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Locally tunable disorder and entanglement in the one-dimensional plaquette orbital model
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We introduce a one-dimensional plaquette orbital model with a topology of a ladder and alternating interactions
between x and z pseudospin components both along the ladder legs and on the rungs. We show by an exact
transformation that it is equivalent to an effective spin model in a magnetic field, with spin dimers that replace
plaquettes and are coupled along the chain by three-spin interactions in the Hilbert space reduced by a factor of 2.
Using perturbative treatment and mean-field approaches with dimer correlations we study the ground state spin
configuration and its defects in the lowest excited states. By the exact diagonalization approach we establish that
the quantum effects are of purely short-range nature in the model and we find estimated values of the ground state
energy and the gap in the thermodynamic limit from the system sizes up to L = 12 dimers. Finally, we study a
class of excited states with classical-like defects accumulated in the central region of the chain to find that in this
region the quantum entanglement measured by the mutual information of neighboring dimers is locally increased
and coincides with disorder and frustration. Such islands of entanglement in an otherwise rather classical system
may be of interest in the context of quantum computing devices.
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I. INTRODUCTION

Transition metal oxides with active orbital degrees of
freedom are frequently described in terms of spin-orbital
models [1–5] which are realizations of the early idea of
Kugel and Khomskii [6] that in the limit of large on-
site Coulomb interactions, orbital degrees of freedom are
quantum and have to be treated with their full dynamics. The
interplay between spin and orbital (pseudospin) interactions on
superexchange bonds follows from the mechanism of effective
magnetic interactions at strong correlation and is responsible
for numerous quantum properties which originate from spin-
orbital entanglement [5]. This phenomenon is similar to
entanglement in spin models [7], but occurs here in a larger
Hilbert space [8] and has measurable consequences at finite
temperature as found, for instance, in the phase diagram of
the vanadium perovskites [9], and in ferromagnetic dimerized
interactions realized in the C-type antiferromagnetic phase
of YVO3 [10]. In higher dimensional systems exotic spin
states are also triggered in the ground state by entangled
spin-orbital interactions in certain situations, as in (i) the
d1 spin-orbital model on the triangular lattice [11], (ii) the
two-dimensional (2D) Kugel-Khomskii model [12], and (iii)
spinel and pyrochlore crystals with active t2g orbitals [13].
Such entangled spin-orbital states are very challenging but
also notoriously difficult to investigate except for a few exactly
solvable one-dimensional (1D) models: SU(4) chain [14],
SU(2)⊗SU(2) chain [15], and SU(2)⊗XY ring [16].

To avoid the difficulties caused by entanglement one con-
siders frequently ferromagnetic systems, where orbital interac-
tions alone are responsible for the nature of both the ground and
excited states. Orbital interactions in Mott insulators depend
on the type of active and partly filled 3d orbitals—they have
distinct properties for either eg symmetry [17–20], or t2g

symmetry [21–24]. In contrast to spin models, their symmetry
is lower than SU(2) due to directional character of orbital
interactions which manifests itself in their intrinsic frustration.
The models which focus on such frustrated interactions are the

2D compass model on the square lattice [25–35], the exactly
solvable 1D compass model [36,37], the compass ladder [38],
and the Kitaev model on the honeycomb lattice [39,40]. While
the latter provides an exactly solvable case of a spin liquid with
only nearest neighbor (NN) spin correlations, the former 2D
model includes only two spin components and 1D order arises
in the highly degenerate ground state [27–30]—such an order
is robust with respect to perturbing Heisenberg interactions
and might be used for quantum computing [35].

The interest in quantum computing motivated also the
plaquette orbital model (POM). It was introduced for a square
lattice by Wenzel and Janke [41], and exhibits orientational
long-range order in its classical version [42]. Here we will
focus on the 1D quantum version of the POM and investigate
the nature of the ground state and of low-energy excitations.
The purpose of this paper is to highlight the importance of
entangled states which lead to pronounced dimer correlations
in the 1D POM. It consists of repeated interactions of x

and z pseudospin components along three (all but one)
bonds of consecutive plaquettes along the chain, respectively,
called for this reason also the Cx-Cz model. As we show
below, in spite of not being exactly solvable, this model has
rather surprising properties which may be captured only in
analytic methods which go beyond standard mean-field (MF)
approaches.

The paper is organized as follows: In Sec. II we introduce
the Cx-Cz Hamiltonian and derive its block-diagonal form
making use of its local symmetries. In Sec. III A we introduce
a perturbative approach to the model within its invariant
subspaces, and present results up to second order in Sec. III B
and up to third order in Sec. III C. We also find spin
configurations in the ground state and in the first excited
states in Sec. III D. The approximate solutions of the model
are presented in Sec. IV where we introduce a single-dimer
MF approach and more general two-dimer and three-dimer
MF approaches to show the ground state spin configuration
in different subspaces being the lowest excited states of the
model. In Sec. V A the exact diagonalization results are

1098-0121/2014/90(2)/024433(12) 024433-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.024433


WOJCIECH BRZEZICKI AND ANDRZEJ M. OLEŚ PHYSICAL REVIEW B 90, 024433 (2014)
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FIG. 1. (Color online) Schematic view of the Hamiltonian of
Eq. (1). Black (red) lines stand for the XX (ZZ) bonds.

shown for the maximal system size of L = 12 dimers and
extrapolation for the ground state energy to the thermodynamic
limit is presented. Entanglement in excited states is quantified
in Sec. V B. Finally, the summary and the main conclusions
are presented in Sec. VI. The paper is supplemented with two
Appendices: (i) Appendix A showing the additional details
on spin transformation used in Sec. II, and (ii) Appendix B
showing the duality between the interaction and free terms in
the block-diagonal Cx-Cz Hamiltonian.

II. HAMILTONIAN AND ITS SYMMETRIES

The Hamiltonian of the 1D POM (Cx-Cz model) of L sites
can be written as follows:

H =
L∑

i=1

{Xi,1Xi,2 + Xi,2Xi,3 + Xi,3Xi,4

+ Zi,1Zi+1,2 + Zi,1Zi,4 + Zi,4Zi+1,3}, (1)

where Xi,p and Zi,p are the x and z Pauli matrices at site p

of the plaquette i (see Fig. 1). We assume periodic boundary
conditions (PBCs) with ZL+1,2 ≡ Z1,2 and ZL+1,3 ≡ Z1,3. The
interactions are balanced and the model has no free parameters.
There are two types of symmetry operators specific to the
model, namely,

P z
i = Zi,1Zi,2Zi,3Zi,4, (2)

P x
i = Xi+1,2Xi,1Xi,4Xi+1,3. (3)

In what follows we will make use of these symmetries to find a
block-diagonal form of the Hamiltonian H by two consecutive
spin transformations.

