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Crystal-field phenomena in hcp H2 and D2 at high pressures
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Crystal-field effects in hexagonal closed-packed molecular H2 and D2 are examined over a broad range of
pressures. The lattice distortion parameter (the deviation of the c/a ratio from the ideal value 1.633), orientational
order parameter, and crystal-field parameter in hexagonal close-packed (hcp) structures of p-H2, o-D2, and n-H2

are calculated using the semiempirical lattice-dynamic approach. It is shown that the lattice distortion in the
J -even species is two order of magnitude smaller compared with that found in n-H2 and n-D2. The difference is
due to splitting of the J -odd rotational levels in the J -even/J -odd mixtures.
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I. INTRODUCTION

At zero pressure and temperature the molecules in J -even
(p-H2, o-D2) and J -all (HD) solid hydrogens are in the ground
state J = 0. Admixtures of higher rotational states into the
ground-state wave function are very small and the molecules
are virtually spherical. Rigid spheres crystallize into the face
center cubic (fcc) or hexagonal close-packed (hcp) structures.
As compared with fcc, the hcp structure has an additional
degree of freedom associated with the axial c/a ratio. The
lattice of close-packed hard spheres has c/a = √

8/3 ≈ 1.633
(ideal hcp structure). The quantity δ = c/a − √

8/3, the lattice
distortion parameter, describes the deviation of the axial ratio
from the ideal value. In the case of δ < 0, this distortion
involves a relative expansion within the close-packed planes,
or contraction along the c-axis direction; and vice versa, for
δ > 0 the lattice is expanded along the c axis and contracted
within the close-packed planes.

Solid H2 and D2 crystallize in the hcp structure (phase I)
over a broad range of pressures and temperatures [1]. Cal-
culations with simple isotropic pair potentials have shown
that the ideal hcp structure at zero pressure and temperature
does not minimize the lattice energy [2–4], and the minimum
energy hcp structure has a small but nonzero lattice distortion.
Semiempirical and first-principles calculations performed for
solid helium and other hcp rare-gas solids indicate that the
pressure dependencies of the lattice distortion parameter
δ for the many-body (two- plus three-body) and for the
pair intermolecular potentials are qualitatively different [5,6].
Three-body forces flatten the structure (δ < 0) while the pair
forces at large compressions tend to elongate it (δ > 0).
Thus, the lattice distortion parameter is sensitive to many-
body components of effective intermolecular potentials used
to describe the properties of the system at high pressures
[7]. Furthermore, the evolution of intermolecular interactions
under pressure within phase I is important in view of both the
high pressure phases and changes in electronic structure that
are now evident at megabar pressures (e.g., phase III above
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150 GPa at low temperature [8] and phase IV above 200 GPa
at 300 K [9]).

For most hcp elemental solids except helium, hydrogen,
and high-pressure Ar, Kr, and Xe the behavior of δ with
pressure and temperature is well established from both theory
and experiment. For closed shell nonmetallic systems typical
values are of the order of 10−2 [10]. For solid helium δ is 1–2
orders of magnitude smaller [5,6]. The first measurements of
the c/a ratio in solid hydrogens were performed by Keesom
et al. [11], who found that at zero pressure the hcp lattice
of p-H2 is close to the ideal one. A x-ray zero-pressure
study by Krupskii et al. [12] confirmed this result (c/a =
1.633 ± 0.001) and extended it to the o-D2. In fact, the only
structural study of p-H2 and o-D2 at elevated pressures up to
2.5 GPa and low temperatures were made by Ishmaev et al.
using the neutron diffraction method [13,14]. It was found that
the ratio c/a is practically constant and is slightly lower than
the ideal hcp value (1.631 ± 0.002).

There have been numerous structural studies of n-H2 and n-
D2 [15–21] (see also reviews [1,22]). Using then newly devel-
oped synchrotron x-ray diffraction techniques Mao et al. [17]
and Hu et al. [18] reported a linear decline in c/a in n-H2 up
to 42 GPa with d(c/a)/dP = −0.000441 GPa−1. Subsequent
synchrotron single-crystal x-ray diffraction measurements of
n-H2 [23–25] and n-D2 [23] up to megabar pressures at
room temperature revealed that the c/a ratio decreases with
increasing pressure nearly linearly up to 180 GPa. However,
solid hydrogens can support residual nonhydrostatic stresses
as a function of compression at these temperatures, and the
small uniaxial stresses can affect the measured c/a ratio. No
isotope effect on the pressure (stress) dependence of the c/a

