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Edge states in topological magnon insulators
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For magnons, the Dzyaloshinskii-Moriya interaction accounts for spin-orbit interaction and causes a nontrivial
topology that allows for topological magnon insulators. In this theoretical investigation we present the bulk-
boundary correspondence for magnonic kagome lattices by studying the edge magnons calculated by a Green
function renormalization technique. Our analysis explains the sign of the transverse thermal conductivity of the
magnon Hall effect in terms of topological edge modes and their propagation direction. The hybridization of
topologically trivial with nontrivial edge modes enlarges the period in reciprocal space of the latter, which is
explained by the topology of the involved modes.
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I. INTRODUCTION

Understanding the physics of electronic topological in-
sulators has developed enormously over the past 30 years:
spin-orbit interaction induces band inversions and, thus, yields
nonzero topological invariants as well as edge states that are
protected by symmetry [1–3]. During this development the
concept of Berry curvature [4] and Chern numbers has arisen
in various contexts and laws of condensed matter physics.
This led for example to the formulation of the bulk-boundary
correspondence [5]. Topological arguments and concepts—
gained mostly from studies of electronic systems [6]—are
applicable to phononic and magnonic systems as well: the
phonon Hall effect [7] was successfully explained in terms of
Berry curvature and topology [8,9].

Recently, the magnon Hall effect (MHE) was discovered
in the insulating ferromagnet Lu2V2O7 with pyrochlore lattice
structure [10]. The transverse heat current upon application
of a longitudinal temperature gradient was explained by
uncompensated net magnon edge currents that are mathemat-
ically described in terms of the Berry curvature [11,12]. The
edge currents originate from the topology of the “topological
magnon insulator” [13]. The nontrivial topology is brought
about by the spin-orbit interaction which manifests itself as
Dzyaloshinskii-Moriya (DM) contribution to the exchange in-
teraction of localized magnetic moments. The Dzyaloshinskii-
Moriya interaction shows up in systems without inversion
center—as is the case in the aforementioned pyrochlore lattice
or in its two-dimensional counterpart, the kagome lattice
(Fig. 1).

The rich topology of the kagome lattice not only puts
forward itself for an investigation of the bulk-boundary
correspondence but also affects crucially the magnon Hall
effect. Therefore, a detailed understanding of the MHE in the
kagome lattice is a prerequisite for investigations of pyrochlore
lattices, such as Lu2V2O7.

In this paper, we report on such a study. We focus on two
topological phases in which the sign of the transverse thermal
conductivity—and hence the direction of the resulting heat
current—is unique [14]. We explicitly show the correspon-
dence of thermal Hall conductivity with the propagation di-
rection of the nontrivial edge states. Furthermore, we establish
that hybridization of topologically trivial with nontrivial edge

modes causes a doubling of the period of the latter in reciprocal
space.

The paper is organized as follows. In Sec. II we sketch the
quantum-mechanical description of magnons in kagome lat-
tices (Sec. II A), Berry curvature and Chern number (Sec. II B),
and the Green function renormalization method for calculating
edge states in semi-infinite systems (Sec. II C). Results are
presented in Sec. III: edge states of the semi-infinite kagome
lattice for different edges and different topological phases
(Sec. III A), the connection between the edge modes and the
sign of the thermal Hall conductivity (Sec. III B), as well as
the hybridization of topologically trivial and nontrivial edge
states (Sec. III C). An outlook is given in Sec. IV.

II. THEORY

A. Model Hamiltonian for magnons in a kagome lattice

A two-dimensional kagome lattice is composed of a three-
atomic basis which is arranged at the corners of an equilateral
triangle with side length equal to half of the lattice constant a

(Fig. 1). The lattice vectors read

a1 = a

2
(x +

√
3 y), (1a)

a2 = a

2
(−x +

√
3 y) (1b)

in Cartesian coordinates.
Magnons in the kagome lattice are described by a quantum-

mechanical Heisenberg model [15] with Hamiltonian

H = HH + HDM + Hext. (2)

In the isotropic symmetric spin-spin interaction, i.e., the
Heisenberg exchange

HH = −
∑
n�=m

J n
m ŝm · ŝn, (3)

two spin operators ŝm and ŝn at sites n and m are coupled by
symmetric exchange parameters J n

m = Jm
n . The eigenvectors

|k〉 = 1√
N

∑
m

eikRm |Rm〉 (4)
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FIG. 1. (Color online) Kagome lattice with lattice vectors a1 and
a2 in the xy plane. Identical atoms A, B, and C are placed at the
corners of the triangles. Dzyaloshinskii-Moriya vectors are aligned
normal to the lattice plane and are represented by red dots: along +z

(−z) for a counterclockwise (clockwise) chirality: A-B-C (C-B-A).

of HH are “one-magnon states”; they expose magnons as
collective excitations because the spin deviation of � is
distributed uniformly over all N spins. Rm is the vector
pointing to lattice site m and |Rm〉 denotes the state with all
spins aligned along the ferromagnetic ground state except the
one at lattice site m; its z component is reduced by �.