The key observation for Pauli matrices defined on a product
space of a many-body system is that a product of Zi,p (Xi,p)
operators over any subset of the system is another z (x) Pauli
operator. Of course, to transform all Zi,p (Xi,p) operators into
new ones one has to choose these subsets carefully to keep
track of the canonical commutation relations to guarantee that
z and x Pauli operators having the same site index anticommute
and otherwise commute. This we can assure by checking the
intersections of the subsets over which the products are taken;
if the intersection contains an odd number of sites then the new
z and x Pauli operators will anticommute, while in the opposite
case they commute. One can easily verify that these rules are
satisfied by the transformation that we use to take care of the
P z

i symmetries (2) of Hamiltonian (1). The transformation is

(a)

(b)

FIG. 2. (Color online) Schematic view of the transformations
used for the 1D POM Eq. (1): (a) in Eqs. (4) and (b) in
Eqs. (5). Numbered circles symbolize transformed Pauli ma-
trices, {X̃i,1,X̃i,2,X̃i,3,X̃i,4} (black circles) or {Z̃i,1,Z̃i,2,Z̃i,3,Z̃i,4}
(red circles). The frames labeled with (blue) numbers stand for
the original Pauli matrices, {Xi,1,Xi,2,Xi,3,Xi,4} (black frames) or
{Zi,1,Zi,2,Zi,3,Zi,4} (red frames).

defined for each X plaquette separately as

Xi,1 = X̃i,1,

Xi,2 = X̃i,1X̃i,2,
(4)

Xi,3 = X̃i,1X̃i,2X̃i,3,

Xi,4 = X̃i,1X̃i,2X̃i,3X̃i,4

and

Zi,1 = Z̃i,1Z̃i,2,

Zi,2 = Z̃i,2Z̃i,3,
(5)

Zi,3 = Z̃i,3Z̃i,4,

Zi,4 = Z̃i,4.

The operators X̃i,p and Z̃i,p are new x and z Pauli matrices
satisfying all the canonical commutation relations and the
tranformation is a bijection which means that the inverse
transformation exists—its form can be easily guessed if we
notice that, e.g., X̃i,2 = Xi,2Xi,1 and Z̃i,3 = Zi,4Zi,3. This of
course exploits the fact that any Pauli matrix squared gives
identity. The easiest way to verify that the transformations
given by Eqs. (4) and (5) really map Pauli operators into
another set of Pauli operators is by drawing (see Fig. 2).

It is straightforward to get the Hamiltonian in terms of
transformed (tilde) operators, i.e.,

H =
L∑

i=1

{X̃i,2 + X̃i,3 + X̃i,4 + riZ̃i,2Z̃i+1,2Z̃i+1,3

+ riZ̃i,2Z̃i,4 + Z̃i,4Z̃i+1,3Z̃i+1,4}, (6)

where ri = ±1 are the eigenvalues of the symmetry operator
P z

i = Z̃i,1, which we are allowed to insert for H does not
depend on X̃i,1. Consequently the P x

i symmetries transform
as

P x
i = Xi+1,2Xi,1Xi,4Xi+1,3 = X̃i,2X̃i,3X̃i,4X̃i+1,3. (7)

Now the hard part starts because this symmetry mixes the
operators on neighboring plaquettes. How to guess next spin
transformation that will make use of P x

i symmetries, provided
that such a transformation exists? We can try to demand that in
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terms of new Pauli operators the symmetry transforms into a
single Pauli operator, as it happened with P z

i , i.e., P x
i = X′

i,4.
This means that X′

i,4 = X̃i,2X̃i,3X̃i,4X̃i+1,3. The form of the
transformation (4) suggests that the other x operators can be
constructed in the following way:

X′
i,2 = X̃i,2(X̃i+1,3),

X′
i,3 = X̃i,2X̃i,3(X̃i+1,3), (8)

X′
i,4 = X̃i,2X̃i,3X̃i,4(X̃i+1,3),

where the main difference with respect to Eq. (4) is that
we keep the contribution from the neighboring plaquette (in
parentheses) for every X′

i,p.
By analogy to the transformation Eq. (5) we can also guess

the form of the new z operators,

Z′
i,2 = Z̃i,2Z̃i,3(Z̃i−1,2),

Z′
i,3 = Z̃i,3Z̃i,4(Z̃i−1,2), (9)

Z′
i,4 = Z̃i,4.

Again the difference is in terms in parentheses coming from
the neighboring plaquette—these were involved in Eq. (9)
in such a way that the canonical commutation relations
between primed Pauli operators are satisfied. Now to get
the Hamiltonian in terms of new, primed operators we need
to inverse the above transformations. This can be done in
straightforward fashion and we arrive at

X̃i,2 =X′
i,2(X̃i+1,3) = X′

i,2(X′
i+1,2X

′
i+1,3),

X̃i,3 =X′
i,2X

′
i,3, (10)

X̃i,4 =X′
i,3X

′
i,4

and

Z̃i,2 =Z′
i,2Z

′
i,3Z

′
i,4,

Z̃i,3 =Z′
i,3Z

′
i,4(Z̃i−1,2)=Z′

i,3Z
′
i,4(Z′

i−1,2Z
′
i−1,3Z

′
i−1,4), (11)

Z̃i,4 =Z′
i,4.

Quite miraculously these rather complicated formulas inserted
into Hamiltonian (6) give a rather simple structure of the block-
diagonal Hamiltonian,

H =
L∑

i=1

{siX
′
i,3 + X′

i,2X
′
i,3 + X′

i,2X
′
i+1,2X

′
i+1,3

+ riZ
′
i+1,2 + riZ

′
i,2Z

′
i,3 + Z′

i+1,3Z
′
i,2Z

′
i,3}, (12)

where half of the initial spins are replaced by the quantum
numbers ri,si = ±1 being the eigenvalues of the symmetry
operators P z

i and P x
i .

