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Magnetization reversal condition for a nanomagnet within a rotating magnetic field
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The reversal condition of magnetization in a nanomagnet under the effect of rotating magnetic field generated
by a microwave is theoretically studied based on the Landau-Lifshitz-Gilbert equation. In a rotating frame,
the microwave produces a dc magnetic field pointing in the reversed direction, which energetically stabilizes
the reversed state. We find that the microwave simultaneously produces a torque preventing the reversal. It is
pointed out that this torque leads to a jump in the reversal field with respect to the frequency. We derive the
equations determining the reversal fields in both the low- and high-frequency regions from the energy balance
equation. The validities of the formulas are confirmed by a comparison with the numerical simulation of the

Landau-Lifshitz-Gilbert equation.
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I. INTRODUCTION

Magnetization reversal in a single-domain ferromagnetic
nanostructure is an important phenomenon for both funda-
mental physics and applications. The conventional method
for reversing magnetization is to apply a direct magnetic
field to a ferromagnet along the reversed direction, where
the field magnitude H should be larger than the anisotropy
field (or coercivity) Hk to energetically stabilize the reversed
state [1]. However, this method requires a large field H
antiparallel to the magnetization, as well as large power
consumption, for the reversal because ferromagnets with
large Hx are used in practical applications to keep the high
thermal stability Ao = M HgV /(2kgT), where M, V, and T
are the magnetization, the volume of the ferromagnet, and
the temperature, respectively. Recently alternative methods,
such as spin-torque-induced magnetization reversal [2—10] and
microwave-assisted magnetization reversal (MAMR) [11-26],
have been proposed to reduce the reversal field magnitude.
The optical magnetization reversal with circularly polarized
light [27,28] is another possibility, where the combination of
the ultrafast heating and the magnetic field, both of which are
generated by the circularly polarized laser, enables the ultrafast
magnetization reversal without an external field.

In MAMR, the microwave produces a circularly rotating
magnetic field applied to the ferromagnet, in which the field
direction lies in a plane perpendicular to the easy axis. A
rotating frame is conventionally used to understand why the
reversal field becomes smaller than Hx in MAMR [18,22].
In the rotating frame, the field acting on the magnetization
is independent of time. The effect of the rotating field is
converted to an additional dc magnetic field (27 f/y) pointing
in the reversed direction [11,14,18], where f and y are
the frequency of the rotating field and the gyromagnetic
ratio, respectively; i.e., the total dc magnetic field pointing
in the reversed direction is H + (27 f/y). The additional field
(2m f/y) energetically stabilizes the reversed state, and reduces
the reversal field magnitude. In a low-frequency region, the
reversal field linearly decreases as the frequency increases,
which is qualitatively consistent with this conventional picture.
However, both the experiments and the numerical simulations
of the Landau-Lifshitz-Gilbert (LLG) equation have revealed
that such a conventional picture cannot explain the dependence
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of the reversal field on the frequency in a high-frequency
region [16,19,21,22]. In the high-frequency region, the reversal
field slightly increases as the frequency increases; see, for
example, Fig. 5 below. Moreover, the magnitude of the total
dc magnetic field for the reversal, H 4+ (2w f/y), in the high-
frequency region is much larger than H. This result seems in
contradiction with the Stoner-Wohlfarth theory [1], in which
the magnetization reversal should occur when H + 27 f/y)
becomes slightly larger than Hg because only the reversed
state is energetically stable.

Okamoto et al. studied the dependence of the reversal field
on the frequency of the rotating field for a Co/Pt nanodot
with 120 nm diameter both experimentally and numerically
based on the micromagnetic model [21]. They found that
the excitation of the spin wave, which arises from the
difference in the local demagnetization field between the end
and center of the dots, leads to a reduction of the reversal
field. This result is of great advance in understanding the
reversal mechanism of MAMR. However, it is still unclear
why the reversal field jumps to a high value at a certain
frequency. Moreover, the numerical simulations based on
the macrospin (single domain) model also show the jump
of the reversal field [16,21], indicating that not only the
excitation of the spin wave but also other mechanisms lead
to this jump. A fabrication of the ferromagnet smaller than the
exchange length (typically [22], on the order of 10 nm) is an
unavoidable and indispensable challenge for both fundamental
physics and practical applications. In such nanostructure, the
magnetization dynamics is well described by the macrospin
model. Therefore, it is important to clarify the magnetization
reversal mechanism, such as the origin of the jump of the
reversal field, using the macrospin model.

