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Spin-wave modes in permalloy/platinum wires and tuning of the mode damping by spin Hall current
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We report measurements of spectral properties of spin-wave modes in permalloy/platinum (Py/Pt) bilayer wires
magnetized along two principal in-plane axes. We find that the spin torque arising from the spin Hall current in
Pt can significantly reduce the spectral linewidth of the bulk and edge spin-wave modes of the wire magnetized
perpendicular to its long axis. The linewidth reduction is strongest for the quasiuniform mode and weakest for the
edge mode. Our work demonstrates the importance of extrinsic contributions to spin-wave damping for tuning
of magnetization dynamics by spin Hall current.
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I. INTRODUCTION

An electric charge current in a material with spin-orbit
interaction can induce a pure spin current flowing perpendic-
ular to the charge current—a phenomenon known as the spin
Hall effect (SHE) [1–3]. If a ferromagnet (FM) is placed in
close proximity to the nonmagnetic metal (NM), this pure
spin current is injected into the FM from the NM and applies
spin torque (ST) [4,5] to its magnetization [6–9]. Spin torque
generated by SHE can act as negative magnetic damping
proportional to the applied current density and thereby can
induce a magnetic instability leading to either magnetization
reversal [10] or magnetization auto-oscillations [11–14]. The
manipulation of magnetization by ST arising from SHE
is promising for applications in low-power nonvolatile ST
memories [15–17] and microwave ST oscillators [18–24].

Spin torque from the pure spin current offers several
key advantages for manipulation of magnetization over the
conventional ST from spin-polarized electric charge current.
First, the magnitude of spin current injected into the FM
layer in a FM-NM bilayer can exceed that of the electric
charge current in the system—a situation impossible for spin-
polarized charge current [10]. Indeed, an electron participating
in the charge current in the NM layer can scatter multiple times
at the FM-NM interface and thereby can transfer more than a
single quantum of angular momentum to the FM. Second, the
use of FM/NM bilayer opens the possibility of scaling up ST
devices without adverse effects arising from the Oersted field
generated by the charge current. Indeed, the Oersted field in
current-perpendicular-to-plane (CPP) spin valves (SV) used
in conventional ST experiments is spatially inhomogeneous
and, for a given current density, its maximum value scales
linearly with the SV lateral dimensions. For a nanopillar SV
as small as a few hundred nanometers in diameter, the Oersted
field at the critical current density ranges from zero in the SV
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center to hundreds of Oersteds at the SV edge [25,26]. Such
a strong spatially inhomogeneous magnetic field forces the
magnetization into a vortex state, which restricts the studies of
ST dynamics in the ground state of uniform magnetization to
nanomagnets with lateral dimensions of ∼100 nm. In such
small nanomagnets, the spin-wave spectrum degeneracy is
lifted by the geometric confinement, and studies of the effect
of ST on spin-wave interactions are complicated by the large
energy gaps between the spin-wave modes [27,28]. In contrast,
the Oersted field in SHE current-in-plane (CIP) structures is
independent of the lateral dimensions of the structure, and the
effect of ST on magnetization dynamics can be easily studied
in micrometer-scale devices [29]. This opens the possibility
of studying the effect of ST on multiple spin-wave modes
and interactions between them in a wide variety of magnetic
systems. Furthermore, ST from the pure spin current provides
a unique opportunity to apply ST to ferromagnetic insulators
due to its CIP geometry, which is impossible in conventional
CPP SVs or magnetic tunnel junctions.

In this paper, we report the measurement of the spectral
properties of spin-wave modes in micrometer-scale Py/Pt
bilayer wires magnetized along two principal in-plane axes,
as well as the tuning of the damping of these modes by
the ST from SHE. Our measurements reveal that not all
spin-wave modes are uniformly affected by ST from SHE
and that the spectral linewidth of the quasiuniform mode is
more susceptible to ST than that of other modes of the wire.
We employ an electrically detected ferromagnetic resonance
technique (FMR) [30,31] for measurements of spin-wave
properties in Py/Pt wires. Figure 1(a) shows a scanning
electron micrograph (SEM) of a typical device studied. A
Py/Pt bilayer wire with four leads and shorted coplanar strips
(CPS) in close proximity to the wire are defined on a GaAs
substrate via e-beam lithography, evaporation, and liftoff. In
our FMR measurements, a microwave current applied to the
CPS generates a microwave magnetic field around the short,
which excites spin waves in the Py wire. When the frequency
of the microwave field coincides with the eigenfrequency of a
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FIG. 1. (Color online) (a) SEM image of a 1.18-μm-wide Py
(25 nm)/Pt (2 nm) wire device. The inset illustrates the degree of
edge roughness of the wire. (b) Resistance versus magnetic field H