Thus a spin model on a ladder shown in Fig. 1 has become a
model of a dimerized chain with two spins per unit cell, namely,
Z′

i,2 and Z′
i,3. Note that unlike in the case of the 2D quantum

compass model, where the similar spin transformations were
used to obtain reduced Hamiltonian [34], here the PBCs do
not yield any nonlocal operators in H of Eq. (12). Here
the PBCs assumed for the initial spins become PBCs for
both tilde operators of Eq. (6) and primed ones of Eq. (12).
Before discussing the reduced Hamiltonian in more detail let

(a)

(b)

FIG. 3. (Color online) Schematic view of the interaction part of
the Hamiltonian (14): (a) the x interactions (black frame) and (b)
the z interactions (red frame). The arrows represent the ground state
configuration of the spins σi,p stabilized by the external field, under
the assumption that the interaction part is absent.

us end this section by one more (indeed rather simple) spin
transformation that putsH in a more symmetric and convenient
form, namely,

σx
i,3 = siX

′
i,3,

σ x
i,2 = X′

i,2X
′
i,3,

σ z
i,3 = riZ

′
i,2Z

′
i,3, (13)

σ z
i,2 = ri−1Z

′
i,2,

which finally gives

H =
L∑

i=1

{(
σ z

i,2 + σ z
i,3

) + (
σx

i,2 + σx
i,3

)

+ ri σ
z
i−1,3

(
σ z

i,2 σ z
i,3

) + si

(
σx

i,2 σx
i,3

)
σx

i+1,2

}
. (14)

This expression means that all the σi,p spins are coupled to
an external magnetic field applied along direction x + z and
interact by a three-spin interaction depicted in Fig. 3, with
signs given by the ri and si quantum numbers. The structure of
the interaction is such that we can consider the system as a set
of interacting dimers labeled by i consisting of spins σi,2 and
σi,3. In Appendix A we show the relation between σ

x,z
i,p Pauli

operators and the original ones, Xi,p and Zi,p, of Eq. (1).
Finally, it is worth mentioning that the structure of the

free and interaction terms in the Hamiltonian (14) is strongly
related, i.e., we can find a basis where the linear terms
become cubic and vice versa. As there are twice as many
linear terms as the cubic ones it is not possible to obtain a
one-to-one correspondence between the free and interacting
part of the Hamiltonian—in Appendix B we give the additional
interaction terms that should be added to obtain such duality
as well as the form of the duality spin transformation.

III. PERTURBATIVE TREATMENT

A. First and second order energy contributions

The first question we may ask seeing the reduced Hamilto-
nian (14) of the 1D POM is in which subspace labeled by the
ri and si quantum numbers the ground state can be found. This
can be easily answered by a perturbative expansion where the
unperturbed Hamiltonian H0 is the noninteracting part of H,
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i.e.,

H0 =
L∑

i=1

(
σ z

i,2 + σx
i,2 + σ z

i,3 + σx
i,3

)
, (15)

and the perturbation V is given by the three-spin terms,

V =
L∑

i=1

{
riσ

z
i−1,3

(
σ z

i,2 σ z
i,3

) + si

(
σx

i,2 σx
i,3

)
σx

i+1,2

}
. (16)

The ground state of |0〉 of H0 is easy to infer, the spins
order as in Fig. 3 with the ground state energy per dimer equal
to

E
(0)
0 = −2

√
2 � −2.828. (17)

Hamiltonian H0 has a big energy gap of ε1 = 2
√

2 which
makes the expansion justified, although formally there is no
small parameter in V. The first order correction to the ground
state energy is just the average of V in the state |0〉 which
is simple to calculate as we deal with a simple product state.
Thus we get a first order correction,

E
(1)
0 = − 1

2
√

2L

L∑

i=1

(ri + si), (18)

as a linear function of the quantum numbers ri and si . Now
it is easy to see that the ground state of the model is in the
subspace with ri = si = 1 for all i. This result also suggests
that the lowest excited state of the model is the ground state
from the subspace with one ri or si flipped—such excitation
costs the energy of 1/

√
2 � 0.707 in the leading order while

the excitation within the lowest subspace costs the energy of
2
√

2 ≈ 2.828 in the leading order, i.e., it compensates the
dimer binding energy in the ground state Eq. (17).

B. First and second order energy contributions

As the first order correction cannot be regarded as small we
now proceed to the higher orders. The second order correction
has a form of

E
(2)
0 = − 1

L

∑

n	=0

1

εn

〈0|V|n〉〈n|V|0〉, (19)

where εn = E(0)
n − E

(0)
0 is the excitation energy of the nth

excited state of H0. After a moderate analytical effort we can
get a correction,

E
(2)
0 = −1

243
√

2
〈6riri+1 +6sisi+1 −9siri+1 −9risi +29〉,

(20)
where the interaction terms between the classical spins are
present and we take a contribution for the representative sites
i and (i + 1). The value of E

(2)
0 in the ground subspace is

E
(2)
0 ≈ −0.339; the total ground state energy per dimer is equal

up to the second order to

E
(0)
0 + E

(1)
0 + E

(2)
0 � −2.828 − 0.707 − 0.339 = −3.874 .

(21)
Such a value is problematic for, as we will see in the next
section, the ground state energy extrapolated from the exact
diagonalization is equal to E0,ED � −3.7897 which turns out

to be higher than what we have obtained here up to the second
order.