The purposes of this paper are to explain why a large field
is required to reverse the magnetization in the high-frequency
region in MAMR and to derive equations that determine the
reversal field in both the low- and high-frequency regions
without the time-dependent solution of the macrospin LLG
equation. It is pointed out that the rotating field not only
energetically stabilizes the reversed state but also produces
a torque acting on the magnetization. We find that this
torque, whose strength is proportional to the frequency of
the rotating field, prevents the reversal, causing the reversal
field to become relatively large in the high-frequency region.
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The direction of this preventing torque is expressed by the
triple vector product, analogous to the spin torque [2,3].
This fact motivates us to use the energy balance equation
for the estimation of the reversal field of MAMR, which
was recently pointed out to be useful for estimating the
reversal current in the spin-torque reversal problem [29-35]
but has been never applied to the MAMR problem. The
equations determining the reversal field, Egs. (8) and (11),
are derived for both the low- and high-frequency regions from
the energy balance equation. These formulas show that the
reversal field in the low-frequency region converges to Eq. (9)
as the damping constant decreases, while the reversal field
in the high-frequency region is independent of the damping
constant. The boundary between the low- and high-frequency
regions is also estimated from the energy balance equation.
The validities of these formulas are quantitatively confirmed
by comparison with the numerical simulation of the LLG
equation.

The paper is organized as follows. In Sec. II, the energy
balance equation is derived from the LLG equation in the
rotating frame. The equations determining the reversal fields
in the low- and high-frequency regions are derived in Secs. III
and IV, respectively. The validities of these formulas over a
wide frequency range are confirmed in Sec. V by comparison
with the numerical simulation of the LLG equation. In
Sec. VI, the present result is compared with the previous
work in Refs. [11,12,17,18]. The conclusion appears in
Sec. VIL

II. LANDAU-LIFSHITZ-GILBERT EQUATION IN
ROTATING FRAME

The system we consider is schematically shown in Fig. 1,
where the unit vector pointing in the magnetization direction
is denoted as m. The ferromagnet has a uniaxial easy axis with
the anisotropy field Hk along the z axis. Throughout this paper,
the initial state is taken to be m = +-e_, although the following
formulas are applicable to an arbitrary initial condition. The

X

FIG. 1. (Color online) Schematic view of the system. The unit
vector pointing in the magnetization direction is denoted as m.
The external magnetic field pointing in the negative z direction and
the rotating field with the frequency f are denoted as H and H,,
respectively. In the rotating frame, x" and z’ axes are parallel to the
rotating field and the z axis, respectively.
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external field H is applied to the negative z direction. The
rotating field with the magnitude H,. and the frequency f is
applied in the xy plane, where the x axis is parallel to the rotat-
ing field at the initial time + = 0. The magnetization dynamics
under the effect of the magnetic field, H = H,. cos(2r ft)e, +
H,sin(2r ft)e, + (—H + Hgm_)e,, are described by the
LLG equation [36-38],

dm m x H+ am x 0 1)
— = X am X —,
dt Y dt

where the Gilbert damping constant is denoted as «. Because
the LLG equation conserves the magnitude of the magne-
tization, the magnetization dynamics are described by the
trajectory on the surface of the unit sphere.