The second contribution in Eq. (2),

HDM =
∑
m�=n

Dn
m(ŝm × ŝn), (5)

accounts for the antisymmetric Dzyaloshinskii-Moriya (DM)
interaction [16,17]. Dn

m is the DM vector between sites m and
n (Dn

m = −Dm
n ).

For completeness, we introduce the coupling to an external
magnetic field H ,

Hext = −gμB

∑
n

H · ŝn. (6)

g and μB denote the g factor of electrons and Bohr’s magneton,
respectively. For the problems treated in this study, this
contribution is irrelevant; it is, however, needed in the de-
scription of the magnon Hall effect (e.g., Ref. [14]). Likewise,
neither magnetocrystalline anisotropy nor magnon-magnon
interaction are considered in this paper.

B. Berry curvature and Chern numbers

According to Moriya’s symmetry rules [17], the DM vectors
Dn

m are perpendicular to the kagome lattice, that is, they are
aligned along the z direction. Their orientation is given by
the chirality of the triangles in the kagome lattice: those with
counterclockwise (clockwise) chirality point along +z (−z)
direction (cf. the red dots in Fig. 1).

Because of the DM interaction a magnon accumulates an
additional phase upon propagation from site m to n (cf. the
supplemental online material of Ref. [10]). This can be viewed
as a result of a textured flux within the plaquettes of the kagome
lattice [18], in analogy to the Haldane model for an electronic
topological insulator [19]. Thus we are concerned with a
nonzero Berry curvature �(k) (Ref. [4]) and with topological
invariants. Please note the difference to models for strongly
correlated electrons on a kagome lattice with spin anisotropy,

in which the Berry phase and the electronic edge modes are
brought about by statically tilted spins [20].

For a given set of parameters {J n
m,Dn

m}, we solve the
eigenproblem for the Hamiltonian H. From the computed
eigenvectors |i(k)〉 and dispersion relations εi(k) [wave vector
k = (kx,ky), band index i] the Berry curvature

�j (k) ≡ i
∑
i �=j

〈i(k)|∇kH(k)|j (k)〉 × 〈j (k)|∇kH(k)|i(k)〉
[εi(k) − εj (k)]2

(7)

and the Chern numbers

Cj ≡ 1

2π

∫
BZ

�z
j (k) dk2 (8)

are calculated for each band j . We recall that these are
determined solely by the magnonic band structure of the bulk.

C. Edge magnons

For investigating magnonic edge modes we consider a semi-
infinite solid. Thereby, finite-size effects that show up in a slab
(stripe) calculation are avoided; for example, hybridization of
edge states at opposite edges could result in artificial band
gaps.

The magnon band structure is analyzed in terms of the
spectral density:

Nn(ε,k) = − 1

π
lim

η→0+
Im tr Gnn(ε + iη,k) (9)

for site n. The limit η ↘ 0 is not taken but η = 0.005 meV.
The blocks Gnm of the Green function of the semi-infinite

system are computed by a renormalization technique [21]
which is briefly sketched now. The system is decomposed
into principal layers for which the exchange interaction is
only among adjacent principal layers. Restricted to nearest-
and next-nearest-neighbor interactions, the thinnest principal
layers possible are shown in Fig. 2 for two different edges.

In terms of the principal layers, the blocks of the Green’s
matrix for the semi-infinite system fulfill

δnm =
∞∑

j=0

(z δnj − Hnj ) · Gjm, n,m � 0, (10)

where z = ε + iη. The dimension of each block matrix is
the number of basis atoms in a principal layer. The diagonal
blocks Hnn comprise the intralayer interactions within the nth
principal layer; in particular, H00 is the Hamilton matrix with
interactions within the surface layer (red layer in Fig. 2 labeled
“0th layer”). The interlayer couplings are comprised in Hn,n+1;
for example, H01 is for the interaction between the surface
layer and the subsurface layer (red and blue in Fig. 2). By
construction of the principal layers, Hnm = 0 for |n − m| � 2.

From Eq. (10), one eliminates all blocks Gnm with odd
principal-layer indices (e.g., the blue layers in Fig. 2); the result
is an equation with identical form but with renormalized blocks
Hnm. By repeating this elimination process, the interlayer
interactions can iteratively be reduced (||Hnm|| → 0). From
the renormalized Hamilton matrix which is effectively block
diagonal, we calculate the layer-diagonal Green-function
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FIG. 2. (Color online) Edges of the kagome lattice. For two
different terminations of the bulk system, (a) and (b), the semi-
infinite lattice is divided into the thinnest principal layers possible
if only nearest- and next-nearest-neighbor interactions are present.
White dots show the basis consisting of six (a) and three (b) sites,
respectively. The lattice constants a‖ are indicated.

blocks by

Gnn = (z − Hnn)−1. (11)

All other Gnm are accessible by transfer matrices.