C. Third order energy correction

The above result and overall largeness of the second order
correction indicates that we should go to the third order to get
the energy within the physical range of values. The textbook
expression for the third order energy correction reads

E
(3)
0 L =

∑

n	=m	=0

1

εnεm

〈0|V|n〉〈n|V|m〉〈m|V|0〉

+
∑

n	=0

〈n|V|n〉 − 〈0|V|0〉
ε2
n

〈0|V|n〉〈n|V|0〉. (22)

This already requires a considerable effort to calculate as due to
the canted nature of the unperturbed ground state there are not
many overlaps that cancel in the above expression. Probably
the simplest way to calculate this correction is to span the
Hilbert space of possible excited states for a given dimer i

in V , define the operators in the product space, and calculate
the correction by brute force. Here we used Mathematica to
do it and the Hilbert space was a product space of 11 with a
dimension of 211 and the ri and si quantum numbers were kept
as variables. The result is

E
(3)
0 = 1

263
√

2
〈22(ri + si) − 3(risiri+1 + siri+1si+1)〉

+ 1

2133
〈−29(ri + si) − 11(risiri+1 + si−1risi)

+ 36(ri−1risi + si−1riri+1 + si−1siri+1 + risisi+1)

− 24(ri−1riri+1 + si−1sisi+1)〉, (23)

where we take again an average contribution for the repre-
sentative sites i and (i + 1). Here the first line is a leading
term that originates from the contributions where the two
intermediate states are the same, i.e., n = m—the second line
of Eq. (22). The third order correction to the ground state
is positive and equal to E

(3)
0 ≈ 0.140. Thus the ground state

energy up to third order is E0,pert ≈ −3.734 which is now well
within the physical range given by the exact diagonalization
(ED) reported in Sec. V—the energy difference between this
result and E0,ED is of the order of 0.05 so one can conclude
that the third order expansion is almost exact.

Concerning the excitations, the energy gap given by the
expansion is �pert = 0.428 which is close to the ED value of
the gap �ED = 0.437 (see below in Sec. V). As stated earlier,
the first excited state is the ground state of the model in the
subspace with one ri or si being flipped. Equation (18) and the
value of �pert suggest that flipping two classical spins ri or si

should still cost less energy than creating an excitation within
the ground subspace. We may expect that if the defects in the
configuration of classical spins are sufficiently far from each
other then the excitation energy should be 2�pert.

In Fig. 4 we show the excitation energies for one defect
placed at site i1 = 10 and a second at any other site i as a
function of i. As at every site we have both ri and si there are
four possibilities of creating such a pair of defects because for
each site we can flip ri or si . Due to the symmetry of Eq. (14)
flipping two ri’s is equivalent to flipping two si’s. As we can
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FIG. 4. (Color online) Ground state energies E
(p1,p2)
0 from the

subspaces with two classical spins p1,2 being excited; dots: r10 and ri

flipped, diamonds: r10 and si flipped, and squares: s10 and ri flipped,
as functions of i. Dashed lines show the energies of single, double,
and triple energy gap �.

see from Fig. 4, all the excitation energies are close to 2�

when the defects are separated by more than two sites—this
is the additive regime governed by the first order correction of
Eq. (18).

When the distance is smaller then we observe two different
behaviors: the gap for r-r (or s-s) excitation is smaller than
expected and close to � and the gap for s-r (or r-s) excitation is
bigger than expected and close to 3�. In this regime the second
and third order corrections are important. Such behavior means
that flipping classical spins of different flavors at neighboring
or the same sites is something that the system particularly
dislikes. On the other hand, if we choose only one flavor to flip
then Fig. 4 suggests that we could even flip all the ri’s paying
only one � of the excitation energy. The ED results show that
this is not true (the higher order corrections are important in
this case); however, they show that flipping all ri’s still costs
less energy than an excitation within the ground subspace.

D. Spin configuration in the ground state

Finally, using the perturbation approach it is possible to
look not only at the energies in different subspaces but also at
the ground state spin configuration. It is quite simple to check
that up to the first order the local spin averages are given by
the following formulas:

〈
σx

2,i

〉 = − 1√
2

+ 2ri − si − si−1

4
√

2
,

〈
σ z

2,i

〉 = − 1√
2

+ si − 2ri

4
√

2
,

(24)
〈
σx

3,i

〉 = − 1√
2

− si

4
√

2
,

〈
σ z

3,i

〉 = − 1√
2

+ si − ri+1

4
√

2
.

1 2 3 4(a)

(b)

(c)

FIG. 5. (Color online) Local spin averages 〈σ x,z
2,i 〉 and 〈σ x,z

3,i 〉
shown as arrows in the (a) global ground state, (b) first excited
state with r3 = −1, and (c) first excited state with s3 = −1. The
horizontal (vertical) components of the vectors (arrows) correspond
to the x(z) components of the spins σp,i . The frames indicate the
dimers {σ2,i ,σ3,i} with i = 1,2,3,4.

In Fig. 5 we show the above averages represented by the arrows
for four sites i = 1,2,3,4 with PBCs for the global ground
state, shown in Fig. 5(a), and the lowest excited states with
r3 = −1 and s3 = −1 [see Figs. 5(b) and 5(c)].

In the ground state we observe a two-sublattice order where
the configuration of neighboring spins differ by the interchange
of the x and z component. In the excited states we observe
distortion of the spin order being different for a flip in r and
s spins. In the former case the z components of the spins
decrease when approaching the site with defect and then grow
again. In the latter case the same happens to x components so
we can conclude that the two excitations are complementary
(this is also visible in Fig. 4).

IV. MEAN-FIELD TREATMENT

We have shown above that the excitation in the classical
spins ri and si are typically lower than a “quantum” excitation
within the ground subspace. Such excited states are, on the
other hand, the ground states of the reduced Hamiltonian (14)
in the subspaces where some of the ri’s or si’s are negative.
This suggests that these states can be well described within a
nonuniform MF approach carried out in any given subspace.
The dimerized form of the Hamiltonian (14) (see Fig. 3)
suggests a MF approach where a main building block is
a dimer. Thus if we introduce a single-dimer approach,
called below 1-dimer MF, we need to divide the system
into clusters containing one dimer each [see Fig. 6(a)]. This
approach may be further improved by considering larger
units containing two (2-dimer), three (3-dimer), or more
dimers [see Figs. 6(b) and 6(c)]. In this way we formulate
a more general approach using clusters as units in the MF
approach.