It is convenient to use the rotating frame x’y’z’, in which
the 7z’ axis is parallel to the z axis, and x’ axis is parallel to
the rotating field H,, as shown in Fig. 1. We denote m in the
rotating frame as m’ = (m,,m, ,my). It should be noted that
the value of m, is invariant by this transformation. Because the
value of & in the conventional ferromagnet is small [39], higher
order terms of « are neglected in the following; i.e., we use
the approximation that 1 4+ &> ~ 1. Then, the LLG equation
in the rotating frame is given by

d !
d_ntl =—ym x B—aym x (m' x B)
+a2rfm’ x (e; x m'), 2)

where B = Hye, + [—H — 2nf/y) + Hxm e, can be re-
garded as the magnetic field in the rotating frame. The
transformation procedure from Eq. (1) to Eq. (2) is shown
in Appendix A.

It can be understood from Eq. (2) that the rotating field plays
two roles for the reversal. First, the magnetization dynamics
can be regarded as a motion of a point particle in the potential
&=—-M [dm-B,

2 MH
& = —MHumy + M (H + Lf) my — = Em2. (3)
%

The second term on the right-hand side of Eq. (3) indicates
that the rotating field produces the dc magnetic field 2z f/y)
pointing in the negative 7’ direction, and energetically stabi-
lizes the reversed state [17,18,22]. Second, the rotating field
produces a torque proportional to the frequency f, which
appears in the third term on the right-hand side of Eq. (2).
The important point is that this torque points to the positive
7' direction, and therefore prevents the reversal. It should also
be emphasized that the torque direction is expressed by the
triple vector product, as is similar to the spin torque [2,3].
Therefore, in the following calculations, let us conventionally
call this torque spin torque.

It was shown in the spin-torque reversal problem [29-35]
that the magnetization reversal condition can be derived from
the energy balance equation between the work done by spin
torque and the energy dissipation due to the damping. In the
following sections, we apply this method to investigate the
reversal field in MAMR. To this end, the derivative of & with
respect to time on the constant energy curve is necessary. From
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Eq. (2), we find that
d&

i —a2nfM[B-e; —(m'-e,)(m' - B)]

—ayM[B* — (m'-B)’]. “)
The integral of Eq. (4) over a precession period of the magne-
tization on the constant energy curve of & is 55 dt(d&/dt) =
We + W, where

W = —a2mfM % dt[B-e, —(m' -e,)(m' - B)], (5)

W, = —anydt[W —(m' - By ()

are the work done by spin torque and the energy dissipation
due to the damping during the precession, respectively [40].
While #; can be both positive and negative depending on the
field and the frequency, %, is always negative. The calculation
procedures of Eqgs. (5) and (6) without the time-dependent
solution of Eq. (2) are shown in Appendix B. The damping
constant « is assumed to be scalar in the above formulation. On
the other hand, Safonov studied the magnetization relaxation
near equilibrium with a tensor damping [41]. The presence
of the tensor damping was also suggested in the spin torque
problem [42]. In Appendix C, we discuss how the formulas
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derived in the following sections are modified when the scalar
damping « is replaced by the tensor damping.

III. REVERSAL IN LOW-FREQUENCY REGION

In this section, we study the reversal field in the low-
frequency region. Let us first show in Fig. 2(a) the trajectory of
typical magnetization dynamics in the low-frequency region
obtained by numerically solving Eq. (2). The time evolution
of m, is shown in Fig. 2(b). The values of the parameters
are M = 1000 emu/c.c., Hx =7.5 kOe, Hy,c =450 Oe,
y = 1.764 x 107 rad/(Oe s), f =2.0 GHz, and @ = 0.01,
which are typical values used in the experiments and the
numerical simulations [14,16,19,21,22]. We judged that the
magnetization is reversed when the condition m, < —0.9
is satisfied. The minimum field satisfying this condition is
H = 4.709 kOe. Starting from the initial state m’ = +e_, the
magnetization precesses around an axis lying in the positive
x'7’ plane. After a half period of precession, the magnetization
changes the precession direction, and falls into the reversed
state.