ratio is evident from these studies.
There have been many calculations of the pressure behavior

of crystal-field effects of dense hydrogen and deuterium
using different theoretical approaches. Previously we reported
detailed calculations of the pressure dependence of the
intermolecular interactions for phase I for comparison with the
low-temperature Raman spectrum [26]. Hartree-Fock [27,28],
local density approximation [29], path-integral Monte Carlo
[30], and ab initio molecular dynamics [31] have also been
performed. In these theoretical approaches the rotation-lattice
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coupling gives rise to positive δ which is in contradiction with
experiment. Kitamura et al. [32] performed first-principles
path-integral molecular dynamics (FP-PIMD) simulations at
three P -T points corresponding to phases I, II, and III at the
phase diagram and obtained the c/a ratio that decreases with
pressure.

Here we develop a self-consistent approach based on a
many-body semiempirical intermolecular potential proposed
originally in Ref. [33]. We show that the pressure behavior
of the c/a ratio in solid p-H2 and o-D2 in phase I is
determined mainly by the translational degrees of freedom and
is comparable in magnitude with that for rare-gas solids. In the
case of n-H2 and n-D2 we show that the behavior of the axial
ratio found in Refs. [23–25] is due to the presence of the J -odd
component in normal ortho-para mixtures of solid hydrogens
[34]. A detailed study of the lower pressure behavior, including
the results for HD, will be presented elsewhere [35].

II. CRYSTAL FIELD AND LATTICE DISTORTION
IN p-H2 AND o-D2

The Hamiltonian of the problem can be written in the form
[22,26,33]

H = His + Hrot + Hint, (1)

where His is the contribution of the isotropic part of the
intermolecular potential, Hrot is the rotational part of the
Hamiltonian, and Hint describes the lattice-rotation coupling.

The isotropic part of the ground-state energy Eis can be
written as a sum of contributions from the isotropic part of the
static two- and many-body energies E

pair
is and Em.b.

is , and the
zero-point vibrations Ezpv:

Eis = Epair
is + Em.b.

is + Ezpv. (2)

In the mean-field approximation (MFA), the Hamiltonian
of the system of quantum linear rotors has the form [22,33]

Hrot =
∑
f

L2
f − U0

√
4π/5 η

∑
f

Y20(ϑf ) + 1

2
NU0η

2, (3)

where Lf is the angular momentum operator, YLM (ϑf ,ϕf ) are
spherical harmonics, and the angles ϑf and ϕf specify the
orientational axis of the molecule at the lattice site f . All
the energy quantities are expressed in units of the rotational
constant Brot.

In distinction to phases II and III, phase I has no orienta-
tional structure which would originate from the coupling term
in the anisotropic interaction between the hydrogen molecules.
A certain degree of orientational order in phase I, as will be
shown below, originates from the crystal-field interaction. The
orientational order parameter is defined as

η =
√

4π/5〈Y20(ϑf ,ϕf )〉, (4)

where 〈· · · 〉 means averaging with the Hamiltonian Hrot

[Eq. (3)], and N is the number of sites.
The molecular-field constant is defined by

U0 =
∑
ff ′

∑
αβγ δ

V
αβγ δ

ff ′ Q
αβ

f Q
γδ

f ′ , (5)

where V
αβγ δ

ff ′ is the interaction matrix defined by the parameters

of the intermolecular potential, Q
αβ

f = 
α
f 


β

f − 1
3δαβ , and �

is the unit vector specifying the equilibrium orientation of
the molecule at site f . There is a near linear correspondence
between dimensionless pressure in units of U0/Brot and
pressure in GPa. For the Pca21 structure we have the following
approximate relations for rescaling the pressure: P in U0/Brot

units corresponds to 0.5P for H2, 0.75P for HD, and 1.25P

for D2 [33].
We used a simple many-body potential based on the sum

of the pair of the well-tested SG potential [36] (discarding the
R−9 term) and two three-body terms: the long-range Axilrod-
Teller dispersive interaction and the short-range three-body
exchange interaction in the Slater-Kirkwood form [37,38]. It
has been successfully used for the description of the equation
of state, the pressure dependence of the Raman-active E2g

mode [39], and the sound velocities in solid hydrogen under
pressure [40]. The explicit form and parameters of the potential
used in this work are given in Ref. [41]. The contribution of
the zero-point vibrations Ezpv was taken into account in the
Einstein approximation.

