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Toroidal order, given by a composite of electric and magnetic orders, manifests itself not only in unusual
magnetism but also in anomalous transport and magnetoelectric effects. We report our theoretical results on the
influence and stability of toroidal order in metals on the basis of a microscopic model. We consider an effective
single-band Hubbard-type model with a site-dependent antisymmetric spin-orbit coupling, which is derived from
a four-band tight-binding model including atomic spin-orbit coupling, off-site hybridization between orbitals with
different parities, and an odd-parity crystalline electric field. For this single-band model on a layered honeycomb
lattice, we investigate the electronic structure, magnetotransport, and magnetoelectric effect in a toroidal ordered
state with a vortexlike magnetic structure. The ferroic order of the microscopic toroidal moments acts as an
effective gauge field for electrons, which modulates the electronic band structure with a shift of the band bottom
in momentum space. In addition, the site-dependent antisymmetric spin-orbit coupling gives rise to highly
anisotropic Hall responses. The most salient feature is two different types of magnetoelectric response: one is a
magnetic order with net toroidal magnetization induced by an electric current perpendicular to the planes, and
the other is a uniform transverse magnetization induced by an electric current within the planes. We examine
the ground state of the effective model by the mean-field approximation, and show that the toroidal order is
stabilized by strong electron correlations at low electron density. We also discuss the temperature dependence of
the magnetoelectric effects associated with spontaneous toroidal ordering. Implications for experiments are also
presented.
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I. INTRODUCTION

The magnetoelectric effect, which is a consequence of
the interplay between electric and magnetic properties of
electrons first proposed by Curie [1], has long been studied
extensively in condensed matter physics [2–4]. It is an
intriguing phenomenon where magnetization is induced by
an electric field and electric polarization is induced by a
magnetic field. Recently, it has attracted renewed interest
since the discovery of multiferroic materials showing large
magnetoelectric responses [5–7]. In these magnetic insulators,
both spatial-inversion and time-reversal symmetries are broken
by a spontaneous magnetic order, yielding simultaneously
uniform electric polarization and magnetization [8–11]. Such
multiferroic materials have been intensively studied not only
from the viewpoint of fundamental physics but also for
potential applications to multifunctional devices [12–16].

Toroidal order is one of the states of matter showing such
cross correlations between electric and magnetic responses. A
toroidal moment, which is represented by a vector product of
electric and magnetic moments, was originally introduced as
an anapole moment in the context of parity violation by weak
interactions [17]. Recently, toroidal order, a periodic array of
toroidal moments in crystals, has gained interest because it
leads to exotic phenomena, such as a diamagnetic anomaly
and nonreciprocal directional dichroism [18–24], in addition
to ordinary magnetoelectric effects.

There are several multiferroic materials which exhibit
toroidal order. For instance, Cr2O3 shows a toroidal order in
the spin-flop phase under a strong magnetic field [25,26]. In
the magnetic piezoelectric material GaFeO3, a ferroic toroidal
order was detected by resonant magnetoelectric x-ray scat-
tering [27]. LiCoPO4 exhibits a large linear magnetoelectric

effect, and the coexistence of ferrotoroidic and antiferro-
magnetic domains was observed by optical second-harmonic
generation [28]. Ba2CoGe2O7 gives rise to a spontaneous
toroidal order due to single-ion effects [29]. These findings
are thus far restricted to insulators.

Toroidal order can exist also in metallic systems despite
the absence of a macroscopic polarization. Their influence on
electronic and magnetoelectric properties can be more inter-
esting than in insulators owing to their conducting nature.
For instance, recently, an antiferromagnetic metal on a zigzag
lattice, which accommodates toroidal order, was shown to
exhibit an interesting magnetoelectric response [30]. Nonethe-
less, toroidal order in metals has not been studied intensively,
in particular, from the microscopic point of view. To further
stimulate experiments on toroidal ordered systems, it is desired
to systematically study how toroidal order affects the electronic
structure, transport properties, and magnetoelectric effects. It
is also important to examine the stability of toroidal order
and to clarify the finite-temperature behavior associated with
spontaneous toroidal ordering.

In the present study, we investigate a microscopic model
in order to clarify the effect of toroidal ordering in metals. In
particular, we examine the effect of spontaneous ferroic order-
ing of toroidal moments with a focus on the lattice structures
on which the spatial-inversion symmetry is preserved globally
but broken intrinsically at each magnetic site. We consider a
low-energy effective single-band model for a minimal four-
band tight-binding model. The site-dependent antisymmetric
spin-orbit coupling in the effective model is derived from
the atomic spin-orbit coupling, off-site hybridization between
orbitals with different parities, and an odd-parity crystalline
electric field together with electron-electron interactions. As
a typical example, we study the effect of toroidal order
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triggered by a vortexlike magnetic order in the effective
model on a layered honeycomb lattice. The ferroic ordering
of microscopic toroidal moments acts as an effective gauge
field, which leads to modulations of the band dispersions
with a shift of the band bottom from the � point. We find
that the toroidal magnetic order plays an important role
in the anisotropic magnetotransport and the magnetoelectric
effects depending on the direction of the applied electric
current. In particular, we elucidate that an out-of-plane electric
current induces a vortexlike magnetic order, while an in-plane
current yields a transverse uniform magnetization in the
plane by canting the underlying vortexlike magnetic order.
We discuss such effects from a symmetry point of view. We
also provide some implications for experiments on toroidal
metals. Although qualitatively similar results were obtained
for a related model in a previous study [30], the present work
provides a comprehensive analysis focusing on the toroidal
ordering. Moreover, investigating the model by a mean-field
approximation, we find that such a ferroic toroidal order
appears at low temperatures in a wide range of strongly
correlated regions for low electron density. We also show
the temperature dependence of the anomalous magnetoelectric
responses. We find that the longitudinal toroidal response to the
current exhibits a broad peak around the critical temperature
with a kink at the transition, while the transverse uniform
magnetization induced by the current shows order-parameter-
like behavior.

The organization of this paper is as follows. In Sec. II,
we give a brief review of the microscopic definition and
the symmetry analysis of toroidal moments. In Sec. III, we
investigate the influence of toroidal ordering in metals. After
introducing the lattice structures with local inversion symme-
try breaking in Sec. III A, we present a low-energy effective
Hamiltonian in Sec. III B. We show how the toroidal order
affects the electronic structure, anisotropic magnetotransport,
and magnetoelectric effects in Secs. III C, III D, and III E,
respectively. In Sec. IV, we examine the stability of the toroidal
magnetic order at the level of the mean-field approximation.
The results for the ground state and the finite-temperature
properties are presented in Secs. IV A and IV B, respectively.
Section V is devoted to a summary of the present paper.