Next, let us analytically derive the equation determining
the reversal field. Figure 2(c) shows the map of the potential
& in the x'z’ plane, where the horizontal axis is the angle
6 of the magnetization from the 7’ axis. The potential with
H = 4.709 kOe has metastable, saddle, and stable points at

(b)

1.0

0 1 2 3 4 5
time (ns)

(d)

0225 Epintorque

i~ spin torque

I

=

X

>

2

(0]

C

° 1
0.215 ymetastable point v

0 10 20 30
angle from z“axis (deg)

40

FIG. 2. (Color online) (a) Schematic view of the magnetization dynamics in the rotating frame at the reversal field H = 4.709 kOe, where
the frequency of the rotating field is f = 2.0 GHz. The trajectory is described on the unit sphere. (b) The time evolution of m,. (c) Schematic
view of the potential & (normalized by M H) in the x'z’ plane. The horizontal axis represents the angle 6 of the magnetization from the z’
axis. (d) The enlarged view of panel (c) around [6;piia1,saaaie ]- The directions of the damping and spin torque are indicated by arrows.
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Ometastable = 14°, Ogadqe = 36°, and Oypie = 178°, respectively.
The directions of the damping and the spin torque between the
initial state (Oinitia = 0°) and the saddle point in the potential
& are indicated by the arrows in Fig. 2(d). The spin torque
supplies the energy to the ferromagnet when the magnetization
is in Gppital < 0 < Ometastable DECause it is antiparallel to the
damping, while the spin torque dissipates the energy when the
magnetization is in Opepastable < 0 < Gsagale because itis parallel
to the damping. The function % in Oyiia < 0 < Ogaddre 1S
negative (#; < 0) because the spin torque magnitude (c sin 6)
increases as the angle 8(<90°) increases. Therefore, the spin
torque totally dissipates the energy during the precession.
The magnetization reversal occurs when the magnitude of the
energy A& = [dit(d&/dr) dissipated during the dynamics
from 6ipitiar t0 OBsaaare 1S smaller than the energy difference
between the initial state and the saddle point, &pita) — Ssaddles
i.€., the reversal condition is

Einitial — Ssaddle = —AE. @)

Strictly speaking, the time-dependent solution of m'’ is neces-
sary to calculate A&. However, in the low-frequency region,
because the difference between &pia and Siaqqe 1S small,
A& can be approximated to [#5(Ssaddie) + #o(Esadaie)]/2. The
numerical factor 1/2 appears because the reversal occurs after
the half period of the precession. Therefore, the reversal field
Hieversal can be defined as the field H satisfying the condition

ggnitial - g;addle = _%[Ws(&addle) + th((’iaddle)]- (8)

Equation (8) is the main result in this section. The reversal
field estimated from Eq. (8) is 4.708 kOe, which is almost
identical to that (4.709 kOe) obtained from the numerical
solution of the LLG equation (2). It should be noted that
the approximation A& >~ [#(&addie) + Wa(Ssaadie)]/2 works
well for small o because the magnetization dynamics occurs
almost on the constant energy curve when o < 1. In the
zero-damping limit, the reversal field is estimated from the
condition &pigar — Ssadale = 0, and is given by

~1
Hieversal = ﬂ Sin2 Osaddle <; - 1) - ﬂv 9
2 Cos esaddle 14
where 6ggqe depends on  Hieyersat  through the condi-
tion Hye €08 Osaqdie + [Hreversal + (277 f/ )] sin Ogadqie — Hy sin
BOsaddle €OS Osagqle = 0.

Let us also elaborate on the frequency range in which Eq. (8)
obtains good agreement with the numerical solution of the
LLG equation (2). At a certain field magnitude H’, which
is larger than Heyersa €Stimated by Eq. (8), the metastable
state disappears, and the potential has only one stable point
and a saddle point. We denote the potential & with H = H' as
&' = &(H = H'), which satisfies 0&£'/90 = 32&'/36 = 0 at
the saddle point 6/, .. According to the conventional Stoner-
Wohlfarth theory [1], the magnetization reversal should occur
because the potential has only one minimum. However, in the
present case, the work done by spin torque, #4(&;,44.), ON
the constant energy curve of &”(0,441.) = Gunddies 1S POSItiVe
because the direction of the spin torque is always opposite that
of the damping, as shown in Fig. 3. Then, the condition