In the nonrigid lattice there is a strong lattice-rotation
coupling associated with the crystal field. The origin of
this coupling can be explained in the following way. With
increasing pressure the anisotropic interaction increases and
admixtures of J �= 0 rotational states into the ground-state
wave function become more and more appreciable. With the
nonzero admixture the molecules acquire anisotropy. The
anisotropic molecules tend to be packed into a distorted
lattice. The lattice distortion δ is given by a competition of
the anisotropic interactions (which favor strong distortion) and
the isotropic interactions (which favor a near-ideal hcp lattice).

The lattice-rotation coupling is described by the the
Hamiltonian

Hint = −ε2c

√
4π/5Y20, (6)

where ε2c is the crystal-field parameter [42] which is linear
with respect to δ:

ε2c = B̃δ, B̃ = −
√

6

(
B + 1

2
R

dB

dR

)
, (7)

where B(R) is the radial function of the single-molecular
term in the anisotropic intermolecular potential [42]. Thus,
the state of the lattice can be described by two coupled order
parameters, η(V,T ) and δ(V,T ), which can be determined
by the minimization of the free energy with respect to
these parameters. In the calculations we restrict ourselves to
T = 0 K, so we will minimize the total ground-state energy,
in terms of the translational and rotational subsystems, i.e.,
Etot

0 = Etr
0 + Erot

0 .
The translational part of the ground-state energy Etr

0 does
not depend on η and the respective minimum conditions take
the form

∂Erot
0 /∂ η = 0, (8)

∂
(
Etr

0 + Erot
0

)
/∂ δ = 0. (9)

Thus, the complete minimization can be carried out in two
stages, first, with the help of Eq. (8) we find η as a function of
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U0 and δ and then by minimizing the total ground-state energy
with respect to δ [Eq. (9)] we find δ and η as a function of U0

(volume V ).
Using successive approximation methods we can find

solutions of Eqs. (8) and (9) in any necessary approxima-
tion [33,41]. Up to third order in the crystal-field parameter, the
orientational order parameter and orientational ground-state
energy have the following form:

η = κ
ε2c

Brot
+ 152

14
κ3

(
ε2c

Brot

)2

, (10)

Erot
0

Brot
= −1

2
κ

(
ε2c

Brot

)2

− 75

14
κ3

(
ε2c

Brot

)3

, (11)

where

κ = 1

15 − U0/Brot
. (12)

The expansion parameter ε2c [Eq. (7)] is negative for all
pressures, so the expansions Eqs. (10) and (11) are oscillating
and converge if the terms of the expansions are decreasing.
Due to the presence of a singular factor κ [Eq. (12)] in the
expansions Eqs. (10) and (11), the validity of this analytical
solution is limited by the condition U0/Brot < 15, which
corresponds to pressure of ∼30 GPa for p-H2, and 20 and
12 GPa for HD and o-D2, respectively. To extend the solution
into the higher pressure region a numerical approach should
be used.

As can be seen from Eqs. (10) and (11), at low pressures
the rotational part of the ground-state energy contains no
linear term in δ. The same is also true at high pressures. The
admixture of higher rotational states to the rotational wave
function is proportional to the lattice distortion:

�0 = Y00 + c2δY20 + · · · . (13)

The ground-state energy

Erot
0 = 〈�0|Hrot|�0〉 = 6c2

2δ
2 − (U0η

2/2 + ε2cη). (14)

Since η ∼ δ and ε2c ∼ δ, Erot
0 ∼ δ2 at all pressures.

Let us consider the contribution of the translational degrees
of freedom. Up to terms of the second order in δ the
translational part of the ground-state energy is

Etr
0 = E0(0) + btr

1 δ + btr
2 δ2, (15)

where E0 is the ground-state energy of the ideal lattice
and btr

i (i = 1,2) are the coefficients which depend on the
parameters of the intermolecular potential and molar volume.
The total ground-state energy is

Etot
0 = E0(0) + btr

1 δ + btot
2 δ2, (16)

where btot
2 = btr

2 + brot
2 . Minimizing E0(δ) over δ, we obtain

δ = − btr
1 /

(
2 btot

2

)
. (17)

