhysRevLett.51.2333
http://dx.doi.org/10.1051/jphyslet:019830044023095300
http://dx.doi.org/10.1051/jphyslet:019830044023095300
http://dx.doi.org/10.1051/jphyslet:019830044023095300
http://dx.doi.org/10.1051/jphyslet:019830044023095300
http://dx.doi.org/10.1103/PhysRevB.53.1240
http://dx.doi.org/10.1103/PhysRevB.53.1240
http://dx.doi.org/10.1103/PhysRevB.53.1240
http://dx.doi.org/10.1103/PhysRevB.53.1240
http://dx.doi.org/10.1103/PhysRevLett.103.046401
http://dx.doi.org/10.1103/PhysRevLett.103.046401
http://dx.doi.org/10.1103/PhysRevLett.103.046401
http://dx.doi.org/10.1103/PhysRevLett.103.046401
http://dx.doi.org/10.1103/PhysRevLett.72.3714
http://dx.doi.org/10.1103/PhysRevLett.72.3714
http://dx.doi.org/10.1103/PhysRevLett.72.3714
http://dx.doi.org/10.1103/PhysRevLett.72.3714
http://dx.doi.org/10.1103/PhysRevLett.63.1315
http://dx.doi.org/10.1103/PhysRevLett.63.1315
http://dx.doi.org/10.1103/PhysRevLett.63.1315
http://dx.doi.org/10.1103/PhysRevLett.63.1315
http://dx.doi.org/10.1016/S0379-6779(96)04440-2
http://dx.doi.org/10.1016/S0379-6779(96)04440-2
http://dx.doi.org/10.1016/S0379-6779(96)04440-2
http://dx.doi.org/10.1016/S0379-6779(96)04440-2
http://dx.doi.org/10.1143/JPSJ.66.2248
http://dx.doi.org/10.1143/JPSJ.66.2248
http://dx.doi.org/10.1143/JPSJ.66.2248
http://dx.doi.org/10.1143/JPSJ.66.2248
http://dx.doi.org/10.1103/PhysRevB.57.7423
http://dx.doi.org/10.1103/PhysRevB.57.7423
http://dx.doi.org/10.1103/PhysRevB.57.7423
http://dx.doi.org/10.1103/PhysRevB.57.7423
http://dx.doi.org/10.1103/PhysRevLett.91.187003
http://dx.doi.org/10.1103/PhysRevLett.91.187003
http://dx.doi.org/10.1103/PhysRevLett.91.187003
http://dx.doi.org/10.1103/PhysRevLett.91.187003
http://dx.doi.org/10.1103/PhysRevLett.70.2613
http://dx.doi.org/10.1103/PhysRevLett.70.2613
http://dx.doi.org/10.1103/PhysRevLett.70.2613
http://dx.doi.org/10.1103/PhysRevLett.70.2613
http://dx.doi.org/10.1103/PhysRevLett.78.3555
http://dx.doi.org/10.1103/PhysRevLett.78.3555
http://dx.doi.org/10.1103/PhysRevLett.78.3555
http://dx.doi.org/10.1103/PhysRevLett.78.3555
http://dx.doi.org/10.1143/JPSJ.69.3371
http://dx.doi.org/10.1143/JPSJ.69.3371
http://dx.doi.org/10.1143/JPSJ.69.3371
http://dx.doi.org/10.1143/JPSJ.69.3371
http://dx.doi.org/10.1209/0295-5075/82/47009
http://dx.doi.org/10.1209/0295-5075/82/47009
http://dx.doi.org/10.1209/0295-5075/82/47009
http://dx.doi.org/10.1209/0295-5075/82/47009
http://dx.doi.org/10.1103/PhysRevLett.107.087004
http://dx.doi.org/10.1103/PhysRevLett.107.087004
http://dx.doi.org/10.1103/PhysRevLett.107.087004
http://dx.doi.org/10.1103/PhysRevLett.107.087004
http://dx.doi.org/10.1016/j.physb.2012.01.034
http://dx.doi.org/10.1016/j.physb.2012.01.034
http://dx.doi.org/10.1016/j.physb.2012.01.034
http://dx.doi.org/10.1016/j.physb.2012.01.034
http://dx.doi.org/10.1134/S0021364011170103
http://dx.doi.org/10.1134/S0021364011170103
http://dx.doi.org/10.1134/S0021364011170103
http://dx.doi.org/10.1134/S0021364011170103
http://dx.doi.org/10.1007/BF00682484
http://dx.doi.org/10.1007/BF00682484
http://dx.doi.org/10.1007/BF00682484
http://dx.doi.org/10.1007/BF00682484
http://dx.doi.org/10.1103/PhysRevLett.88.017004
http://dx.doi.org/10.1103/PhysRevLett.88.017004
http://dx.doi.org/10.1103/PhysRevLett.88.017004
http://dx.doi.org/10.1103/PhysRevLett.88.017004
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevLett.98.147002
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105
http://dx.doi.org/10.1103/PhysRevB.80.085105