Clusterization means that the interactions within a cluster
are treated exactly but different clusters interact only by MFs.
This involves a standard decoupling of the interaction terms in
the Hamiltonian (14) assuming that the correlations between
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(a)

(b)

(c)

FIG. 6. (Color online) Schematic view of the dimer MF decou-
pling in the case of (a) 1-dimer MF, (b) 2-dimer MF, and (c) 3-dimer
MF approximation. The frames mark the cluster of dimers that are
treated exactly. Labels 2 and 3 are introduced in Fig. 3.

the clusters are not strong, i.e.,
(
σx

i,2 σx
i,3

)
σx

i+1,2 � 〈
σx

i,2 σx
i,3

〉
σx

i+1,2 + σx
i,2 σx

i,3

〈
σx

i+1,2

〉

− 〈
σx

i,2 σx
i,3

〉〈
σx

i+1,2

〉
, (25)

σ z
i−1,3

(
σ z

i,2 σ z
i,3

) � σ z
i−1,3

〈
σ z

i,2 σ z
i,3

〉 + 〈
σ z

i−1,3

〉
σ z

i,2 σ z
i,3

− 〈
σ z

i−1,3

〉〈
σ z

i,2 σ z
i,3

〉
. (26)

From this decoupling we have four independent MFs per
dimer, i.e., 〈σx

i,2σ
x
i,3〉, 〈σ z

i,2σ
z
i,3〉, 〈σx

i,2〉, and 〈σ z
i,3〉. In the case

when the configuration of the classical spins is uniform and
the Hamiltonian (14) is translationally invariant we can safely
assume that the above MFs do not depend on i and the
self-consistency equations can be solved for any system size
L. This, however, is not the case in the excited subspaces that
we are interested in. Thus, typically, we need to work with a
finite system—here we have taken L = 100 for 1-dimer and
2-dimer MF approaches, and L = 102 for the 3-dimer one.

The self-consistency equations can be solved iteratively
in each case, i.e., we set some random initial values of the
MFs, then we diagonalize all the clusters and calculate new
values of the MFs. The procedure is repeated until the desired
convergence of the MFs is reached. In the majority of cases
this happens very quickly—after less than 100 iterations the
old and the new value of each MF field does not differ
by more than 10−14. This, however, does not refer to the
subspaces with large areas being fully defected, i.e., for many
neighboring sites i we have ri = si = −1. For instance, if we
set all classical spins as −1 then two interesting things happen
within the MF approach: (i) within the uniform approach no
convergence is reached and (ii) within a nonuniform approach
we get a disordered configuration which depends on the initial
values of the MFs. As we will see in the next section such
configuration is cured by the quantum fluctuations and the
true ground state has a two-sublattice long-range order but with
ordered moments that are strongly reduced with respect to the
ground state configuration and, as will be shown in Sec. V,
strongly enhanced entanglement between the neighboring
dimers. Finally, in order to check if the MF approximation
is justified we can extend it in a perturbative manner. What
is omitted in the MF approach is the correlation, so the full
Hamiltonian H can be recovered from the MF one, HMF, by

TABLE I. Summary of the ground state energies E0 (per dimer)
and the gap � obtained in the perturbation theory (up to third
order) and within the MF approaches compared with the exact
diagonalization results.

Approach E0 �

Perturbation theory −3.734 0.428
1-dimer MF −3.6501 0.4134
2-dimer MF −3.7192 0.4520
3-dimer MF −3.7428 0.4592
1-dimer MF+correction −3.7022
Exact diagonalization −3.789718 0.437271

adding the missing many-body term of the form

Vcorr =
L∑

i=1

{
si

(
σx

i,2σ
x
i,3 − 〈

σx
i,2 σx

i,3

〉)(
σx

i+1,2 − 〈
σx

i+1,2

〉)

+ ri

(
σ z

i,2σ
z
i,3 − 〈

σ z
i,2 σ z

i,3

〉)(
σ z

i−1,3 − 〈
σ z

i−1,3

〉)}
. (27)

Now we can write that

H = HMF + Vcorr, (28)

and treat the many-body term Vcorr as a perturbation. Due to
the self-consistency equations the first order correction to the
energy vanishes. The calculation of the second order correction
is elementary and requires the values of the MFs obtained
earlier. It is significant that the value of this second order
correction is less than 2% of the MF energy in the case of the
ground state, whereas it is almost 10% of the MF energy for
the fully defected subspace. This means that the simple MF
approach works extremely well when no frustration is present
and much worse when its magnitude is maximal.

To summarize these energetic considerations we present the
ground state energies obtained in the perturbation theory and
within the MF approach using a 1-dimer (with and without
a second order correction), 2-dimer, and 3-dimer Ansatz,
respectively, compared to the value obtained by the exact
diagonalization in Table I. This latter energy we believe to
be the accurate one up to six-digit precision (see Sec. V). As
we can see, including one more dimer to the single-dimer MF
improves the energy by roughly 0.06, whereas the second
correction gives 0.05. On the other hand, adding another
dimer lowers the energy to the value which is very close
to the estimated value; the difference is of the order of
1% only.

The excitation gap � requires good accuracy for both the
ground state energy and the ground state in the subspace of the
first excitation. Here the perturbation theory works somewhat
better than the MF Ansätze (see Table I). The method we
developed for the 1-dimer MF with a correction term (27) is
reliable when the calculated state is unform, so it is not used
to estimate the value of �.

The MF spin configurations in the lowest excited states are
shown in Fig. 7. The first two lines show the effect of a single
defect in ri and si spins, respectively. These configurations are
qualitatively similar to the perturbative ones shown in Fig. 5
but the range of the distortion caused by the defect is longer
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FIG. 7. (Color online) Local spin averages 〈σ x(z)
2,i 〉 and 〈σ x(z)

3,i 〉
shown as arrows in different excited states with such classical spins
flipped as indicated on the left, as obtained using the 1-dimer MF
Ansatz. The horizontal (vertical) components of the vectors (arrows)
correspond to the x (z) components of the spins σp,i . The dimers
i = 1,2 are marked with different colors. The classical spins that are
flipped are denoted on the left and the three last configurations with
high excitation energies are marked with boldface.

than before. In Fig. 8 we show the differences between these
configurations and the ground state one—the distortion dies off
at the distance of roughly six spins (three dimers). As shown
in the plot of Fig. 4 the configurations with two defects have a
doubled excitation energy with respect to the ones with single
defect when the defects are far apart. In the next two lines
of Fig. 7 we show the configurations with two defects only

15 20 25 30
i

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

δσ
i

δσx
(s

11
)

δσz
(s

11
)

δσx
(r

11
)

δσz
(r

11
)

FIG. 8. (Color online) Differences in local spin averages in the
excited states with r11 = −1 or s11 = −1 with respect to their ground
state values, δσ

x,z
i (r11) and δσ

x,z
i (s11), as obtained using the 1-dimer

MF Ansatz. Here we label the spins σ2,i and σ3,i by a single index i

so that r11 and s11 refer to the 11th dimer or spins σ21 and σ22.

in ri’s and only in si’s being next to each other. As we know
from Fig. 4 such defects give a subadditive energy close to a
single energy gap. Figure 7 shows that these configurations are
indeed very similar to the ones with single defects—the range
of distortion is longer but the distortion itself is smoother.
Finally, in the last three lines of Fig. 7 we show the two-defect
cases when the excitation is increased above the additive level.
These configurations are characterized by a rather severe spin
distortion at the defects dimers which is related to the local
frustration caused by the defects and is consistent with the
increase of excitation energy.