II. TOROIDAL MOMENT

In this section, we introduce the toroidal moment from both
microscopic and macroscopic points of view. Although these
arguments have already been given in the literature, e.g., in
Ref. [22], we give a brief summary to make the present paper
self-contained and to understand the microscopic results in the
following sections.

First, we discuss the microscopic origin of the toroidal
moment. In general, magnetic and toroidal multipoles appear
in the multipole expansion of an electromagnetic vector
potential,

A =
∑
lm

√
4π (l + 1)

2l + 1

1

rl+1

×
(

i√
l
MlmY l

lm −
√

2l + 1

r
TlmY l+1

lm

)
, (1)

ri Si

FIG. 1. (Color online) Schematic picture of the toroidal moment,
which is defined by the vector product of the position from the
inversion center and the magnetic moment. See Eq. (3).

where Y l′
lm represents the vector spherical harmonics [31–33];

l and m are the azimuthal and magnetic quantum numbers,
respectively, and l′ = l,l ± 1. Y l′

lm has parity (−1)l
′

under
spatial inversion. Since A is a polar vector with odd time-
reversal symmetry, Mlm in the first term of Eq. (1) represents
the magnetic multipoles (axial tensor) and Tlm in the second
term the toroidal multipoles (polar tensor). Thus, the even-rank
tensor Mlm and the odd-rank tensor Tlm become active only
when both spatial-inversion and time-reversal symmetries are
broken. The toroidal moment t appears in the lowest-rank
(l = 1) contribution in the latter term [18,34,35], which is
written in the form

t = 1

6c

∑
i

r i × (r i × j i). (2)

Here, r i and j i are the position vector and the classical circular
electric current at r i , respectively. When there is an internal
magnetic field caused by spins instead of the electric current,
the toroidal moment is expressed in terms of the localized spin
Si as

t = gμB

2

∑
i

r i × Si , (3)

where g is the g factor and μB is the Bohr magneton. This
definition indicates that the toroidal moment is represented by
the sum of vector products of the position vector and localized
spin, as schematically shown in Fig. 1. We note that there is
an ambiguity in the definitions in Eqs. (2) and (3) depending
on the choice of the origin for r i [22].

The toroidal moment t appears in the Hamiltonian under
an inhomogeneous magnetic field H(r): the Hamiltonian can
be expanded at some point r = 0 in terms of field gradients as

Hext = − m · H(0) − t · [∇ × H]r=0

− qμν(∂μHν + ∂νHμ)r=0 + · · · , (4)

where m and qμν are the magnetic dipole and quadrupole
moments, respectively (μ,ν = x,y,z). The repeated greek
indices are implicitly summed over hereafter. Equation (4)
indicates that the toroidal moment t couples to the curl of
magnetic field, that is, the electric current.

Next, we describe macroscopic responses of the toroidal
moment to electromagnetic fields [3,34]. Let us consider an
expansion of the free energy with respect to the electric field
E and the magnetic field H up to the second order [3]. It is
given by

F (E,H) = F0 − εμνEμEν

8π
− μμνHμHν

8π
− αμνEμHν, (5)
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where F0 is the free energy in the absence of the electric
and magnetic fields; εμν , μμν , and αμν are the dielec-
tric permittivity, magnetic permeability, and magnetoelectric
tensor, respectively. Equation (5) is useful to discuss the
magnetoelectric responses macroscopically. In fact, αμν in
the last term is related to linear magnetoelectric responses,
and it is nonzero only when both global spatial-inversion
and time-reversal symmetries are broken. The magnetoelectric
contribution in the last term can be divided into three terms:

− a(E · H) − T · (E × H) − Qμν(EμHν + EνHμ), (6)

where the coefficients of the first, second, and third terms
represent the magnetic flux (pseudoscalar), toroidal magneti-
zation T (polar vector), and magnetic quadrupole (symmetric
traceless pseudotensor). Thus, the antisymmetric components
of the magnetoelectric tensor αμν correspond to the toroidal
magnetization, which is defined as the toroidal moment per
unit volume.

The linear magnetoelectric effect caused by toroidal order-
ing is understood from Eq. (6) [21]. Namely, the second term
implies the relations

P ∝ −T × H, M ∝ T × E, (7)

where P and M are the electric polarization and magnetiza-
tion, respectively. These indicate that the electric polarization
(magnetization) is induced in the direction perpendicular to
both the toroidal magnetization and the magnetic (electric)
field.

III. TOROIDAL ORDERING IN METALS

Here, we examine the nature of toroidal ordered states
in crystals. First, we introduce lattice structures with local
inversion symmetry breaking in Sec. III A. Next, we present
a minimal low-energy Hamiltonian including the effect of the
site-dependent antisymmetric spin-orbit coupling in Sec. III B.
By analyzing the effective Hamiltonian on a layered honey-
comb lattice, we investigate the influence of toroidal ordering
on the electronic structure in Sec. III C, magnetotransport in
Sec. III D, and the magnetoelectric effect in Sec. III E.

A. Lattices with local inversion symmetry breaking

A minimal ingredient for activating a toroidal moment is
spatial-inversion symmetry breaking at each magnetic site. In
such situation, an odd-parity crystalline electric field is present
at the magnetic sites, which mixes orbitals with different
parities. Such local parity mixing together with the atomic
spin-orbit coupling plays an important role in realizing toroidal
ordering in metals, as we will see in the following sections.

In order to demonstrate the above scenario, we focus on
lattice structures in which the inversion symmetry is broken
locally at each site but the global inversion symmetry is
preserved at off-site positions. There are several lattices with
such local inversion symmetry breaking; for instance, a one-
dimensional (1D) zigzag chain [Fig. 2(a)], a two-dimensional
honeycomb lattice [Fig. 2(b)], a 1/5-depleted square lattice
[Fig. 2(c)], and a three-dimensional (3D) diamond lattice. On
these lattices, the spatial-inversion symmetry is broken at the

(b)

(c)(a)

FIG. 2. (Color online) Schematic pictures of lattice structures
with local inversion symmetry breaking: (a) One-dimensional zigzag
chain, (b) honeycomb lattice, and (c) 1/5-depleted square lattice.
Circles indicate the inversion centers, while triangles represent the
lattice sites at which the inversion symmetry is broken.

lattice sites (triangles in Fig. 2), although it is preserved at the
centers of bonds or plaquettes (circles).