for two in-plane directions of the field. (c) Resistively detected FMR
spectrum measured at 9 GHz with H applied along the wire length.
The dashed curve is a multipeak Lorentzian fit to the line shape. (d)
Measured frequency versus H of n = 2 and n = 0 width modes for
H applied along the wire. Lines are the best fit to Eq. (1). The inset
shows the frequency dependence of the linewidth of the n = 0 width
mode.

spin-wave mode in the wire, this mode is resonantly excited,
leading to a change in the time-averaged wire resistance due
to the anisotropic magnetoresistance (AMR) effect [Fig. 1(b)].
As shown in Fig. 1(c), we modulate the microwave field
amplitude and employ lock-in measurements of the wire
resistance as a function of external dc magnetic field (see
Appendix A for details). The positive and negative peaks
in such a measured, resistively detected FMR spectrum are
signatures of the spin-wave eigenmodes in the Py wire. All
measurements reported in this paper are performed at ambient
temperature.

II. SPIN-WAVE MODES IN LONGITUDINALLY
MAGNETIZED WIRES

Figure 1(c) shows a typical FMR spectrum measured at
9 GHz for a Py (25 nm)/Pt (2 nm), 1.18-μm-wide wire, with
the external magnetic field H applied along its length. Through
comparison to analytical theory [32] and micromagnetic
simulations discussed below, the two spin-wave resonances
observed at 179 and 674 G can be identified as n = 2 and
n = 0 width modes [28], where n corresponds to the number
of nodes in the spin-wave amplitude profile along the wire
width direction. We apply a multipeak Lorentz function to
fit the FMR spectra and obtain the resonance field and the
linewidth (half width at half maximum) of each mode as a
function of frequency, as shown in Fig. 1(d).

We find that the frequency versus field data in Fig. 1(d)
are well described by the equation derived in Ref. [32] for
magnetostatic width modes of thin-film strips

fn = γ

2π
[(H + NnMs) (H + (4π − Nn)Ms)]

1/2 , (1)

where fn is the resonance frequency of the nth mode, γ /2π =
2.92 MHz/Oe is the gyromagnetic ratio, H is the external dc
field, Nn represents the mode-specific dynamic demagnetizing
factor (Nx

n + N
y
n + Nz

n = 4π ) [32], and Ms is the saturation
magnetization of the Py wire.

In our analysis, Nn and Ms are treated as fitting parameters.
The best fit to the data shown in Fig. 1(d) yields Ms =
790 ± 0.5 emu/cm3 and N0 = 0.306 ± 0.001 for n = 0
mode, and Ms = 788 ± 7.6 emu/cm3 and N2 = 1.08 ± 0.04
for n = 2 mode. The saturation magnetization given by
the fit is typical for Py thin films. In the approximation
of pure dipolar pinning of the magnetization at the wire
edges, the dynamic demagnetizing factors satisfy the following
eigenvalue equation [33]:

(Nn − 4π )mn(y) =
∫ w/2

−w/2
dy ′ 2

tPy
ln

[
(y − y ′)2

(y − y ′)2 + t2
Py

]
mn(y ′),

(2)

where w is the width of the wire, tPy is the thickness of the
Py layer, mn (y) is the amplitude of dynamic magnetization
along the wire width. Using this expression, we calculate the
expected values of the demagnetizing factors for n = 0,1,2
modes: N0 = 0.336, N1 = 0.736, and N2 = 1.14. Comparison
of the measured and calculated dynamic demagnetizing factors
indicates that n = 0,2 modes are detected in the experiment.
The odd symmetry modes (e.g., n = 1) are not excited due
to spatial uniformity of the microwave field within the wire
volume (approximately 17% variation in the field magnitude
across the wire width), which results in weak coupling of
the odd-symmetry modes to the microwave driving field.