III. RESULTS AND DISCUSSION

In the following analysis we assume a kagome lattice
with all three basis atoms being identical, i.e., with identical
spin and exchange parameters; an exception is Sec. III C. We
consider the Heisenberg exchange between nearest (JN) and
next-nearest (JNN) sites; the Dzyaloshinskii-Moriya parame-
ters account only for nearest-neighbor interactions (D).

A. Bulk-boundary correspondence

As investigated recently [14], the kagome lattice with
ferromagnetic ground state shows four topologically different
phases, with variables JNN/JN and D/JN. These phases are
distinguished by the triple of Chern numbers (C1,C2,C3) of
the three magnon bulk bands (Fig. 3) [22]. Note that the phase
diagram results from analyzing an infinite crystal (bulk).

We now consider semi-infinite systems by introducing an
edge according to Fig. 2(a). The local spectral density Nn(ε,k)
is calculated for four different sets of parameters which put the
system into the four different topological phases [Figs. 4(a)–
4(d)]. More precisely, we chose {JNN/JN,D/JN} = {0,1},
{ 1

2 ,1}, {0.81,1}, and {1,1}, all of which are marked by the
red dots in Fig. 3.

FIG. 3. (Color online) Topological phase diagram of the kagome
lattice with regions characterized by sets (C1,C2,C3) of Chern
numbers. The antiferromagnetic (AF) phase is colored blue. Red dots
mark those variable sets {JNN/JN,D/JN} for which local densities of
states are calculated. The sign of the transverse thermal conductivity
κxy of the magnon Hall effect is given in red; it is unique for the
phases (−1,0,1) and (3, − 2, − 1).

The three magnon bulk bands are separated from each other
by gaps generated by the Dzyaloshinskii-Moriya interaction.
Topologically nontrivial edge modes are easily identified as
bands that cross these band gaps and, thus, connect adjacent
bulk bands. Furthermore, they are robust against variations
of the exchange parameters at the edge. The edge states are
singly degenerate and decay rapidly towards the bulk (Fig. 5).
The atomic-layer-resolved spectral density clearly shows a
localization of the edge state at the first 20 atomic layers
(blue histogram in Fig. 5). The magnon edge resonance shows
features up to the 300th atomic layer (green histogram in
Fig. 5).

In contrast to electronic Z2 topological insulators—which
rely on time-reversal invariance—magnonic edge modes do
not occur in Kramers pairs. This is readily explained by the
fact that a single spin orientation is present in the system (here:
ferromagnetic ground state with spins along the +z direction).
We recall that time reversal changes the sign of k and reverses
the spin orientation. A reversal of the spin orientation alters
the signs of all Chern numbers, which has the consequence
that the propagation direction of the topologically nontrivial
edge modes is reversed as well. These “reversed” edge states
can be regarded as the time-reversed (Kramers) partners in an
electronic Z2 topological insulator.

The topological phase—specified by its set of Chern
numbers—is of particular importance for the topologically
nontrivial edge modes as it determines both their propagation
direction and their number. This is the “bulk-boundary corre-
spondence” [1,5,23]: a bulk property, i.e., the Chern numbers,
dictates surface properties, i.e., the edge magnons. The sum of
Chern numbers up to the ith band,

νi ≡
∑
j�i

Cj , (12)

is the “winding number” of the edge states in band gap i

(cf. Refs. [5] and [23]). In other words, |νi | is the number of
topologically nontrivial edge states in the ith band gap; their
propagation direction is given by sgn(νi). We emphasize that
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FIG. 4. (Color online) Edge magnons in a kagome lattice. The spectral density of states of an edge site is shown as color scale [“local
density of states” (LDOS), right] for the edge geometries of Fig. 2(a) [top row, (a)–(d)] and Fig. 2(b) [bottom row, (e)–(h)] in the entire edge
Brillouin zone. Bulk magnons appear as extended regions separated by band gaps (“projected bulk band structure”), while edge magnons bridge
these band gaps. The topological phases are characterized by their bulk-band-resolved Chern numbers Ci (i = 1,2,3) given in each panel;
the respective exchange parameters are given as well (JN = 1 meV). The topologically nontrivial edge magnon modes and their propagation
direction are sketched in the central row.

the geometry of the edge is irrelevant for these fundamental
features.