B. Effective single-band model

In order to describe the origins of the essential ingredients
for a minimal tight-binding model, we start from a generic
four-band model with local parity mixing. Following the
procedure given in the Appendix, we obtain an effective
single-band model, which will mainly be examined in the
following sections.

The Hamiltonian for the generic four-band model is given
by

H4 band = Hkin + Hhyb + Ho-CEF + HLS + Hint, (8)

where

Hkin = −
∑
i,j

∑
α=s,px ,py ,pz

∑
σ

(
t̃ αij c̃

†
iασ c̃jασ + H.c.

)
, (9)

Hhyb = −
∑
〈i,j〉

∑
α=px,py ,pz

∑
σ

(
Ṽ α

ij c̃
†
isσ c̃jασ + H.c.

)
, (10)

Ho-CEF =
∑

i

∑
α=px,py ,pz

∑
σ

(D̃α
i c̃

†
isσ c̃iασ + H.c.), (11)

HLS = λ

2

∑
i

∑
α,β=px,py ,pz

∑
σ,σ ′

c̃
†
iασ H̃LSc̃iβσ ′ , (12)

Hint =
∑

i

∑
αβα′β ′

∑
σσ ′

Uαβα′β ′ c̃
†
iασ c̃

†
iβσ ′ c̃iβ ′σ ′ c̃iα′σ . (13)

Here, c̃
†
iασ (c̃iασ ) is the creation (annihilation) operator of a

conduction electron with orbital α and spin σ at site i; we
consider four orbitals, i.e., an “s-type” orbital with the angular
momentum l = 0 (even parity) and three “p-type” orbitals
with l = 1 (odd parity). This is a minimum set of orbitals for
describing parity mixing. Equation (9) represents the kinetic
energy of the conduction electrons; the sum is limited to
on-site and nearest-neighbor sites. The on-site part describes
the atomic energy, which is set as t̃ sii = Ẽs and t̃

α=px,py ,pz

ii = 0.
Equation (10) describes the off-site hybridization between s
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and p orbitals; the sum 〈i,j 〉 is taken for the nearest-neighbor
sites, and Ṽ α

ij depends on the p orbital as well as the bond
direction. Equation (11) denotes the odd-parity crystalline
electric field; D̃α

i depends on both site and orbital. Note that
D̃α

i is nonzero only in the absence of local inversion symmetry,
while Ṽ α

ij is always present even with local inversion symmetry.
We note that both Ṽ α

ij and D̃α
i are indispensable to obtain

the site-dependent antisymmetric spin-orbit coupling in the
effective model (see the Appendix). Equation (12) represents
the atomic spin-orbit coupling for p orbitals with l = 1: H̃LS

is the 6 × 6 matrix given by

H̃LS =
⎛
⎝ 0 −iσ z iσ y

iσ z 0 −iσ x

−iσ y iσ x 0

⎞
⎠ , (14)

where σμ is the μ component of the Pauli matrix for spin.
Finally, Eq. (13) is a general form of the on-site Coulomb
interactions. Here, we take account of only the intraorbital
components for simplicity, i.e., Uαβα′β ′ = (U/2)δαβδα′β ′δαα′

(δαβ is the Kronecker delta).
We treat the interaction term at the level of a mean-field

approximation to allow magnetic solutions. The mean-field
form is given by

HMF
int = −

∑
i

∑
α=s,px ,py ,pz

M̃
α

i · s̃α
i , (15)

where the mean field M̃
α

i = 2U m̃α
i and the magnetic moment

m̃α
i = 〈s̃α

i 〉 = 〈∑σσ ′ c̃
†
iασ (σ σσ ′/2)c̃iασ ′ 〉. We omit a constant

from the mean-field decoupling here and in Sec. III.
In the present study, we focus on a 3D system composed of

weakly coupled uniform 1D chains running in the z direction.
By several simplifications in the limit of strong spin-orbit
coupling (see the Appendix), we arrive at an effective single-
band model, whose Hamiltonian is given by

HMF = − t
∑
〈i,j〉

∑
σ

(c†iσ cjσ + H.c.)

+ 2
∑

i

(si × Di)
z −

∑
i

M i · si . (16)

Here, c
†
iσ (ciσ ) is the creation (annihilation) operator of a

conduction electron in the effective single band at site i and
quasispin σ , which distinguishes the time-reversal pair states;
si = ∑

σ,σ ′ c
†
iσ (σ σσ ′/2)ciσ ′ . The first term is the kinetic energy

of the electrons with a renormalized hopping t ; we assume
isotropic hopping for the in-chain and out-of-chain directions
for simplicity, as the anisotropic case gives qualitatively the
same results. Hereafter, we set t = 1 as the energy unit. The
second term represents the site-dependent antisymmetric spin-
orbit coupling, in which Di is a site-dependent antisymmetric
vector with respect to kz, originating from the odd-parity
crystalline electric field D̃α

i , the off-site hybridization Ṽ α
ij ,

and the atomic spin-orbit coupling λ [see Eq. (A7) in the
Appendix]. The third term in Eq. (16) describes the mean-field
form of the Coulomb interaction between electrons; M i =
2Umi , where mi = 〈si〉 is the magnetic moment at site i.

In the following, we consider the model in Eq. (16) on
a stacked honeycomb lattice, as shown in Fig. 3. We take
the lattice constants a = c = 1. Extensions to other lattices

(a)

(b)

3

2
1

0

5
4

FIG. 3. (Color online) (a) Schematic picture of a projection of the
layered honeycomb lattice onto the xy plane. The thin (blue) arrows
show the magnetic pattern assumed in the toroidal ordered state
[Eq. (18)], and the thick (green) arrows indicate the specific directions
of the odd-parity crystalline electric field [Eq. (17)]. The dashed
hexagon represents the six-sublattice unit cell with the sublattice
indices (l = 0,1, . . . ,5). a is the lattice constant in the xy plane.
(b) Schematic picture of the layered honeycomb lattice. The red
arrows in the z direction represent the toroidal magnetizations. c is
the lattice constant in the z direction.

with local inversion symmetry breaking are straightforward.
For the present stacked honeycomb-lattice case, we assume
the presence of Di in a six-sublattice form with the specific
directions in the xy plane as shown by the thick arrows in
Fig. 3(a). We also assume that the same patterns of Di are
stacked along the z direction. The form in the six-site sublattice
is represented by

Dl = D sin kz

(
cos

π

3
l, sin

π

3
l, 0

)
, (17)

where l is the sublattice index (l = 0,1, . . . ,5) and D is a
parameter to control the magnitude of the antisymmetric spin-
orbit coupling. It is worth noting that the factor of sin kz always
enters into Dl in quasi-1D systems; see the derivation in the
Appendix.