According to Eq. (A1) it is possible to uniquely relate the
direction of the arrows shown in Fig. 7 with the values of
bond operators of the original ladder Hamiltonian of Eq. (1).
The operators σx

i,3 and σ z
i,2 are the horizontal bonds within

the x and z plaquettes, respectively. Similarly, σx
i,2 and σ z

i,3
are the vertical bonds within the x and z plaquettes. When
an arrow points in the direction −(x + z), as happens in the
ground state, it means that both x and z are locally satisfied.
An arrow being more horizontal than the others indicates
that locally the x bonds are favored on expense of the z

ones. Analogically, a vertical tilt means that the z bonds are
favored.

As we can see from Fig. 7 excitation in ri , which is related
to the z interaction term in the reduced Hamiltonian, Eq. (14),
transfers the energy from z to x bonds around site i. Excitation
in si has an inverse result. This we can understand very easily.
Assume that in Eq. (14) we have only the part with z Pauli
operators. When all ri are positive then it is easy to check
that in the ground state all spins will be pointing down and
every term in the Hamiltonian will give a contribution −1
to the ground state energy. However, if for one site i we set
ri = −1, then the frustration occurs because the linear part of
the Hamiltonian still wants all spins to point down whereas the
cubic part for site i has now an opposite sign and for such spin
configuration gives a positive contribution to the energy. Thus
the cubic term is frustrated with the linear terms. When the
defect is only in the ri configuration then this frustration can be
avoided by adjusting the spin configuration more to the x part
of the Hamiltonian and this exactly gives the horizontal tilt that
we can see in the first line of Fig. 7. On the other hand, when
both ri and si are locally negative then the frustration cannot
be avoided and a severe distortion in the spin configuration
occurs as shown in Fig. 7. In Sec. V we will demonstrate that
such frustration can also lead to local disorder with increased
quantum entanglement.

V. EXACT DIAGONALIZATION TREATMENT

A. Ground state energy and the excitation gap

Exact diagonalization was carried out using the Lanczos
algorithm for the system sizes up to L = 12 for even L and
PBCs. In Fig. 9(a) we show finite size scaling of the ground
state energies per dimer as a function of 1/L. Quite remarkably
the energy saturates very quickly so the last four values are
the same up to seven digits. A similar behavior is observed
for the energy gap � [see Fig. 9(b)]. Thus we can conclude
that the values of the ground state energy (per dimer) and the
energy gap obtained for L = 12 are good approximations for
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FIG. 9. (Color online) Finite size scaling obtained for the POM:
(a) the ground state energy per dimer E0, (b) the excitation gap �,
and (c) the excitation gap in the ground state subspace �0.

the infinite system; these are

E0,ED = −3.789 718, (29)

�ED = 0.437 271. (30)

Although a gap within a ground subspace �0, shown in
Fig. 9(c), exhibits less regular scaling behavior, again a quick
saturation is observed for the last three points so we can treat
the last point as the thermodynamic limit, thus we have found
that

�0,ED = 3.138 16. (31)

These values of the gaps confirm the perturbative results of
Sec. III A saying that the lowest energy excitations are those of
the classical spins {ri,si} and the excitation within the ground
subspace of the higher order of magnitude.

Probably the most interesting feature of the POM that can-
not be captured within MF approaches is the spin configuration
and entanglement in the highly defected subspaces, i.e., the
subspaces where in a certain range of i both ri and si are
negative. In the extreme case of all ri and si being negative it
is not even possible to obtain conclusive MF results. In the ED
approach we are free of such problems so in Fig. 10 we show
the ground state spin configuration for L = 10 dimers in the

FIG. 10. (Color online) Local spin averages 〈σ x,z
2,i 〉 and 〈σ x,z

3,i 〉
shown as arrows in subspaces with highly entangled areas where both
ri’s and si’s are negative (marked in red) for the system of the size
L = 10 obtained via ED; spin disorder increases from top to bottom.
Every line corresponds with a different subspace, the first one with
the ground subspace and the last one with the highest excited one. The
horizontal (vertical) components of the vectors (arrows) correspond
to the x(z) components of the spins σp,i .

subspaces with a growing region of defects. The configurations
are presented as the lines of arrows such that the first line
corresponds with a ground subspace (no defects) and the last
one with a fully defected subspace (ri = si = −1 for all i). As
we can see, the spins within the defected region (the red ones)
seem to be disordered and change very rapidly from site to site.
Some of them have even positive x or z components indicating
the bonds that give positive contribution to the total energy (see
discussion in Sec. IV), which implies strong frustration.

Interestingly, for defected region sizes l that do not exceed
l = 6 dimers we observe a kind of regularity, a motif of
four neighboring spins that repeats itself in an approximate
fashion when the number of dimers in the defected region
is even. This feature does not occur for larger regions
except for the fully defected subspaces where the translational
symmetry is present. In this case spins order regularly but
the ordered moments are much smaller and the difference
between sublattices is more pronounced than in the ground
state configuration. Here the average values for the p = 2
spins are 〈σx

2,i〉 � −0.2985 and 〈σ z
2,i〉 � −0.5419 that give

the ordered moment, m = {〈σx
2,i〉2 + 〈σ z

2,i〉2}1/2 = 0.6187. In
the ground state these quantities are 〈σx

2,i〉0 � −0.7256,
〈σ z

2,i〉0 � −0.5846, and m0 = 0.9318. In both cases the
configurations exhibit a two-sublattice translational invariant
structure with the sublattices related by the interchange of the
x and z components of spins.