WS aae) + Vo (Egaae) < 0 (10)
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FIG. 3. (Color online) Schematic view of the potential & =
&(H = H') with (H', f) = (3.671 kOe,6.1 GHz). The arrows indi-
cate the directions of the spin torque and the damping.

should also be satisfied to reverse the magnetization: if
Eq. (10) is not satisfied, the spin torque preventing the reversal
overcomes the damping, and thus the magnetization cannot
reverse its direction. It is found that Eq. (10) is satisfied
for f < 6.2 GHz for the above parameters. Therefore, we
define the low-frequency region in which Eq. (8) is valid
as f < 6.2 GHz. Because the reversal field discontinuously
becomes large above this frequency, we call this frequency
the jump frequency. It should be emphasized that the jump
frequency is independent of o(<« 1).

IV. REVERSAL IN HIGH-FREQUENCY REGION

In this section, we study the magnetization reversal in the
high-frequency region. As mentioned in the previous section,
for f > 6.2 GHz, the spin torque preventing the reversal
becomes sufficiently large. Then, a large field is required to
reverse the magnetization. Figure 4(a) shows the trajectory of
typical magnetization dynamics in the high-frequency region
obtained by numerically solving Eq. (2). The time evolution
of m, is shown in Fig. 4(b). The values of the parameters
are those used in Sec. IIT except f = 8.0 GHz. The minimum
field satisfying the condition m, < —0.9 is H = 7.109 kOe.
Starting from the initial state, the magnetization precesses
on the constant energy curves near the 7’ axis many times.
The precession amplitude slightly increases with time, and
finally the magnetization reverses to m ~ —e,. The reversal
trajectory covers almost all of the unit sphere, as shown in
Fig. 4(a).

Figure 4(c) shows the potential & in the x'z’ plane at the
reversal field. According to the Stoner-Wohlfarth condition [1]
HY? = [H 4+ Quf/y)?? + Hy’, a field H larger than
3.0 kOe is enough to reverse the magnetization, above which
the potential & has only one minimum. Nevertheless, a
large field (>7.109 kOe) compared with the Stoner-Wohlfarth
condition is required for the reversal in the present case because
the spin torque prevents the reversal. Figure 4(d) shows the
enlarged view of & near the initial state, where the arrows
indicate the directions of the damping and the spin torque. The
maximum of & is located at O ximum = —10° while the angle
satisfying &(0) = & (Oinia1) 18 located at & = —19°. For a rea-
son similar to that discussed in Sec. I11, the function #4(&itial)

024424-4



MAGNETIZATION REVERSAL CONDITION FOR A ...

(@) (H,f) = (7109 (Oe), 8 (GHz))

energy, &(MH)
=}
()]

0 90 180 270
angle from z-axis (deg)

360

PHYSICAL REVIEW B 90, 024424 (2014)

(b)
1.0
0.5
g0
-0.5
-1.0
0 100 200 300
time (ns)
(d)
0-84 int spin torque
spin torque N
1 4 \
T
= \
= ; damping
2 dampiﬁng
) :
c I
[} |
;point at which E=&injtial

0.80

-30 -20 -10 0 10

angle from z-axis (deg)

FIG. 4. (Color online) (a) Schematic view of the magnetization dynamics in the rotating frame at the reversal field H = 7.109 kOe, where
the frequency of the rotating field is f = 8.0 GHz. The trajectory is described on the unit sphere. (b) The time evolution of m . (c) Schematic
view of the potential & (normalized by M Hy) in the x'z’ plane. The horizontal axis represents the angle 6 of the magnetization from the 7’
axis. (d) The enlarged view of & around —30° < 6 < 10°. The directions of the damping and spin torque are indicated by arrows.

is positive. When § dt(d&/dt) = Wy(Eita) + W Einitial) <
0, the magnetization loses the energy, and falls into the reversed
state. On the other hand, when #(&initial) + #o(Emitial) > 0,
the magnetization climbs & from ;s t0 Oiaximum- Therefore,
the reversal field can be defined as the field satisfying the
condition

Wo(Enitial) + #o(Einitial) = 0. (11)

Equation (11) is the main result in this section. The reversal
field estimated from Eq. (11) is 7.109 kOe, which is identical
to that obtained from the numerical solution of the LLG
equation (2). Another important conclusion from Eq. (11) is
that the reversal field is independent of « because both % and
W, are proportional to «. The validity of this conclusion is
investigated in the next section.