QUANTUM LIMIT IN A MAGNETIC FIELD FOR TRIPLET . . . PHYSICAL REVIEW B 90, 024510 (2014)

[27] J.-F. Mercure, A. F. Bangura, X. Xu, N. Wakeham,
A. Carrington, P. Walmsley, M. Greenblatt, and N. E. Hussey,
Phys. Rev. Lett. 108, 187003 (2012).

[28] A. G. Lebed and O. Sepper, Phys. Rev. B 87, 100511(R) (2013).
[29] O. Sepper and A. G. Lebed, Phys. Rev. B 88, 094520 (2013).
[30] A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962); B. S.

Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).
[31] We also stress that our suggested Q1D → 1D QL is qualitatively

different from 3D → 1D QL for isotropic 3D electrons, as
suggested in M. Razolt and Z. Tesanovic, Rev. Mod. Phys. 64,
709 (1992).

[32] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Dover,
New York, 1975).

[33] M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).
[34] A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).
[35] T. Sekitani, N. Miura, S. Ikeda, Y. H. Matsuda, and Y. Shiohara,

Physica B 346–347, 319 (2004).
[36] X. Xu, A. F. Bangura, J. G. Analytis, J. D. Fletcher,

M. M. J. French, N. Shannon, J. He, S. Zhang, D. Mandrus,
R. Jin, and N. E. Hussey, Phys. Rev. Lett. 102, 206602
(2009).

024510-5

http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevLett.108.187003
http://dx.doi.org/10.1103/PhysRevB.87.100511
http://dx.doi.org/10.1103/PhysRevB.87.100511
http://dx.doi.org/10.1103/PhysRevB.87.100511
http://dx.doi.org/10.1103/PhysRevB.87.100511
http://dx.doi.org/10.1103/PhysRevB.88.094520
http://dx.doi.org/10.1103/PhysRevB.88.094520
http://dx.doi.org/10.1103/PhysRevB.88.094520
http://dx.doi.org/10.1103/PhysRevB.88.094520
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1103/PhysRevLett.9.266
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1063/1.1777362
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1103/RevModPhys.64.709
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/RevModPhys.63.239
http://dx.doi.org/10.1103/PhysRevLett.80.2697
http://dx.doi.org/10.1103/PhysRevLett.80.2697
http://dx.doi.org/10.1103/PhysRevLett.80.2697
http://dx.doi.org/10.1103/PhysRevLett.80.2697
http://dx.doi.org/10.1016/j.physb.2004.01.098
http://dx.doi.org/10.1016/j.physb.2004.01.098
http://dx.doi.org/10.1016/j.physb.2004.01.098
http://dx.doi.org/10.1016/j.physb.2004.01.098
http://dx.doi.org/10.1103/PhysRevLett.102.206602
http://dx.doi.org/10.1103/PhysRevLett.102.206602
http://dx.doi.org/10.1103/PhysRevLett.102.206602
http://dx.doi.org/10.1103/PhysRevLett.102.206602