Similarly to the 2D Kugel-Khomskii model in the regime
between the antiferromagnetic and ferromagnetic phase [12],
the spins seem to prefer being perpendicular to their neighbors
but here because of the lower dimension this picture is
more distorted by quantum fluctuations. Quite remarkably
this classical view of perpendicular spins is realized by the
quantum observables, i.e., we observe that in the fully defected
subspace all the NN 〈σ z

i σ z
j 〉 correlations and all the NN 〈σx

i σ x
j 〉

ones are equal to zero. This supports the picture of classical
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FIG. 11. (Color online) Mutual information for the NN dimers
Ii,i+1 (32), as obtained for different sizes l of the highly defected
area (shown in Fig. 10) using the chain of L = 10 dimers:
(a) l = 1 (dots), l = 2 (diamonds), and l = 3 (squares); (b) l = 4
(dots), l = 5 (diamonds); (c) l = 6 (dots), l = 7 (diamonds); and (d)
l = 8 (dots), l = 9 (diamonds). The dashed lines are the values of
Ii,i+1 in the ground state subspace (bottom line) and in the totally
defected subspace (upper line).

spin configuration where spins on one sublattice point along
the z axis, and on the other one along the x axis. However,
the smallness of the ordered moments and the nontrivial
angle between the spins in the configuration given by the ED
indicate that this state is more complex and potentially highly
entangled.

B. Entanglement in excited states

To quantify the entanglement of the states described in
Fig. 10 we will look at the mutual information Ii,i+1 of the
neighboring dimers in each of these states as a function of
the site index i. This quantity is defined by the von Neumann
entropies obtained for the dimers with labels i and i + 1, and
the pair of dimers {i,i + 1} as follows:

Ii,i+1 = Si + Si+1 − Si,i+1, (32)

where the von Neumann entropy SA of any subsystem A is
given by the formula

SA = −Tr{ρA log2 ρA}, (33)

with ρA being the reduced density matrix of the subsystem A

(i.e., we take the density matrix ρ of the whole system and
trace it over all degrees of freedom outside the subsystem A).

In Fig. 11 we present the mutual information Ii,i+1 for
the states shown in Fig. 10 as a function of i. The mutual
information for the lowest and highest subspaces does not de-
pend on i and is equal to IGS = 0.284 64 and IHS = 0.969 75,
respectively. These values prove that the ground state in the
fully defected subspace is much more complex than the global
ground state, as in the former case the entanglement between
the neighboring dimers is roughly three times stronger.

In the intermediate states that lie between the above two
extremes the mutual information in the defected areas is always
bigger than outside of them. This feature is very persistent in
the sense that even if the area free of defects contains only one
dimer, then the mutual information of this dimer with respect
to its neighbors is still roughly the same as in the ground state
[see Fig. 11(d)]—this refers of course also to other sizes of the
defected area [compare Figs. 11(a), 11(b), 11(c), and 11(d)].
On the other hand, the mutual information inside the defected
areas behaves less regularly; we may say that it has oscillatory
character for the even sizes of the defected areas and a more
plateaulike character for odd sizes. This, however, is only a
qualitative statement and probably larger systems should be
studied to determine some universal features of Ii,i+1 inside
the defected areas. What we can say for sure is that despite
the observed oscillations, Ii,i+1 never drops below the ground
state level IGS in the defected areas, although the value for the
fully defected subspace IHS can be locally exceeded.

VI. SUMMARY AND CONCLUSIONS

We have shown a rather complete picture of the ground
state and low-energy excitations of the one-dimensional
plaquette orbital model defined by the Hamiltonian, Eq. (1),
using the perturbative, mean-field, and exact diagonalization
approaches. First, the model was put in the block-diagonal
form using spin transformation that reduces the size of the
Hilbert space by a factor of 4L. In this way we have arrived at
the model of interacting dimers consisting of the external field
terms acting on every site and the interaction terms having
the three-spin form, with signs given by the values of classical
spins resulting from the spin transformations or the eigenvalues
of the local symmetry operators. Second, the perturbative
approach has shown that the lowest energy is obtained by
setting all classical spins up and the lowest-energy excitations
are obtained by creating defects in this polarized configuration
of classical spins.

The ground state configuration of the effective quantum
spins is characterized by the long-range order induced by the
external field acting along the −(x + z) direction in spin space.
We have shown that the local average values of these effective
spins correspond with the average values of the bonds in the
initial ladder so the long-range spin-spin correlations in the
ground subspace are the long-range bond-bond correlations
in the Cx-Cz model. This resembles the Néel order found
in the 2D plaquette orbital model [41]; however, it has been
shown that this is an artifact of a deeper lying orientational
order [42]. The polarized ground state configuration of the
effective spins is slightly distorted by the quantum interaction
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terms that cause a two-sublattice modulation of the order such
that the sublattices are related by the interchange of the x and
z spin components.

In the lowest excited states the defects in the classical spins
cause an additional distortion in the configuration of quantum
spins through the local change of sign of the interaction
terms. Such change produces always local frustration of the
interaction term that can be easily avoided in the case of a
single defect by a local tilt of the spins along either the x or z

axis. However, in the case of the two defects this is not always
possible and the frustration can then result in the superadditive
increase in the excitation energy.

The inhomogeneous mean-field approach shows that the
frozen distortions of the spin configuration found in the
lowest excited states are very local; due to the external field
terms the system returns to its ground state ordering at the
distance of three dimers. This is consistent with the exact
diagonalization results indicating that quantum fluctuations
have a short-range character in the present model, as both the
ground state energy per dimer and the gap saturate extremely
fast with the increasing system size—already for L = 12 both
quantities provide excellent estimates for the values in the
thermodynamic limit. This follows from finite spatial range
of three-spin interactions in the effective chain spin model
and makes also the mean-field approaches very successful, as
shown in Table I. The energy gap remains finite for growing
system size with the best estimate being � = 0.437 271,
Eq. (29), as obtained for L = 12, and unlike in the 2D plaquette
model [41] the ground state is unique. The ground state energy
per dimer (or per one plaquette of the original model) is for
this system E0 = −3.789 718 [see Eq. (30)].

The strong locality of the model can be attributed to the fact
that most of the bond operators of the initial Hamiltonian are
transformed into the external field terms. For this reason we can
conclude about the behavior of the model from relatively small
system sizes, in certain analogy to the critical quantum chains
with Potts interactions [43]. This also makes the excitation
within the ground subspace very costly as in the zeroth order
we need to flip a spin against the external field to make
such an excitation. The energy estimation obtained by exact
diagonalization, �0 = 3.138 16 [see Eq. (31)], shows that it
does not change much in the higher orders, at least not in the
ground subspace.