At lower pressures the contribution of the rotational
degrees of freedom to b2 as follows from Eq. (11) is brot

2 =
−κ(ε2

2c/2Brot). It is negative and increases in the absolute
value with pressure. The total btot

2 is a sum of the respective
contributions

btot
2 = btr

2 + brot
2 . (18)
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FIG. 1. (Color online) Lattice distortion parameter δ and orien-
tational order parameter η in p-H2 and o-D2 as functions of molar
volume. Lattice distortion parameter of solid He [5] is shown for
comparison (dashed line)

Figure 1 presents the lattice distortion parameter δ and
orientational order parameter η for p-H2, and o-D2 as functions
of molar volume. The calculations were performed for the
molar volumes V < 18 cm3/mol (P > 0.5 GPa) outside of the
region where quantum crystal effects are decisive and extended
up to the point of the I–II transition.

In phase I both η and δ are small and negative. The negative
δ means that the lattice is slightly flattened compared with the
ideal one; the negative η means that the molecules precess
around the c axis with the molecular axis inclined to the c axis
by the angle slightly over 〈ϑ0〉 = cos−1(1/

√
3) ≈ 54◦44′. With

increasing pressure, η decreases monotonically (the limiting
value η = −1/2 means that the molecules classically precess
around the c axis with the precession angle ϑ = π/2). At large
molar volumes (∼18 cm3/mol) the deviation of the molecular
ground state from the pure spherical one is very small. This
deviation is characterized by the orientational order parameter
η = −3.3 × 10−4 for p-H2 and η = −1 × 10−5 for o-D2. The
lattice is very close to ideal. While η decreases monotonically
on compression, δ changes with pressure nonmonotonically
(Fig. 1). This nonmonotonic behavior is connected with the
mutual changes of the coefficients btr

1 , btr
2 , and brot

2 in Eq. (17)
with pressure.

Significant changes are seen between V = 3.1 cm3/mol
(80 GPa) and 2.93 cm3/mol (92.2 GPa) for H2 and between
V = 4.05 cm3/mol (37.45 GPa) and 4.2 cm3/mol (33.8 GPa)
for D2. This corresponds to the region of the transition to
phase II (experimentally, 110 GPa in p-H2 [43], 28 GPa in
o-D2 [44,45]).

Before comparing the theoretical and experimental pressure
dependencies of the lattice distortion parameter for the
hydrogens isotopes, we compare the theoretical results for
solid helium [5] obtained for the semiempirical many-body
potential, similar to that used for the hydrogens. Such a
comparison is useful because these systems belong to the same
class of solids, simple molecular crystals characterized by van
der Waals interactions (at low densities). The most significant
difference is the fact that for solid hydrogen in addition to
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FIG. 2. Crystal-field parameter ε2c p-H2 and o-D2 (inset) as
functions of molar volume.

the isotropic forces there is a small contribution from the
anisotropic interactions. It is this part of the intermolecular
potential that is responsible for the increasing difference
between the curves for hydrogen and helium as the I-II
transition region is approached.

Given the estimates of the pressure dependence of δ,
we can constrain the pressure dependence of the second-
harmonic crystal-field parameter ε2c (Fig. 2). This parameter
together with the fourth-harmonic crystal-field parameter ε4c

determines the splitting of the purely rotational band S0(0) in
p-H2 and o-D2 and splitting of the rotational levels of impurity
J = 1 molecules in J = 0 solids [42]. In the absence of
direct experimental data, some quantitative conclusions on the
pressure behavior of the c/a ratio in the J = 0 solid hydrogens
were obtained using effects related to the deviation of the axial
ratio from the ideal value

√
8/3.

In solid hcp hydrogens, five of ten J = 0 → 2 roton modes
are Raman active. The fivefold degeneracy of these roton
modes is partially lifted by crystal-field interactions [46]

Vc(�) = ε2c

√
4π

5
Y20(�) + ε4c

√
4π

9
Y40(�), (19)

where � is the orientation of a central molecule relative
to a frame with the z axis along the c axis of the crystal.
As a result, the rotons are observed in the Raman spectrum
as three spectral lines with the lowest energy line of E1g

symmetry and corresponding to mJ = ±1, the middle one
of E2g symmetry corresponding to mJ = ±2, and the upper
line of A1g symmetry corresponding to mJ = 0 with energies
E(2,0), E(2,±2), and E(2,±1), respectively. Taking into
account the quadrupolar contribution with the characteristic
constant ε02