The inset of Fig. 1(d) shows variation of the quasiuniform
(n = 0) mode linewidth with frequency. The slope of the
linear fit gives the effective damping of the mode: α0 =
γ /2π (d�H/df ) = 0.0082 ± 0.0001, a value similar to that
of Py thin films. The linewidth does not extrapolate to zero
at zero frequency, which can arise either from two-magnon
scattering allowed for magnetic field applied parallel to the
wire or from inhomogeneous broadening [28,34].
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III. SPIN-WAVE MODES IN TRANSVERSELY
MAGNETIZED WIRES

For a magnetic field applied in the sample plane perpendic-
ular to the wire, multiple spin-wave modes are observed in the
FMR spectrum, as shown in Fig. 2(a). Above a certain bulk
saturation field Hb = 210 G, the magnetization of the wire
becomes aligned with the applied field everywhere except near
the wire edges. For H > Hb, several closely spaced resonances
seen in the spectrum can be identified as bulk spin-wave modes,
whose amplitude is significant in the interior of the wire and is
small near the wire edges [32,35]. At yet higher fields above
the edge saturation field H > He = 1200 G, the magnetization
of the wire becomes completely saturated, and a saturated
edge spin-wave mode, whose amplitude is maximum at the
wire edges [36,37], gives rise to a positive peak in the FMR
spectrum. The bulk and edge saturation fields can be clearly
identified as local minima in the dependence of the mode
frequency on the field, shown in the top panel of Fig. 2(b) [36].

The experimentally observed dependence of the mode
frequency on magnetic field is in good agreement with
our Object Oriented MicroMagnetic Framework (OOMMF)
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FIG. 2. (Color online) (a) Resistively detected FMR spectrum
measured at 7.5 GHz, with H applied in the sample plane perpen-
dicular to the wire. The dashed curve is a multipeak Lorentzian fit
to the line shape. The schematic amplitude profiles along the wire
width for the quasiuniform and edge modes are shown. Inset: spectral
linewidth of the quasiuniform and edge modes versus frequency. (b)
Measured (top) and simulated (bottom) dependence of spin-wave
modes frequency on H .

micromagnetic simulations [38], shown in the bottom panel
of Fig. 2(b). These simulations allow us to identify the modes
observed in the experiment and to determine the spatial profiles
of their amplitudes. The highest frequency mode at H > Hb

is identified as the quasiuniform mode, whose amplitude
monotonically decays from a maximum in the middle of the
wire to a small value near the wire edges. Several modes with
slightly lower frequencies are identified as bulk modes with
nodes in the wire width direction [32]. The lowest frequency
mode is identified as the edge mode, the amplitude of which is
nearly zero in the middle of the wire and reaches maximum at
the wire edges [36]. The main difference between the measured
and the simulated dependences of the mode frequency on field
is the value of the edge saturation field He (1200 G in the
experiment versus 2100 G in the simulation). This difference
mainly arises from the wire edge roughness shown in Fig. 1(a),
which is known to reduce the edge saturation field compared
to that of a wire with perfectly flat edges assumed in the
simulation [36,39].

The linewidths of the quasiuniform mode and the edge
mode are plotted versus frequency in the inset of Fig. 2(a).
Linear fits to these data yield the effective damping parameters
α0 = 0.0089 ± 0.0002 for the former and αe = 0.0083 ±
0.0016 for the latter. Both values are close to that of Py thin
films. For the edge mode, the linear fit crosses the vertical axis
far from the origin. This extrinsic contribution to the linewidth
may result from inhomogeneous broadening induced by the
nanowire edge roughness, which is expected to have large
impact on the edge mode frequency and linewidth [36]. For the
quasiuniform mode, the linear fit passes near the origin. This
may be explained by the smallness of the quasiuniform mode
amplitude at the wire edges, where magnetic inhomogeneities,
such as edge roughness, are expected to be large.

IV. TUNING THE DAMPING OF SPIN-WAVE
MODES BY SPIN HALL CURRENT

Next, we study the effect of dc on spin-wave modes in the Py
wire with the field applied in the sample plane perpendicular
to the wire. In this geometry, the spin polarization of the pure
spin current generated in the Pt layer by SHE is collinear
with the magnetization of the Py layer for H > He. This
collinear spin current injected into the Py layer applies ST
to its magnetization and, depending on the current polarity,
acts as either positive or negative magnetic damping that can
modify the linewidth of spin-wave resonances in the FMR
spectrum [6]. The spectral linewidth of the quasiuniform mode
�H0 (Idc) at direct current Idc in the presence of only Gilbert
damping and spin current contribution can be approximated
by the thin-film expression [40]:

�H0 (Idc) = 2πf0

γ
α0 (Idc)

= 2πf0

γ

(
αG + 1

(H0 + 2πMs)

�Js

4eMstPy

)
, (3)

where f0 and H0 are the resonance frequency and resonance
field of the quasiuniform mode, respectively, α0 (Idc) is the
effective damping of the quasiuniform mode at Idc, αG is
the Gilbert damping parameter, Js is the spin current density
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(in units of charge current density) injected into Py, � and e are
the reduced Planck constant and electron charge, respectively.
Such an approximation is justified for the quasiuniform mode
because this mode shows no extrinsic contributions to damping
[see the inset of Fig. 2(a)] and because the width of the wire is
much greater than its thickness (see Appendix B for details).

The magnitude of Js significantly decreases when the thick-
ness of the Pt layer is reduced to values below ∼5 nm [40,41];
thus, we choose wires with a thicker Pt layer: Py (19 nm)/Pt
(5 nm) for studies of the effect of spin current on spin-wave
damping. Figure 3(a) shows FMR spectra for a 0.61 μm-wide
Py (19 nm)/Pt (5 nm) wire measured at an excitation frequency
of 8.5 GHz in the presence of positive and negative bias current
Idc = ±6.12 mA applied to the wire. First, we note that the

0.5 1 1.5 2 2.5
1

0

1

2

3

4

5

Magnetic Field [kG]

R
es

is
ta

nc
e 

[m
]

Idc = -6.12 mA

Idc = +6.12 mA

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

|Idc| [mA]

*/
G

6 4 2 0 2 4 6

0.6

0.8

1

1.2

1.4

1.6

Idc [mA]

N
or

m
al

iz
ed

 M
od

e 
E

ne
rg

y

Q Mode
B1 Mode
B2 Mode
E Mode

(b)

(a)

(c)

Q

B1

B2 E

FIG. 3. (Color online) (a) FMR spectra of a Py (19 nm)/Pt (5 nm)
0.61-μm-wide wire measured at 8.5 GHz for Idc = ±6.12 mA. The
field is applied in the sample plane perpendicular to the wire. (b)
Fractional change of the effective damping induced by spin Hall
torque for the quasiuniform mode versus dc. The line is a linear
fit. (c) Normalized energy stored in four spin-wave modes at their
resonance fields versus current: Q, quasiuniform mode; B1, first bulk
mode; B2, second bulk mode; E, edge mode.

current-induced frequency shift for all modes arises from the
Oersted field (3. G/mA) generated by the current flowing in
the Pt layer. Second, the spectral linewidth of all spin-wave
resonances is significantly modified by the current. At positive
currents, the linewidth decreases, and the amplitude increases
with increasing current for all modes, while the opposite
trend is observed for negative currents. Because Ohmic
heating equally affects both current polarities, we calculate
the difference of the effective damping parameter measured
at positive and negative currents α0(+Idc) − α0(−Idc) in order
to determine the effect of spin Hall torque on the damping
of the quasiuniform mode. For this mode, the fractional
change in the effective damping due to spin Hall current
�α∗/αG = |α0(+Idc) − α0(−Idc)|/2αG is plotted versus the
charge current magnitude in Fig. 3(b). This figure illustrates
that the effective damping of the quasiuniform mode is linear in
current, as expected from Eq. (3) and that a reduction of damp-
ing by ∼25% due to SHE can be achieved at the largest current
densities used in the experiment. The ratio of the spin current
density Js to the charge current density J in Pt can be calculated
from the slope of the linear fit in Fig. 3(b) and Eq. (3):

Js

J
= �α∗ (H0 + 2πMs) 4eMstPy

�J
= 0.066 ± 0.003, (4)

where we use αG = 0.0077, which is determined from the
FMR data with the magnetic field applied parallel to the wire
similar to those shown in Fig. 1(c). We also use the following
resistivities to determine the current density J in the Pt layer:
ρPt = 21.9 μ�·cm, ρPy = 65.2 μ�·cm (see Appendix C).

To quantify the effect of spin current on different modes
shown in Fig. 3(a), we calculate the normalized mode energy
stored in each mode at the corresponding resonance field
E∗

n (Idc) = En (Idc) /En (Idc = 0) and plot it as a function of the
current bias in Fig. 3(c). In the limit of a small precession angle,
En (Idc) is directly determined from the FMR peak amplitude
An of the nth spin-wave mode [42]:

En(Idc) ∝ θ2
n

2
∝ An

IdcRAMR
, (5)

where θn is the maximum in-plane precession angle of the
nth mode and RAMR is the difference in resistance of the wire
magnetized along its length and along its width (full AMR).