Furthermore, in the following sections, we assume a six-
sublattice vortex-type magnetic order as shown in Fig. 3(a)
in a mean-field form. We call it the toroidal magnetic order
hereafter. Specifically, the mean field for the toroidal magnetic
order is given by

M l = MT

(
− sin

π

3
l, cos

π

3
l, 0

)
. (18)

Here, MT is a measure of the mean field for the toroidal
magnetic order, which is treated as a free parameter throughout
in this section, while it will be determined by solving the
self-consistent equations in Sec. IV. We note that a similar
magnetic pattern was indeed observed in the partially ordered
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state below 20 K in a uranium compound UNi4B [36]. We will
remark on this point in Sec. V.

Since Dl plays the role of a local electric field and
Dl ⊥ M l at each site, the toroidal magnetic order M l must
accompany a ferroic order of toroidal moments, T ∝ Dl ×
M l = (0,0,DMT sin kz), as shown in Fig. 3(b). In other words,
even if a macroscopic polarization is absent, a spontaneous
toroidal order can be realized by specific magnetic ordering
with underlying local inversion symmetry breaking.

C. Electronic structure

Let us first discuss the electronic structure of the model in
Eq. (16) with Eqs. (17) and (18). Figure 4 shows the band
structures in the kz direction from k = (0,0,−π ) to (0,0,π )
for several values of D and MT .

Figure 4(a) shows the band structure in the paramagnetic
state (MT = 0) at D = 0, where both spatial-inversion and
time-reversal symmetries are preserved. In this case, there
are three bands; the top and bottom bands are each doubly
degenerate, while the middle one is eightfold degenerate.
When only the time-reversal symmetry is broken by the
toroidal magnetic order MT �= 0 at D = 0, the bands are split
into two bunches depending on the spins parallel or antiparallel
to the mean field M l . Each bunch consists of three bands,
each of which remains doubly degenerate due to the global
inversion symmetry: the band dispersions satisfy the relation
εσ (k) = εσ (−k). Meanwhile, when D is nonzero representing
local inversion symmetry breaking and the system is in the
paramagnetic state (MT = 0), the antisymmetric spin splitting
of the bands occurs, as shown in Fig. 4(c). Here, the time-
reversal symmetry ensures that εσ (k) = ε−σ (−k). It should

0
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FIG. 4. (Color online) Energy dispersion along the kz direction
of the Hamiltonian in Eq. (16) with Eqs. (17) and (18) for (a) D = 0,
MT = 0, (b) D = 0, MT = 8, (c) D = 0.5, MT = 0, and (d) D = 0.5,
MT = 8. The dashed red lines in (d) indicate the band bottoms in the
kz direction.

be noted however that each band is still doubly degenerate
as the global inversion symmetry remains: εσ (k) = εσ (−k).
This is different from the case with an ordinary antisymmetric
spin-orbit coupling such as that of Rashba type where global
inversion symmetry is broken.

What happens when the system exhibits toroidal order, i.e.,
for MT �= 0 and D �= 0? In this case, both spatial-inversion
P and time-reversal T symmetries are broken. Each band,
however, retains twofold degeneracy owing to the combined
PT symmetry, which ensures that εσ (k) = ε−σ (k). However,
there is no guarantee that the energy at k is degenerate with
that at −k. In fact, the resultant band structure consists of six
bands, each doubly degenerate, with a shift of the band bottom
from the � point, as shown in Fig. 4(d).

The modulation of the bands with a shift of the band
bottom is understood in the single-chain limit as follows. The
Hamiltonian for the single chain is given by a simple form of
the 2 × 2 matrix:

HMF
1D =

( −2t cos kz iD− + M−/2

−iD+ + M+/2 −2t cos kz

)
, (19)

where D± = (Dx ± iDy) sin kz and M± = Mx ± iMy . Here,
D = (Dx,Dy,0) sin kz and M = (Mx,My,0). See also
Eq. (A5) in the Appendix. The energy spectrum of this
Hamiltonian is given by

ε(kz) = −2t cos kz ±
√

D2 + M2/4 − (D × M)z. (20)

As D is proportional to sin kz [see Eq. (17)] and the last term
in the square root is linear in D, a shift of the band bottom
occurs when D × M �= 0, which is proportional to the toroidal
magnetization.

The results indicate that the toroidal magnetization acts
as an effective gauge field for conduction electrons. The
shifted band structure, however, does not generate spontaneous
electric current in the equilibrium state due to the gauge
invariance [30,37]. The asymmetric band structure can be
detected in principle by experiments, such as angle-resolved
photo-emission spectroscopy. We expect that the unusual
band deformation may become the origin of nonlinear optical
effects, such as nonreciprocal directional dichroism [38].

We note that the system has particle-hole symmetry. Indeed,
the Hamiltonian in Eq. (16) is unchanged by the particle-hole
transformation (clσ ,c

†
lσ ) → (−1)l(d†

lσ ,dlσ ) with a shift of kz

by π and M l → −M l . This symmetry is also seen in the
band structure in Fig. 4; the band dispersions satisfy εσ (kz) =
−ε−σ (π − kz).