4 [26,46,47] for the two Raman splittings �1 =
E(2,0) − E(2,±2) and �2 = E(2,±2) − E(2,±1) we have

�1 = 4
7ε2c + 5

21ε4c + 35
6 ε02

4 ,
(20)

�2 = − 3
7ε2c + 5

21ε4c + 35
6 ε02

4 ,

�1 − �2 = ε2c. (21)
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/Δ
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p-H2

FIG. 3. (Color online) Ratio �1/�2 of the roton Raman splittings
as a function of pressure. Experiment: red squares [47] and blue
diamonds [26]. Solid straight line: Corresponds to equidistant
splitting (�1/�2 = 1).

As follows from Eqs. (20) both fourth-harmonic components
would produce the equidistant splittings �1 = �2, whereas
the second-harmonic crystal field would result in a highly
nonequidistant splittings |�1|/|�2| = 4/3.

We now compare these theoretical results with experiment.
Wijngaard and Silvera [48], Wijngaard [47], and Goncharov
et al. [26] reported Raman studies of roton spectra p-H2 at
low temperatures at pressures up to the I–II phase transition
from which we estimated the crystal-field parameter ε2c and
lattice distortion parameter δ. From these experiments it is
seen that at 20 GPa �1/�2 � 2. There are two effects which
lead to such strong deviation from the equidistance: First, the
phonon-roton coupling of the E2g phonon and the roton line
E(2,±2) [45], and second, the anharmonic shifts of the roton
lines E(2,0), E(2,±2), and E(2,±1). The lowest frequency
line E(2,±1) has the strongest anharmonic shift. Both effects
markedly decrease with pressure. As a result, with increasing
pressure the ratio �1/�2 decreases and approaches unity
(Fig. 3). The equidistance may be considered as a signature
of a smallness of both phonon-roton coupling and anharmonic
effects if Eqs. (20) and (21) hold. Applying Eq. (21) to the
experimental splitting of the roton triplet band S0(0) [26,47]
it was estimated [26,41] that |ε2c| ≈ 1 cm−1 [Fig. 4(a)]; thus
|δ|≈10−3–10−4 [Fig. 4(b)] is in accord with our theoretical
results (Figs. 1 and 2).

The characteristics of the rotational motion of molecules
in p-H2 and o-D2 can be compared with those obtained
with the results of density functional theory (DFT) with
a path-integral molecular dynamics (PIMD) [49]. For the
latter, the authors used the orientational order parameter
η = [N−1 ∑N

i

√
4π/5 Y20(�i · ui)]2, where �i is a unit vector

specifying the equilibrium orientation of the molecule at site
i, and ui is a site-specific unit vector which defines the
orientational structure), which excludes negative values of
the order parameter. Nonetheless, the pressure evolutions of
the order parameters in the both approaches are similar.

III. LATTICE DISTORTION IN n-H2

We now turn to n-H2. For a single J = 1 molecule in the
lattice of J = 0 molecules there is an additional contribution
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FIG. 4. (Color online) (a) Crystal-field parameter ε2c and
(b) lattice distortion parameter δ for p-H2 as functions of molar
volume. In (a) and (b) the solid lines are the theoretical results from
this work. The experimental data are from Refs. [47] (red squares)
and [26] (blue diamonds.) Error bars correspond to an uncertainty in
the S0(0) roton lines of ±1 cm−1.

to the ground-state energy arising from the polarization of the
surrounding J = 0 molecules by the the electric quadrupole
field of the J = 1 molecule. The polarization energy due to
the interaction of quadrupole moments of the J = 1 molecule
with the induced dipole moments of the surrounding nearest
neighboring J = 0 molecules is equal to

ε1 = −18αQ2V −8/3, (22)

where α is the polarizability of the J = 0 molecules and Q is
the quadrupole moment of the J = 1 molecule [42].