In the absence of extrinsic contributions to the spectral
linewidth (valid for the quasiuniform mode), we expect the
following dependence of the mode energy on current density:

E∗
0 (Idc) = E0(Idc)

E0(Idc = 0)
∝ α2

0(Idc = 0)

α2
0(Idc)

= 1

(1 − J/J0)2
, (6)

where α0 and J0 are the effective damping and critical
current of the quasiuniform mode. Equation (6) predicts
a squared hyperbolic dependence of the normalized mode
energy on current but the measured E∗

0 does not show
the expected positive curvature. We attribute this to Ohmic
heating, which enhances the spin-wave linewidth for both
current polarities [29]. Indeed, the effect of Ohmic heating is
clearly seen from a decrease of the wire’s AMR and saturation
magnetization with increasing current (see Appendix D). The
remaining modes observed show even greater deviation from
the squared hyperbolic dependence on current. We attribute the
difference in the deviation to the inhomogeneous broadening
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of the spectral linewidths of these modes (described in more
detail in Appendix B), which is unlikely to be affected by
the spin current. Hence, modes (e.g., edge mode) with larger
inhomogeneous broadening appear less susceptible to the
spin current, and the observed change in the mode energy
becomes smaller. For positive currents, E∗

n (Idc) of the two
high-field modes (B2 and E) approaches saturation at large
current densities. This behavior, opposite to the predicated
divergence at the critical current, suggests that Ohmic heating
in the system under study precludes it from reaching the state of
magnetization self-oscillation. Thus, a wire with a significantly
thinner Py layer and thereby lower critical current is needed
for the excitation of ST-driven oscillations by SHE.

The geometric quantization of the spin-wave spectrum in
the wire allows us to study the effect of ST from SHE on
individual spin-wave modes. The data in Fig. 3(c) reveal that
the linewidth of the quasiuniform mode is more susceptible to
ST from pure spin current than that of the other modes. We
note that the quasiuniform mode is the only mode that shows
no extrinsic contributions to damping [34], as illustrated in the
inset of Fig. 2(a), and thus its spectral linewidth is expected
to be more susceptible to spin current (see Appendix B).
Additionally, the vertical component of spin current density
Js near the nanowire edge is expected to be weaker than that
near the wire center for two reasons: (i) smaller charge current
density near the edges due to enhanced electron scattering at
the wire edge and (ii) rotation of the spin current polarization to
the out-of-plane direction near the wire edge [3]. This should
reduce susceptibility of the edge mode to spin Hall current.
Thus, we conclude that extrinsic contributions to damping
generally caused by spatial inhomogeneity of magnetization
and magnetic anisotropy, as well as spatial nonuniformity of
the spin Hall current, strongly influence the dependence of
spin-wave mode linewidth on spin Hall currents.

V. SUMMARY

In summary, we used resistively detected FMR to study
spectral properties of spin-wave modes in Py/Pt bilayer wires.
We demonstrated that ST arising from pure spin current in
the Pt layer can efficiently tune the spectral linewidth of these
spin-wave modes. The spectral linewidths of these modes are
not uniformly affected by the current, and the quasiuniform
mode is the mode most susceptible to spin current. We
explain this behavior by inhomogeneous contributions to the
linewidth of the bulk and edge spin-wave modes, as well as by
spatial nonuniformity of the spin current within the wire. Our
data also suggest that Ohmic heating can increase damping
of all spin-wave modes—an effect that can become stronger
than reduction of damping by the spin Hall current at high
current densities.
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APPENDIX A: FMR BACKGROUND SUBTRACTION

The raw voltage signal measured by our resistively detected
FMR setup consists of two components: one arises from
bolometric heating of the Py/Pt wire by the microwave
drive, and the other component is due to magnetization
precession that affects the voltage signal via the AMR effect.
The bolometric heating signal Vb is always present because
the wire is periodically heated by the amplitude-modulated
microwave field, which generates eddy currents in the wire and
thereby induces periodic variation of the wire temperature and
resistance at the modulation frequency. The AMR signal can
be further split into two parts. One part arises from variation
of the time-averaged resistance of the sample in response to
the microwave drive (photoresistance [42]). This signal VPR

is proportional to the dc applied to the wire. The other part
of the signal is photovoltage VPV [42–44], a rectified signal
arising from mixing of the nanowire resistance oscillations
at the microwave drive frequency and the microwave eddy
currents in the wire. The photovoltage signal VPV increases
with increasing microwave drive amplitude and is nearly
independent of the dc bias. Hence, the net voltage signal [45]
detected by our lock-in amplifier at the modulation frequency
of the microwave drive is