V. COMPARISON WITH NUMERICAL SIMULATION

In this section, we confirm the validities of Egs. (8) and (11)
over a wide range of the frequency f. The circles in Fig. 5
show the reversal field estimated numerically solving the
LLG equation (2), where the frequency range is 0 < f <
10 GHz. The Gilbert damping constant is 0.01. The reversal
field magnitude linearly decreases as the frequency increases
for f < 6 GHz. Above f 2 6 GHz, the reversal field jumps to
a high value at which Hyeversa + (277 f/y) > Hk, and slightly

increases as the frequency increases. The reversal fields
obtained from Eqs. (8) and (11) are also shown in Fig. 5
by the solid lines. As mentioned in Sec. III, Eq. (8) is valid
for f < 6.2 GHz. Therefore, we use Eq. (8) for f < 6.2 GHz
while Eq. (11)is used for f > 6.2 GHz. Equations (8) and (11)

Eq. (11)

reversal field (kOe)

10

frequency (GHz)

FIG. 5. (Color online) The dependence of the reversal field on
the frequency of the rotating field. The circles are obtained from
Eq. (2) while the solid lines are obtained from Egs. (8) and (11). The
value of « is 0.01. The dashed line is the reversal field estimated from
Ref. [17], and is discussed in Sec. VI.
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FIG. 6. (Color online) (a) The dependencies of the reversal fields
on the frequency for @ = 0.001, 0.01, and 0.1. The symbols (square,
circle, and triangle) are obtained from Eq. (2) while the lines (dotted,
solid, and dashed) are obtained from Egs. (8) and (11). (b) The
enlarged view of panel (a) in the low-frequency region.

show good agreement with the numerical solution of the LLG
equation (2), indicating the validities of these formulas.

Figure 6(a) shows the dependencies of the reversal fields
on the frequency for o = 0.001, 0.01, and 0.1, where the
numerical solution of the LLG equation (2) is represented
by the symbols (square, circle, and triangle, respectively),
while the reversal fields obtained from Egs. (8) and (11)
are represented by the lines (dotted, solid, and dashed,
respectively). The frequency (=6 GHz) at which the reversal
field of the LLG equation (2) jumps to a high value is
independent of ¢, which is consistent with the discussion in
Sec. III. The enlarged view in the low-frequency region is
shown in Fig. 6(b). In the low-frequency region, the difference
between the solutions of the LLG equation (2) and the energy
balance equation (8) becomes small as « decreases, because
the approximation A& >~ [#s(Esaadie) + #o(Ssadaie)]/2 used in
the derivation of Eq. (8) is valid for a sufficiently small . Also,
the reversal field becomes independent of & with decreasing «,
which is consistent with Eq. (9). In the high-frequency region,
the solution of the LLG equation (2) is also independent of «,
which is consistent with Eq. (11). These results also imply the
validity of Egs. (8) and (11).

As we end this section, we study the relation between the
rotating field magnitude H,. and the jump frequency, i.e., the
frequency defining the boundary between the low- and high-
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FIG. 7. (Color online) The dependence of the jump frequency,
which is the boundary between the low- and high-frequency regions,

on the rotating field magnitude H,.. The circles are obtained from
Eq. (2) while the solid line is obtained from Eq. (10).

frequency regions. Figure 7 shows the dependencies of the
jump frequency on H,. obtained from Eq. (10) (solid line) and
the numerical solution of the LLG equation (circle). As shown,
the jump frequency monotonically increases with increasing
H,.. Although the clarification of the relation between the jump
frequency and the other parameters such as H, is desirable,
it is difficult to analytically solve Eq. (10) with respect to the
jump frequency. We consider that the jump frequency does not
necessarily relate to, for example, the ferromagnetic resonance
(FMR) frequency because the jump frequency is determined
by the energy balance of the magnetization at the saddle point
of the potential & while the FMR frequency is the frequency
of the harmonic oscillation around the stable point. However,
a further investigation on the jump frequency is beyond the
scope of this paper.