If the crystal shows a homogeneous deviation from the ideal
hcp structure specified by the lattice distortion parameter δ, the
polarization energy contains a crystal-field term [42]

Vc = ε2c

√
4π

5
Y20(�), (23)

where � specifies the orientation of the J = 1 molecule with

ε2c = − 24
7 ε1δ. (24)

The triplet J = 1 level is split in the crystal-field Vc, and
this splitting is given by

�c = E(±1) − E(0) = 3
5 |ε2c|, (25)

where E(M) is the energy of the state J = 1, Jz = M with
z direction parallel to the c axis of the crystal. The positive
sign of �c implies that Jz = 0 is the ground state of the
triplet. Due to this splitting the ground-state energy is brought
down by 2|ε2c|/5. The gain in the anisotropic energy due to
polarization in the J = 0/J = 1 mixture is linear in δ, in
contrast to the contribution quadratic in δ in J -even solids. At
the same time, this distortion introduces an additional positive
contribution to the ground-state energy from the isotropic
part of the intermolecular interaction. This contribution is
quadratic in the lattice distortion parameter δ [41]. The loss and
gain in the isotropic and anisotropic parts of the ground-state

energy, respectively, determine the lattice distortion at a given
molar volume. One cannot obtain a reliable value of δ from
Eqs. (22)–(25) because of other contributions to the splitting
�c not included in Eq. (25) [42]. Moreover, the structure of
n-H2 in phase I is that of a disordered mixture of ortho and
para molecules.

To calculate the polarization energy for such a structure we
used a mean-field model of an ortho-para mixture assuming
each site of the lattice is occupied by a superposition of even-J
and odd-J molecules and every ortho-molecule component in-
duces a crystal-field splitting. Assuming a volume dependence
of the polarization energy of the same form in Eq. (22), we
included into the ground-state energy a term

Epol = A(V0/V )8/3δ, (26)

where A is an adjustable parameter in the theory. In the
x-ray data, the effects of residual uniaxial stresses on oriented
single crystals of n-H2 cannot be completely separated from
the effects of pure hydrostatic compression. We show the
dependence of δ on the parameter A. As can be seen, the
resulting δ(P ) dependencies are nonlinear with an inflection
point where the curvature changes its sign. Despise the
scatter in experimental points this trend is clearly seen in
experiment. Assuming no uniaxial effects, we obtain a good fit
for A = 5.1 K. The resulting pressure dependence of the lattice
distortion parameter is presented in Fig. 5. The comparison
to p-H2 shows that the introduction of the J = 1 molecules
increases the hcp lattice distortion by two orders of magnitude
(see Fig. 1).
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-0.04

-0.02
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δ
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c
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n-H2
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p-H2
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I-II
↑

FIG. 5. (Color online) Lattice distortion parameter for n-H2.
Curves a–e correspond to present theory with A = 2.55, 4.25, 5.1,
6.0, and 7.85 K, respectively. The red line data for p-H2 correspond
to that shown in Fig. 1. The arrow shows the experimental I–II
transition pressure for p-H2 [26,43]. Experiment: Data are from
Refs. [23] (red squares) and [25] (blue triangles). The solid straight
line δ = −4.41 × 10−3P [17,18]. The green diamonds are the results
of first-principles PIMD simulations [32].
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IV. CONCLUDING REMARKS

We have developed the lattice-dynamics theory of the lattice
distortion in p-H2, o-D2, and n-H in the hexagonal closed-
packed structure under pressure. It is shown that the lattice
distortion in p-H2 and o-D2 is negative and very small (of the
order of 10−3) and their structures have axial ratios very close
to ideal. In this respect, the even-J modifications of hydrogens
behave very similarly to solid He. The main contributions
to the lattice distortion come from translational degrees of
freedom, although there is a nonzero contribution from rotation
as well that give rise to slightly flattening of the structure
(negative distortion parameter). The calculated orientational
order parameter was shown to be small and negative. In a
classical sense, the results indicate that the molecules rotate
around the c axis with an inclination angle ϑ ≈ 55◦.

Finally, we note that the extent to which the decline in c/a

above 160 GPa reported experimentally in Ref. [25] is related
to a possible weak transition in phase I (transition to I′), such
as that found in vibron data [50], remains to be investigated
experimentally.

The mean-field model developed for ortho-para mixtures
provides a determination of the polarization energy connected
with the impurity ortho molecules. It is shown that there
is a considerable gain in the ground-state energy of the
mixture due to polarization, which in turn enhances the
lattice distortion. The corresponding loss in the energy of
the isotropic interaction determines the resulting value of
the lattice distortion parameter. The calculated c/a ratio as
a function of hydrostatic pressure is compatible with available
x-ray diffraction data, though the effects of uniaxial stresses
on the reported axial ratio as well as possible distortions from
hcp remains to be determined experimentally.
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