D. Magnetotransport

We here discuss magnetotransport coefficients for the
model in Eq. (16) with Eqs. (17) and (18). We calculate the
conductivity tensor in terms of the current-current correlation
by the standard Kubo formula as

σμν = e2

�

1

iV

∑
m,n,k

f (εnk) − f (εmk)

εnk − εmk

J nm
μ,kJ

mn
ν,k

εnk − εmk + iδ
, (21)

where V is the system volume, f (ε) is the Fermi distribution
function, J nm

μ,k = 〈nk|Jμ|mk〉 [Jμ is the current operator in the
direction μ = (x,y,z)], and εmk and |mk〉 are the eigenvalue
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FIG. 5. (Color online) Electron density dependence of the Hall
conductivity for (a) MT = 0 and (b) MT = 8. The data are obtained
at D = 0.5 in the magnetic field H = 0.5 applied in the x direction.
We take the broadening factor δ = 0.01 and temperature T = 0.1.

and eigenstate of HMF with the Zeeman term (see below).
Here, m and n are the band indices. We take e2/h = 1 (e is the
elementary charge and h is the Planck constant), a broadening
factor δ = 0.01, and temperature T = 0.1. The summation of
k is taken over the folded Brillouin zone in the magnetically
ordered state.

Figure 5 shows the Hall conductivity σyz as a function of
the electron density ne = (1/N)

∑
iσ 〈c†iσ ciσ 〉, where N is the

total number of sites. The results are obtained for D = 0.5
in a magnetic field applied in the x direction; here, we added
the Zeeman term HZ = −H

∑
i s

x
i to the Hamiltonian HMF

in Eq. (16). The results are symmetric with respect to ne = 1
because of the particle-hole symmetry discussed at the end of
the previous section.

Figure 5(a) shows the Hall conductivity in the absence of
the toroidal magnetic order MT = 0. The sign and magnitude
of the Hall conductivity depend on the electron density ne,
reflecting the nature of the carriers near the Fermi level. It
is highly anisotropic; only the σyz(xz) component becomes
nonzero in the magnetic field applied in the x (y) direction.
This is a consequence of the presence of the (site-dependent)
antisymmetric spin-orbit coupling. Indeed, σμν disappears if
we take D = 0. The toroidal magnetic order affects signif-
icantly the behavior of the Hall conductivity, as shown in

Fig. 5(b) for MT = 8. Although the anisotropy of σμν does
not change in the presence of MT , the Hall conductivity is
strongly suppressed. As will be shown in the next section, MT

has strong temperature dependence in the ordered state, and
hence σμν should exhibit strong suppression with decrease of
temperature.

E. Magnetoelectric effect

Now let us discuss magnetoelectric effects in the toroidal
ordered state. We compute the linear response function in terms
of the correlation between the (toroidal) magnetization and an
electric current caused by an electric field in the form

Kμν = gμB

2

e

�

1

iV

∑
m,n,k

f (εnk) − f (εmk)

εnk − εmk

σnm
μ,kJ

mn
ν,k

εnk − εmk + iδ
,

(22)

where σnm
μ,k = 〈nk|σμ|mk〉. We take gμBe/2h = 1. In the

following, we discuss two different types of magnetoelectric
effects: one is the toroidal magnetic response (μ = T ) to an
electric current, and the other is the uniform magnetization
(μ = x,y,z) induced by an electric current.

1. Longitudinal toroidal magnetization caused by electric current

First, we focus on the toroidal magnetic response to an
electric current. Here, we consider σnm

T ,k in Eq. (22) as the
toroidal magnetic order in Eq. (18). Hence, for instance, KTz

is the coefficient for the toroidal magnetic order induced by
the electric current in the z direction. Among KTν , only KTz

becomes nonzero, as will be discussed in Sec. III E 3 and shown
in the table in Fig. 7.

Figure 6(a) shows KTz as a function of the electron
density ne. KTz becomes nonzero in the entire region of ne

except for the insulating cases at ne = 0, 1, and 2. Note that
KTz is antisymmetric with respect to ne = 1 because of the
sign change of the magnetic moment in the particle-hole
transformation discussed in Sec. III C. The result indicates that
toroidal magnetization can be induced by an electric current
in the z direction. This provides the possibility in experiments
of aligning the toroidal domains by cooling the system in a
current flow perpendicular to the planes.

Although the toroidal magnetic response shows compli-
cated behavior depending on both ne and MT , it tends to be
smaller for larger MT . This tendency is clearly seen in the
low- and high-density regions where the Fermi surface has a
simple shape. The inset of Fig. 6(a) displays the behavior of
KTz at low density ne = 0.1 as a function of MT ; the toroidal
magnetic response is largest at MT = 0, and is suppressed as
MT increases. This susceptibilitylike behavior suggests that
KTz as a function of temperature becomes largest near the
critical temperature for the toroidal ordered state, as long as
the transition is of second order. Indeed, we will see such
behavior in the mean-field calculation in Sec. IV B.

We note that KTz substantially depends on the broadening
factor δ in Eq. (22). This indicates that this quantity has a
dominant contribution from the intraband components with
m = n in Eq. (22).

024432-6



TOROIDAL ORDER IN METALS WITHOUT LOCAL . . . PHYSICAL REVIEW B 90, 024432 (2014)

20 1

0.5

-0.5

0

MT=0
1
2
4
8

J

20 1

40

-40

0

J

MT= 0
1
2
4
8

)b()a(

0 6
MT

12
0

20

0 6 12
MT

0.0

0.2

FIG. 6. (Color online) Electron density dependence of (a) the toroidal-current correlation KTz and (b) the magnetization-current correlation
Kxy . The insets of (a) and (b) show their MT dependences at ne = 0.1. The data are obtained for D = 0.5, δ = 0.01, and T = 0.1. Schematic
pictures for the magnetoelectric responses are shown in the bottom panels. In each panel, the left and right pictures show the alignment of
the magnetic moments before and after the electric current is applied. In the rightmost one, the arrow in the center of hexagon indicates a net
uniform magnetization induced by the electric current.

2. Transverse magnetization caused by electric current

Next, we discuss another magnetoelectric effect, the trans-
verse magnetic response to an electric current. Here, we
consider σnm

μ,k with μ = x,y,z in Eq. (22). For instance, Kxy is
the coefficient for the uniform magnetization in the x direction
induced by the electric current in the y direction. Among Kμν ,
only the transverse components within the plane, i.e., Kxy

and Kyx become nonzero, and they satisfy the antisymmetric
relation Kxy = −Kyx deduced from Eq. (6); see also the
discussion about the table in Fig. 7 in Sec. III E 3.

flux

fluxtoroidal

toroidal

any

toroidal flux

FIG. 7. (Color online) Summary of the magnetoelectric effects
under toroidal or flux orders. In the table, “toroidal” and “flux”
indicate the underlying magnetic orders for which the magnetic
response in the top row is induced by the electric current in the left
column. “Any” represents paramagnetic or any magnetically ordered
state, including the toroidal and flux orders. Schematic pictures of the
toroidal and flux orders are shown at the bottom; the arrows indicate
the magnetic moments.