V = Vb + VPR + VPV = IdcδRb + IdcδRdc + IacδRaccosθ,

(A1)

where Idc is the direct bias current applied to the wire, Iac

is the microwave eddy current amplitude in the wire, δRb

is the amplitude of the wire resistance oscillations due to the
bolometric heating, δRdc is the amplitude of the time-averaged
resistance oscillations at the modulation frequency arising
from the AMR effect, δRac is the amplitude of the microwave
resistance oscillations arising from the AMR effect, and θ is
the phase shift between the microwave eddy current in the wire
and the microwave resistance oscillations.

Because bolometric heating Vb is independent on the bias
magnetic field H , it appears as a field-independent background
in a field-swept FMR spectrum V (H ); thus, it can be simply re-
moved by subtracting a constant from the measured spectrum.
The photovoltage and photoresistance signals arising from the
excitation of spin-wave resonances in the wire appear in the
FMR spectra as peaks with different symmetries. The photore-
sistance signal gives rise to a symmetric Lorentzian peak in
the spectrum, while photovoltage generally gives rise to a peak
that is a sum of symmetric and antisymmetric Lorentzians [42]:

IdcδRdc = UPR

�H 2

(H − H0)2 + �H 2
, (A2a)

IacδRaccosθ = US
PV

�H 2

(H − H0)2 + �H 2

+UA
PV

(H − H0) �H

(H − H0)2 + �H 2
. (A2b)
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A nonzero photovoltage greatly complicates the FMR data
analysis, especially when several closely spaced modes are
present in the spectrum. Consequently, we only employ exper-
imental geometries, in which the photovoltage contribution is
either minimized or completely eliminated. The photovoltage
signal is completely removed when the nanowire is magnetized
exactly along its length. In this geometry, the wire resistance
oscillates at twice the frequency of the magnetization (and
the eddy current) oscillations, thus the mixing voltage (photo-
voltage) is zero. However, the photovoltage signal generally
cannot be completely eliminated for the magnetic field applied
along the wire width. In this geometry, magnetization at the
wire edges makes a nonzero angle with the applied field
direction for applied fields below the edge saturation field He.
Hence, the photovoltage signal component is always present
for H < He. In order to eliminate the photovoltage component
in this case, we measure FMR spectra at opposite dc polarities
and subtract the spectra from each other. This difference
of two FMR spectra does not contain a photovoltage signal
component. Indeed, the net signals measured at two current
polarities are

V (+Idc) = (+Idc)δRb + (+Idc)δRdc + IacδRaccosθ, (A3a)

V (−Idc) = (−Idc)δRb + (−Idc)δRdc + IacδRaccosθ. (A3b)

The photoresistance and photovoltage terms are, thus,
calculated from the difference and the sum of the two FMR
curves (see Fig. 4):

Vb + VPR = V (+Idc) − V (−Idc)

2
, (A4a)

VPV = V (+Idc) + V (−Idc)

2
. (A4b)

We note that the method of Eqs. (A4a) and (A4b) works well
only for relatively low values of the dc because, at large bias
current values, opposite current polarities (i) introduce signifi-
cant shifts of the spectral lines in opposite field directions due
to the current-induced Oersted field and (ii) noticeably and
asymmetrically modify the spectral linewidths of the photore-
sistance signal via the SHE. To solve this problem, we use a
different procedure for subtraction of the photovoltage compo-
nent of the signal at large values of the direct bias current. This
method relies on independence of the photovoltage signal on dc
bias. In this method, we first measure the photovoltage at zero
current bias, at which the FMR signal has zero photoresistance
component. Then, we subtract the zero-bias FMR curve from
a finite bias FMR curve to obtain a pure photoresistance signal
at the finite current bias. In this subtraction procedure, we
shift the zero-bias FMR curve along the magnetic field axis to
compensate for the Oersted field acting on the Py layer from
current in the Pt layer. This Oersted field is easily calculated
given the values of the thickness and resistivity of the Pt and Py
layers. The main conceptual drawback of this method is that
it neglects the effects of Ohmic heating and spin Hall current
on the photovoltage signal. However, we find the errors intro-
duced by neglecting these effects to be insignificant in practice.
Indeed, the magnitude of the photoresistance signal increases
linearly with increasing dc bias, while the photovoltage signal
magnitude is nearly independent on the bias current. Thus,
although the absolute effect of the current on the photovoltage
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FIG. 4. (Color online) FMR spectra V (H ) /Idc measured at
5 GHz for a 1.18-μm-wide Py (25 nm)/Pt (2 nm) wire magnetized
along its width. The field-independent bolometric heating background
is removed, and the curves are vertically offset for clarity. (a) FMR
signals measured at Idc = ± 1.32 mA. (b) The photoresistance and
the photovoltage components of the signal calculated from the data
in (a) according to Eqs. (A4a) and (A4b).