VI. COMPARISON WITH OTHER WORK

In this section, we compare the above result with the
previous work of Bertotti ef al. [17,18]. They expanded the
LLG equation around its steady-state point, (6,¢), where 6
and ¢ are the zenith and azimuth angles characterizing the
magnetization direction, and satisfy the following equations:

yHy sing — a2m f sinf = 0, (12)

(yH + 2 f)sinf — y Hg sinf cos @ + y Hy. cos 6 cos ¢ = 0.
(13)

Small deviation of the magnetization, (A6,A¢), from
the steady points satisty dA0/dt = A; 1 A0 + Aj,A¢ and
dA¢/dt = Ay 1 AO 4+ Ay, Ap, where components of a 2 x 2
matrix A are obtained from the LLG equation. The trace and
determinant of A are given by

2 in? 0
THA] = — +°‘a2 [v - sz Y Hy + 27 f cos 9} . (14)
dot[A] = v? — y Hgvsin? @ + (a27 f cos@)z’ 15)
1+ o2
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where v = a2 f cot ¢. According to Ref. [17], the reversal
field is estimated from Eqgs. (12), (13), and (15) with the
condition det[A] = 0. The dashed line in Fig. 5 is the reversal
field estimated from this method. As shown, the method of
Bertotti et al. reveals larger reversal field in our simulation.
The difference between our and their results arises from the
following reason. In our analytical and numerical calculations,
both the microwave and external field are applied from
t = 0 with the constant magnitudes. The initial state of the
magnetization, m, = 1, locates above the stable or saddle
point, as shown in Fig. 2(d). On the other hand, Bertotti
et al. considered the instability of the magnetization around
the steady point corresponding to the stable or saddle point. In
this case, a relatively large energy compared with our situation
is required to overcome the potential barrier and reverse the
magnetization direction. Therefore, the reversal field estimated
from the method of Bertotti et al. becomes larger than our
estimation.

We emphasize that both the results of Bertotti ez al. and our
method are useful to estimate the reversal field. For example,
numerical simulation of the LLG equation [20] showed good
agreement with the theory of Bertotti ef al. [11,12,17,18]. In
Ref. [20], the magnitude of the dc magnetic field is linearly
increased with time until it reaches a certain value. In this case,
the magnetization first relaxes to a stable point of the potential,
and after that the magnetization reverses its direction when
the saturated value of the dc magnetic field is larger than the
reversal field estimated by the method of Bertotti et al. On the
other hand, our approach is applicable when the magnitude of
the dc magnetic field is fixed from r = 0, as mentioned above.
To clarify the applicability of the theory of Bertotti ef al. more
precisely, an estimation of relaxation time from the initial state
to the steady point, which should be shorter than the time to
saturate the dc magnetic field magnitude, will be necessary.

VII. CONCLUSION

In conclusion, we studied the dependence of the reversal
field in microwave-assisted magnetization reversal on the
frequency of the rotating field theoretically. The microwave
produced a dc magnetic field pointing in the reversed direc-
tion, which energetically stabilized the reversed state. The
microwave simultaneously produced a torque proportional
to the frequency of the rotating field. Because this torque
prevented the reversal, a large field was required to reverse
the magnetization in the high-frequency region. The equations
determining the reversal fields in both the low- and high-
frequency regions were derived from the energy balance
equation. The formulas showed that the reversal field in
the low-frequency region became converged to Eq. (9) as
the damping constant decreased, while the reversal field in
the high-frequency region was independent of the damping
constant. The boundary between the low- and high-frequency
regions, which was independent of the damping constant, was
also estimated from the energy balance equation. The compari-
son with the numerical solution of the Landau-Lifshitz-Gilbert
equation showed quantitatively good agreement, guaranteeing
the validities of the formula.
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APPENDIX A: TRANSFORMATION TO
ROTATING FRAME