This not very exciting picture of mostly classical spin model
found in the ground state changes drastically when the defects
in classical spin configuration create frustration that cannot be
avoided. This happens when for a given dimer i both variables
ri and si are negative or both the P z

i (2) and P x
i (3) symmetry

operators have negative eigenvalues. As we have seen from
the mean-field approach and the exact diagonalization such
a double defect produces a rather severe distortion in the
configuration of quantum spins and costs more energy (as
also shown by the first order perturbation expansion) than
these two defects separated by more than one dimer. Thus
we have studied the spin configuration and the entanglement,
characterized by the mutual information Ii,i+1 (32) of the
neighboring dimers, for the subspaces with such defects accu-
mulated in the central part of the chain for a growing number of
defected dimers. We have found that within the defected areas:
(i) spins form a very irregular pattern that resembles a spin-

glass state, and (ii) the mutual information Ii,i+1 is strongly
increased with respect to its values outside the defected area.
We note that this phenomenon is analogous to increasing
entanglement entropy when disorder increases in quantum
critical chains [44].

There are two subspaces that are exceptional—the ground
state subspace, where Ii,i+1 is (on average) minimal and
equal to IGS = 0.284 64, and the fully excited subspace, with
ri = si = −1, where Ii,i+1 is (on average) maximal and equal
to IHS = 0.969 75. In both of these subspaces the ground states
exhibit a two-sublattice long-range order; however, in the latter
the ordered moments are much smaller than in the former
and the neighboring spins tend to be perpendicular to each
other, i.e., the bond spin correlations vanish. The behavior of
the mutual information Ii,i+1 in the intermediate subspaces is
quite remarkable; no matter how large the defected area is, the
mutual information for the dimers outside this area is always
small and very close to IGS—this also applies to the case when
only one dimer is outside. On the other hand, on crossing
the border of the defected area the mutual information Ii,i+1

jumps immediately above IHS and behaves in an oscillatory
way within this area, remaining larger than IGS.

To conclude, we have constructed a simple pseudospin
model which could be investigated in a simple way due
to the local character of spin correlations, and its ground
state properties could be obtained in a numerically exact
way from the finite size scaling. We have shown that this
model provides an attractive possibility to obtain large areas
of disorder (or a spin-glass-like behavior) with entanglement
embedded in rather classically ordered surrounding only by
tuning the values of the symmetry operators. We believe that
this feature is of interest for constructing quantum computing
devices in the future, and the model could be realized by the
superconducting lattices of Josephson junctions.
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APPENDIX A: BACKWARD SPIN TRANSFORMATION

Having explicit form of the spin transformations given by
Eqs. (4), (5), (10), (11), and (13), it is straightforward to find
a direct transformation from the new degrees of freedom,
{σ z

i,2,σ
z
i,3,ri,si}, to the old ones, {Zi,1,Zi,2,Zi,3,Zi,4}, i.e.,

σx
i,3 = Xi,3Xi,4,

σ x
i,2 = Xi,2Xi,3,

(A1)
σ z

i,3 = Zi,1Zi,4,

σ z
i,2 = Zi−1,1Zi,2.

The list is completed by the already known relations,

ri = Zi,1Zi,2Zi,3Zi,4,
(A2)

si = Xi+1,2Xi,1Xi,4Xi+1,3.
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APPENDIX B: DUALITY OF THE INTERACTION
AND THE FREE TERM

It is easy to notice that in the form of the spin interac-
tion in Eq. (14) the three-spin terms behave as new Pauli
operators, in the sense that they satisfy all the canonical
commutation relations. Thus we can define new spins, τi,p, as
follows:

τ x
i,2 = si−1

(
σx

i−1,2 σx
i−1,3

)
σx

i,2,

τ z
i,3 = ri+1σ

z
i,3

(
σ z

i+1,2 σ z
i+1,3

)
. (B1)

Here we just took the interaction terms from Eq. (14) or
those shown in Fig. 3. However, the algebra is not complete
yet; we need to define the z and x counterparts of the τ x

i,2
and τ z

i,3 operators. One can easily check that these definitions
should be

τ z
i,2 = ri+1σ

z
i,2

(
σ z

i+1,2 σ z
i+1,3

)
,

(B2)
τ x
i,3 = si−1

(
σx

i−1,2 σx
i−1,3

)
σx

i,3.

Having them one can transform H to find

H =
L∑

i=1

{
τ x
i,2 + τ z

i,3 + riτ
z
i−1,3

(
τ z
i,2 τ z

i,3

) + si

(
τ x
i,2 τ x

i,3

)
τ x
i+1,2

+ riτ
z
i−1,2

(
τ z
i,2 τ z

i,3

) + si

(
τ x
i,2 τ x

i,3

)
τ x
i+1,3

}
. (B3)

This Hamiltonian has a very similar structure to that of
Eq. (14), i.e., we have linear terms in τi,p and cubic interaction

(a)

(b)

FIG. 12. (Color online) Schematic view of the interactions in
Eq. (B4) complementary to the ones present in Eq. (14) (see Fig. 3):
(a) the x interactions (black frames) and (b) the z interactions (red
frames).

terms with signs given by ri and si . There is also a subtle
difference as we get two more interaction terms [third line of
Eq. (B3)] compared to the one already present in Eq. (14) but
lose two of the linear terms. It is straightforward to check that
the structure of the two Hamiltonians is exactly the same if
we add to the Hamiltonian, Eq. (14), interaction terms of the
complementary form, riσ

z
i−1,2(σ z

i,2σ
z
i,3) and si(σx

i,2σ
x
i,3)σx

i+1,3
(see Fig. 12). In the other words, the Hamiltonian Hinv of
the form

Hinv =
L∑

i=1

{(
σ z

i,2 + σ z
i,3

) + (
σx

i,2 + σx
i,3

)

+ ri

(
σ z

i−1,2 + σ z
i−1,3

)(
σ z

i,2 σ z
i,3

)

+ si

(
σx

i,2 σx
i,3

)(
σx

i+1,2 + σx
i+1,3

)}
(B4)

is invariant under spin transformations (B1) and (B2).
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