Figure 6(b) shows the result for Kxy as a function of the
electron density ne. Similarly to KTz in Fig. 6(a), Kxy shows
a nonzero value in the entire region of ne, except for the
insulating cases at ne = 0, 1, and 2, and it is antisymmetric
with respect to ne = 1. The result indicates that a uniform
magnetization can be induced by an electric current when
toroidal order is present (MT �= 0). This is considered
as a multiferroic response in metals with simultaneous
breaking of spatial-inversion and time-reversal symmetry.
Experimentally, a nonzero value of Kxy = −Kyx is an
indication of toroidal order.

The magnitude of the induced magnetization becomes
larger for larger MT , in contrast to the toroidal magnetic
response KTz in Fig. 6(a). Kxy = 0 for MT = 0 is due to the
presence of time-reversal symmetry, and Kxy increases with
increase of MT for small MT and it almost saturates for large
MT , as shown in the inset of Fig. 6(b). In contrast to KTz, Kxy

weakly depends on δ, indicating that a dominant contribution
comes from the interband components in Eq. (22).

3. Summary of magnetoelectric effects

We summarize the results of magnetoelectric effects ob-
tained for the model in Eq. (16) with Eqs. (17) and (18).
Figure 7 shows a table indicating the magnetoelectric effects
in terms of the applied electric current (in the left column) and
the resultant magnetic response (in the top row). “Toroidal” or
“flux” in the table represents the underlying magnetic order.
Thus, the magnetoelectric responses in the layered honeycomb
lattice are classified according to the applied current direction.
This relationship is essentially the same as in the insulating
case, where the electric current is replaced by the electric field.

As shown in Sec. III E 1, an electric current in the z direction
induces an additional magnitude of the toroidal magnetization
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to the underlying magnetic order [Eq. (18)] while preserving
the ordering pattern. This is a natural consequence of the
coupling between the toroidal moment and the electric current
in the second term in Eq. (4) together with the relation
M l ∝ Dl × T . As suggested by the coupling term, this
magnetoelectric effect is present even in the absence of toroidal
order; in fact, the induced magnetization is largest for MT = 0
[see the inset of Fig. 6(a)].

In contrast, by applying the current in the x (y) direction in
the toroidal ordered state, uniform magnetization is induced
perpendicular to the current direction within the plane, as
shown in Sec. III E 2. This is a transverse response of
the magnetization to the electric current, described in the
second relation in Eq. (7). As suggested by the relation, this
magnetoelectric effect becomes nonzero only in the presence
of toroidal magnetization [see the inset of Fig. 6(b)]. Thus, the
results in the metallic state in our model are consistent with
the symmetry analysis in Sec. II. Systematic measurements of
these magnetoelectric effects will be useful for detection of
toroidal order in metals.

For comparison, we consider the case of a complementary
magnetic order, a flux-type order, as shown in the schematic
picture in Fig. 7. This is the magnetic order obtained by rotating
the magnetic moments in the toroidal ordered state by 90◦.
Note that, in the flux state, the magnetic moments are parallel
to the antisymmetric vector Di at each site, and hence the
toroidal moment vanishes. Although both the spatial-inversion
and time-reversal symmetries are broken in this flux state as
well, the magnetoelectric response within the xy plane appears
in a complementary manner to that for the toroidal ordered
state, as shown in the table in Fig. 7; instead of the transverse
response in the toroidal case, a longitudinal magnetization is
induced by the in-plane current. These are also consistent with
the symmetry analysis in Sec. II; the longitudinal response is
described by the pseudoscalar term in Eq. (6).

IV. MEAN-FIELD CALCULATIONS

In Sec. III, we simply assumed the toroidal order given by
Eq. (18) on the layered honeycomb lattice and discussed the
resultant electronic state, transport properties, and magneto-
electric effects. Now, we examine when and how such a ferroic
toroidal ordered state is realized in the effective single-band
model. For that purpose, we restore the Coulomb interaction
for the mean-field term in Eq. (16) in the form

H = − t
∑
〈i,j〉

∑
σ

(c†iσ cjσ + H.c.)

+ 2
∑

i

(si × Di)
z + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓. (23)

Here, we apply the standard Hartree-Fock approximation to
the Coulomb U term: we decouple the two-body term to a
one-body form by introducing the mean fields 〈c†iσ ciσ ′ 〉 as

c
†
i↑ci↑c

†
i↓ci↓

∼ c
†
i↑ci↑〈c†i↓ci↓〉 + 〈c†i↑ci↑〉c†i↓ci↓ − 〈c†i↑ci↑〉〈c†i↓ci↓〉

− c
†
i↑ci↓〈c†i↓ci↑〉 − 〈c†i↑ci↓〉c†i↓ci↑ + 〈c†i↑ci↓〉〈c†i↓ci↑〉,

(24)

where 〈· · · 〉 is the statistical average with respect to the
one-body Hamiltonian. We assume the mean-field solution
in the same six-sublattice form as Dl , but allow arbitrary
magnetic and charge patterns within the unit cell (the magnetic
moments are assumed to be within the xy plane). Starting
from several states with different spin and charge patterns,
we determine the mean fields self-consistently by solving the
one-body problem by exact diagonalization. In the calculations
of the mean fields, we take the sum over 643 grid points in
the folded Brillouin zone. We determine the phase diagram
by comparing the free energies between several converged
states with different types of ordering patterns. The physical
quantities are calculated from the corresponding eigenvalues
and eigenstates. In Sec. IV A, we elucidate the ground-state
phase diagram. Finite-temperature properties are discussed in
Sec. IV B.