The transformation from the laboratory frame to the rotating
frame is described by the rotation matrix,

cos(2m ft) sinmft) O
R=|—sin2nft) cosnft) O (A1)
0 0 1

For example, the relation between m and m’ is given by
m’ = Rm. Similarly, the field H is transformed as H' = RH =
H,.e, + (—H + Hgm_)e,, where H' relates to B in Eq. (2)
as B=H— (2nf/y)e,. Also, dm/dt should be replaced by
dm’/dt — 2 fm’ x e, . Then, Eq. (1) is transformed as

dm’ , < , 2nf )
=—-ym x [H — —e,
dt y

—aym’ x (m' x H'). (A2)

Equation (A2) is equivalent to Eq. (2). However, for the
following reason, we use Eq. (2) instead of Eq. (A2). As shown
in Secs. III and IV, a potential map is useful to investigate the
magnetization dynamics. The potential is usually defined as
the integral of the field with respect to the magnetization [37],
where the field appears in both the conservative and the
damping torques of the LLG equation. When we use Eq. (A2),
the definition of the potential is not clear because the fields
that appeared in the conservative torque, H' — (27 f/y)e./, and
in the damping torque, H', are different. On the other hand,
when we use Eq. (2), the potential can be well defined as
E=—-M f dm - B. Therefore, we express the LLG equation
in the rotating frame in the form of Eq. (2).

APPENDIX B: CALCULATION PROCEDURES OF
EQUATIONS (5) AND (6)

Equations (5) and (6) can be calculated without the time-
dependent solution of m’(¢) obtained from Eq. (2). Using the
conservative torque term of the LLG equation, the integration
variable can be transformed from the time ¢ to my, i.e.,
from ¢ dt to 2 [ dm. /(y Hyem ), where the numerical factor
2 appears by restricting the integral range to m, > 0 and
due to the symmetry of the system with respect to the x'z’
plane. Because the LLG equation conserves the magnetization
magnitude, m, appearing in Egs. (5) and (6) can be replaced
by /1 —m2 —m?. Also, from Eq. (3), m, can be expressed
in terms of m, as

L I ) Hx (B1)
my = - — |my — —my|.
YT Hel M Y o E

Therefore, the integrands in Eqs. (5) and (6) can be expressed
in terms of m, only. The integral range can be determined
from Eq. (3) by fixing the value of &.
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APPENDIX C: FORMULAS OF REVERSAL FIELD IN
x THE CASE OF TENSOR DAMPING

When the damping constant « is replaced by the tensor
damping, #; and #, in Egs. (5) and (6) should be redefined
as

W = _2nfodrB o -[e; — (m'-e,)m’], (C1)

W= —yM BB Bl ()

where « is the tensor damping in the rotating frame, and has
nine components oy, (k,£ = x’,y’,7’), in general. The tensor
product is defined as, for example, B - o -B= Broge By
According to the discussions in Secs. III and IV, and using

PHYSICAL REVIEW B 90, 024424 (2014)

Egs. (C1) and (C2), two conclusions are obtained for the case of
the tensor damping. First, Egs. (8) and (11) are still applicable
to estimate the reversal fields in the low- and high-frequency
regions, respectively, because the explicit forms of #; and %,
do not affect the derivation of these equations. Equation (10)
is also applicable to determine the boundary between the
low- and high-frequency regions. However, the argument that
Egs. (10) and (11) are independent of the damping constant
does not necessarily hold. This is because the integrals of
Egs. (5) and (6) are independent of the scalar damping o, and
therefore, the frequency or field satisfying Eqgs. (10) or (11) is
also independent of o, while in the case of the tensor damping,
the integrals of Egs. (C1) and (C2) depend on the components
of <o_c), in general. Second, Eq. (9) is also valid because this

equation is derived by the condition &pija1 — &sadae = 0, which
is independent of the damping.
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