signal increases with increasing current, the relative contribu-
tion of the photovoltage to the overall signal decreases. We find
that, in practice, the current-induced effect on the photovoltage
introduces insignificant errors to the pure photoresistance
signal obtained from the raw FMR data via this procedure.

APPENDIX B: EXTRINSIC LINE BROADENING AND
THE LINEWIDTH DEPENDENCE ON SPIN CURRENT

In the main text, we argue that extrinsic contributions to
the linewidth of a spin-wave mode, such as inhomogeneous
broadening, can weaken the dependence of the spectral
linewidth of a mode on spin current. This can be illustrated
by an example of inhomogeneous broadening of a mode
due to Gaussian distribution of the mode resonance fields in
different locations along the nanowire (e.g., induced by spatial
fluctuations of the wire width). In this case, the spectral line of
the mode is a convolution of the intrinsic Lorentzian line with
the Gaussian distribution of the resonance fields:

∫ +∞

−∞
e
−( Hr −Hr0√

2σ
)2 1

(H − Hr )2 + δH 2
dHr, (B1)

where Hr is the resonance field, Hr0 is the mean, σ is
the width of the resonance field distribution, and δH is the
intrinsic linewidth of the mode. To illustrate the effect of
inhomogeneous line broadening on the linewidth tuning by
spin current, we assume linear dependence of δH on current [as
described by Eq. (3) of the main text] and plot the dependence
of spectral linewidth and normalized mode energy on current
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FIG. 5. (Color online) Predicted normalized linewidth (top) and
normalized mode energy (bottom) at the absence of Ohmic heat-
ing as functions of Idc for several values of σ , Hr0 = 500, and
δH (Idc = 0) = 15.

for σ = 0 and σ > 0 in Fig. 5. This figure clearly shows that
stronger inhomogeneous broadening reduces the dependence
of linewidth and mode energy on current.

APPENDIX C: MEASUREMENT OF PT AND PY
LAYER RESISTIVITY

In order to determine the current density J in Pt, we assume
that Py and Pt layers form a parallel resistor circuit, hence,

J = Idc

wtPt

ρPy/tPy

ρPy/tPy + ρPt/tPt
, (C1)

where w is the width of the wire, tPy and tPt are the
thicknesses of the Py and Pt layers, respectively, ρPy and ρPt
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FIG. 6. (Color online) Dependence of the full AMR resistance
RAMR and saturation magnetization Ms on dc Idc.

are the corresponding resistivities that are determined from
measurements of resistance of the Py/Pt bilayer wires with
different thicknesses of the layers:

1

Rwire
=

(
tPt

ρPt
+ tPy

ρPy

)
w

l
, (C2)

where Rwire is the bilayer wire resistance and l is the length of
the wire. By changing the layer thicknesses and measuring
the bilayer wire resistance, ρPt and ρPy are independently
determined (ρPt = 21.9 μ�·cm, ρPy = 65.2 μ�·cm).

APPENDIX D: DEPENDENCE OF AMR AND SATURATION
MAGNETIZATION ON CURRENT BIAS

In the calculation of the ratio between the spin and charge
current density Js/J and the mode energy, due to the Ohmic
heating, the current bias dependence of the full AMR RAMR

and the wire saturation magnetization Ms (shown in Fig. 6)
must be taken into account. RAMR(Idc) is measured directly,
while Ms(Idc) is determined from fitting Eq. (1) of the main
text to FMR data collected at nonzero Idc with the magnetic
field applied along the wire length.
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