A. Ground state

First, we examine the ground state of the model given
by Eq. (23) by changing U and the electron density ne.
Figure 8 shows the ground-state phase diagram obtained by
the mean-field calculations at D = 3. The result shows that
several magnetic states appear in the large-U region. Among
them, the toroidal ordered phase is stabilized in the low-density
region. This is a metallic state with a shifted band structure

FIG. 8. (Color online) Ground-state phase diagram of the model
in Eq. (23) on a layered honeycomb lattice obtained by the
mean-field calculations. The data are taken at D = 3. Schematic
pictures of the ordering patterns are shown in the bottom panel. The
arrows represent magnetic moments. “Other MO” represents other
complicated magnetically ordered states. Phase 1 corresponds to the
toroidal ordered state. There exist no flux-type orders.
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FIG. 9. (Color online) Temperature dependences of (a) the mag-
nitude of the toroidal magnetic moments mT , (b) KTz, and (c) Kxy

at U = 40, D = 3, and ne = 0.05. The inset of (a) shows the U

dependence of Tc for ne = 0.05. KTz in a broader temperature range
is shown in the inset of (b). The shaded temperature region indicates
the toroidal ordered phase and the vertical dotted lines show the
transition temperature Tc.

and shows magnetoelectric effects as well as magnetotransport
phenomena, as shown in Sec. III.

B. Finite temperature

Next, we discuss the finite-temperature properties in
toroidal ordering within the mean-field approximation. The
parameters are taken at U = 40, D = 3, and ne = 0.05.
Figure 9(a) shows the result for the magnitude of the toroidal
magnetic order parameter mT = MT /(2U ) [see Eq. (18)
and Fig. 3]. While increasing temperature, mT decreases
continuously to zero at the critical temperature Tc � 0.69; this
signals the second-order transition from the low-temperature
toroidal ordered state to the high-temperature paramagnetic
state. We also show the U dependence of Tc at ne = 0.05 in
the inset of Fig. 9(a).

Figures 9(b) and 9(c) show the temperature dependences
of the magnetoelectric responses. We use the formula in
Eq. (22) with δ = 0.1. Figure 9(b) displays KTz. The result
shows that the magnitude of KTz becomes largest at T � Tc

and rapidly decreases for lower temperatures after showing a
kink at Tc [see also the inset in Fig. 9(b)]. The behavior is
consistent with that expected from the result of the ground
state in the inset of Fig. 6(a): KTz becomes largest at
MT = 0 and decreases as MT increases. From the result, we
conclude that the system exhibits a large toroidal magnetic
response at and slightly above the critical temperature. Note
that similar behavior was observed in the magnetoresistance
in so-called double-exchange systems, such as perovskite
manganese oxides [39–42].

On the other hand, as shown in Fig. 9(c), −Kxy behaves
like the order parameter mT ; it becomes nonzero below
Tc and grows rapidly as decreasing temperature. This is
also consistent with the expectation from the ground-state
calculation shown in the inset of Fig. 6(b).

V. SUMMARY AND CONCLUDING REMARKS

In summary, we have investigated the effect and stability
of toroidal order in metals on a lattice without local inver-
sion symmetry. We have introduced an effective single-band
Hubbard-type model with a site-dependent antisymmetric
spin-orbit coupling, while presenting the detailed derivation
from a minimal four-band model. Considering an in-plane
vortexlike magnetic order which accommodates a ferroic
toroidal order on a stacked honeycomb lattice, we have studied
the effect of the toroidal order on the electronic structure, mag-
netotransport, and magnetoelectric effects. We have explicitly
shown in the microscopic model that (i) when the toroidal
order is realized, the bottom of the electronic bands shifts in
the direction of the toroidal magnetization, (ii) the anisotropic
Hall response appears due to the site-dependent antisymmetric
spin-orbit coupling, (iii) the system exhibits two different types
of magnetoelectric effects: a longitudinal toroidal magnetic
response to an electric current in the out-of-plane direction
and a transverse uniform magnetization induces by an electric
current in the plane. We have also investigated the stability
of the toroidal ordered state in the effective model by the
mean-field approximation. We have shown that the toroidal
ordered state is stabilized in the strongly-correlated region
at low electron density. We have also examined the nature of
the finite-temperature phase transition for the toroidal ordering
and the temperature dependence of the magnetoelectric effects.
We have shown that the transition is continuous and that the
toroidal magnetic response is maximized around the critical
temperature, while the uniform magnetization induced by a
current behaves like a toroidal order parameter.

Our results provide a reference for further exploration
of toroidal order in metallic magnets. Our model includes
the essential ingredients for toroidal ordering; the atomic
spin-orbit coupling, off-site hybridizations of different-parity
orbitals, an odd-parity crystalline electric field due to the
local inversion symmetry breaking of the lattice structure,
and electron-electron correlations. A complementary set of
measurements of the electronic structure, magnetotransport,
and magnetoelectric effects presented here will be useful
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for identifying the type of toroidal order. We have also
mentioned the possibility of magneto-optical effects, such as
a nonreciprocal directional dichroism, and of alignment of
toroidal domains by cooling the system in an electric current.

The magnetically ordered state in UNi4B [36,43] could be
a candidate for the spontaneous toroidal ordering discussed
in the present study. While the lattice structure of this
compound is a layered triangular lattice, the system shows
partial disorder, which is coexistence between the magnetic
order on the honeycomb subnetwork and nonmagnetic sites
below 20 K. Interestingly, the magnetic structure on the stacked
honeycomb subnetwork is vortexlike, as displayed in Fig. 3.
Namely, this compound has the possibility of showing toroidal
nature, although the direction and magnitude of the underlying
antisymmetric vector Dl remain unknown. Moreover, the
electric structure and magnetoelectric effects are not clarified
yet, to the best of our knowledge. Further experiments, such as
angle-resolved photoemission spectroscopy and measurement
of the magnetoelectric tensor, are desirable to examine the
possibility of toroidal ordering in this compound. Nonlinear
optical effects would be interesting as well.

There are many other candidate materials in which the
lattice structure has local inversion symmetry breaking. For
instance, in spinels, which consist of a wide range of
compounds including both metals and insulators, the spatial-
inversion symmetry is broken at the A site; the A sites comprise
a diamond lattice, and moreover each A site is located at
the center of a ligand tetrahedron where the local inversion
symmetry is lost. It is desired to systematically study such
materials from the viewpoint of toroidal ordering for further
understanding of the exotic electronic and magnetoelectric
states.

Finally, let us discuss the possibility of a spontaneous Hall
response in the toroidal ordered state. We have discussed the
magnetotransport and magnetoelectric effects in the toroidal
ordered state in Secs. III D and III E, respectively. By com-
bining these two effects, we deduce that the toroidal order
induces an intrinsic Hall response even in the absence of an
external magnetic field. Namely, for example, when we apply
an electric field in the y direction, a uniform magnetization
is induced in the x direction as shown in Sec. III E, which
further induces an electric current in the z direction via
magnetotransport in Sec. III D. This unusual off-diagonal
response in the form of Ez ∝ J 2

x + J 2
y may be useful to

characterize the toroidal ordered state in metals. To clarify
such an exotic response, it is necessary to perform an analysis
beyond the linear response theory used in the present study,
which is left for future investigation.

ACKNOWLEDGMENTS

The authors thank T. Arima, H. Harima, J. Nasu,
A. Oyamada, and Y. Yanase for fruitful discussions. S.H. is
supported by a Grant-in-Aid for JSPS Fellows. This work
was supported by a Grant-in-Aid for Scientific Research
(No. 24340076), Strategic Programs for Innovative Research
(SPIRE), MEXT, and the Computational Materials Science
Initiative (CMSI), Japan.

APPENDIX: LOW-ENERGY EFFECTIVE HAMILTONIAN
FOR THE FOUR-BAND MODEL

In this Appendix, we present the derivation of the single-
band model in Eq. (16). It is derived as a low-energy effective
model for the four-band model in Eq. (8) [44]. In the derivation,
the four-band model is simplified under the following three
assumptions. First, we consider a 3D system composed of
uniform 1D chains in the z direction. Namely, we ignore
the hopping and hybridization terms between the chains for
a while. In this 1D limit, from the symmetry, the only nonzero
matrix element in the hybridization term Hhyb is Ṽ

pz

ij in the z

direction. We hereafter denote t̃ αi,i±1 = −tα and Ṽ
pz

i,i±1 = ∓t spz

for the nearest neighbors in the z direction. Note that the
Fourier transform of Ṽ

pz

i,i±1 is written in the form

V pz = −2i t spz sin kz. (A1)

Second, we assume that the magnetic moments lie in the xy

planes, which are stacked uniformly along the chain. Finally,
we take the limit of strong spin-orbit coupling λ → ∞. In
this limit, the sixfold degeneracy in the p orbitals is split into a
j = 1/2 doublet and a j = 3/2 quartet, as shown in the middle
of Fig. 10. We take into account only the lower j = 1/2 levels.
These three assumptions reduce the Hamiltonian for a 1D chain
to the form of

H1D =

⎛
⎜⎜⎜⎜⎝

ε̃s − 1√
3
V pz 1

2M̃− 1√
3
D̃−

− 1√
3
V pz∗ ε̃p − λ − 1√

3
D̃− 1

6M̃−

1
2M̃+ − 1√

3
D̃+ ε̃s − 1√

3
V pz

1√
3
D̃+ 1

6M̃+ − 1√
3
V pz∗ ε̃p − λ

⎞
⎟⎟⎟⎟⎠ ,

(A2)

where ε̃s(kz) = Ẽs − 2t s cos kz, ε̃p(kz) = − 2
3 (tpx + tpy +

tpz ) cos kz, D̃± = D̃px ± iD̃py , and M̃± = M̃x ± iM̃y . Ẽs =
t̃ sii is the atomic energy level for the s orbital. Here, we dropped
the chain index i for simplicity. In Eq. (A2), we take the basis
(c̃†s↑,c̃

†
p+,c̃

†
s↓,c̃

†
p−), where

c̃p+ = − 1√
3

(c̃px↓ + ic̃py↓ + c̃pz↑), (A3)

c̃p− = 1√
3

(c̃px↑ − ic̃py↑ − c̃pz↓). (A4)

From Eq. (A2), we project out the lowest two levels after
taking into account the hybridization between the s and j =
1/2 levels, V pz . Namely, we rewrite the Hamiltonian matrix
in Eq. (A2) in terms of the basis which diagonalizes the upper
left and lower right 2 × 2 matrices in Eq. (A2). In the new

l=1
j=1/2

j=3/2

FIG. 10. (Color online) (a) Schematic energy diagram in the
derivation of the effective single-band model in Eq. (16) from the
four-band model in Eq. (8). The dashed circle represents the energy
levels considered in the effective single-band model.
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basis, we take into account only the two lower-energy levels;
the off-diagonal components between these two levels give the
effective antisymmetric spin-orbit coupling and the electron-
electron interaction in a mean-field form. Thus, we end up
with an effective single-band model, whose Hamiltonian is
given by

H1D =
∑

σ

ε(kz)c
†
σ cσ + 2(s × D(kz))

z − M(kz) · s, (A5)

where (cσ ,c†σ ) is a new basis after considering the effect of
the hybridization V pz , and s = ∑

σ,σ ′ c†σ (σ σσ ′/2)c′
σ . σ is the

quasispin distinguishing the two low-energy time-reversal pair
states. Here,

ε(kz) = ε̃+(kz) − E(kz) = ε(−kz), (A6)

D(kz) = 1√
3

t̃ spz sin kz

E(kz)
D̃ = −D(−kz), (A7)

M(kz) = 2

3

[
1 − 1

2

ε̃−(kz)

E(kz)

]
M̃ = M(−kz), (A8)

and

E(kz) = {[̃ε−(kz)]
2 + (t̃ spz sin kz)

2}1/2, (A9)

ε̃±(kz) = 1

2
{ε̃s(kz) ± [ε̃p(kz) − λ]}, (A10)

t̃ spz = 2√
3
t spz . (A11)

We assume that D̃ = (D̃px ,D̃py ,0) and M̃ = (M̃x,M̃y,0),
which lie in the xy plane and are parallel to D and M,
respectively. It should be noted that the antisymmetric vector
D(kz) in Eq. (A7) involves the off-site hybridization t spz and
the odd-parity crystalline electric field D̃ under the assumption
of the strong atomic spin-orbit coupling.

Finally, we simplify the kz dependence in Eq. (A5) as
follows. For D(kz), hereafter we retain the most interesting
part, sin kz in the numerator, for simplicity. We also drop all
the kz dependence of M(kz). Examples of the simplified forms
of D and M are found in Eqs. (17) and (18). For the dispersion
in Eq. (A6), we replace it by a simple form ε(kz) = −2t cos kz

with a renormalized transfer integral t . These simplifications
in Eq. (A5) lead to the effective single-band Hamiltonian for a
single chain, HMF

1D in Eq. (19). Finally, we obtain the effective
single-band Hamiltonian HMF in Eq. (16) by restoring the
hopping term in the xy plane neglected in the derivation.
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