We illuminate the above rule by considering as an example
the topological phase (−1,2, − 1). For both edge geometries
[Figs. 4(b) and 4(f)], there is a single nontrivial edge mode
with negative dispersion (slope) within the lowest energy gap
because ν1 = C1 = −1. In the second band gap there is a
single edge mode with positive dispersion, in accordance with
ν2 = C1 + C2 = 1. Because the sum over all Chern numbers
vanishes—νn = ∑n

i Ci = 0, where n = 3 is the total number
of bands—there are never topological nontrivial edge states
above the uppermost band. These relations hold also for the

other topological phases, as is evident from the other panels
of Fig. 4.

B. Edge modes and magnon Hall effect

The magnon Hall effect (MHE) is a transverse heat
current upon application of a temperature gradient which
was discovered for the ferromagnetic insulator Lu2V2O7 by
Onose et al. (Ref. [10]). The pyrochlore Lu2V2O7 consists
of stacked two-dimensional kagome lattices separated by
an additional monatomic layer. Matsumoto and Murakami
explained the MHE by uncompensated magnon edge currents
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FIG. 5. (Color online) Edge localization of magnons. The site-
resolved spectral density (“LDOS”) is shown versus layer index (edge
= layer 1) for an edge magnon [blue; the respective (ε,k) is marked
by the blue dot in the inset] and an edge resonance (green; cf. the
green dot in the inset). D/JN = 1, JNN/JN = 0, and JN = 1 meV, as
in Fig. 4(a).

in two dimensions [11,12]. The intrinsic contribution to the
transverse thermal conductivity,

κxy = − k2
BT

(2π )2�

∑
i

∫
BZ

c2(	i) �z
i (k) dk2, (13)

is intimately related to the Chern numbers defined in Eq. (8).
The sum runs over all bands i in the magnon dispersion
relation, and the integral is over the Brillouin zone (BZ). The
energy- and temperature-dependent Bose distribution function
	i enters the function

c2(x) ≡ (1 + x)

(
ln

1 + x

x

)2

− (ln x)2 − 2 Li2(−x). (14)

Li2 is the dilogarithm.
The magnon Hall effect in kagome lattices has extensively

been discussed in Ref. [14]. In particular, the sign of κxy

has been shown to depend on the topological phase of the
bulk system. In that publication, an explanation was given by
means of Chern numbers and a high-temperature limit of κxy .
However, this dependence can be understood in terms of edge
modes and their propagation direction as well, as we will show
in the following.

In the phase (−1,0,1) there are two topologically nontrivial
edge modes, both with negative dispersion [Figs. 4(a) and
4(e)]. As a consequence, heat transport can only proceed in
one direction which is towards the left, as sketched in the
center row of Fig. 4. Likewise, the phase (3, − 2, − 1) shows
four edge modes, all of which with positive dispersion; thus
the heat transport is towards the right [panels (d) and (h)].
Because all nontrivial edge modes propagate in the same
direction, the sign of the thermal Hall conductivity is fixed
within these topological phases; its sign does not depend on
the temperature.

The other two phases, (−1,2, − 1) and (−3,4, − 1),
support edge modes of both propagation directions [panels
(b), (c), (f), and (g) in Fig. 4]. Thus the sign of κxy depends
on the occupation probability of the edge magnons, that is,
on temperature. At low temperatures, edge modes in the first
band gap are more occupied than edge modes in the second
band gap. Thus the heat transport is dominated by the former
edge modes; here: towards the left. Upon increasing the
temperature, the edge modes in the second band gap become
increasingly populated, with the consequence that the heat
current is mainly mediated by these magnons, provided that
the absolute values of their velocities are larger than those of
the magnons in the first band gap; hence it is toward the right.
This finding—a change of sign in κxy with temperature—is
in full agreement with the analysis in Ref. [14].

C. Hybridization of edge modes

Topologically nontrivial edge magnons are protected by
symmetry because their existence is dictated by the topology
of the bulk system. However, their detailed dispersion relation
may change under perturbations, for example, surface relax-
ation and reconstruction as well as adsorption of magnetic
sites. All these modifications alter the exchange parameters at
the edge with respect to those of the bulk. In the following, we
account for such effects by changing the interaction parameters
JN within the very first principal layer but keeping the bulk
parameters constant (D/JN = 0.1).

It turns out that even for the ideal (unperturbed) edge there
exists a trivial edge mode in the second band gap, close to the
wedge-shaped region at k‖ = 0.5 × 2π/a‖ and ε ≈ 5.3 meV
[Fig. 6(a)]. For increasing J

edge
N this trivial mode is shifted

towards higher energies [(b)–(d)]. Eventually, it hybridizes
with the topologically nontrivial mode (d).

This hybridization of trivial with nontrivial edge modes
shows severe consequences for the topologically nontrivial
edge state. For the ideal edge, it connects the third with the
second bulk band within a k‖ range of less than one edge
Brillouin zone. More precisely, it “leaves” the third bulk band
at about k‖ = 0.3 × 2π/a‖ and “enters” the second bulk band
at about 0.8 × 2π/a‖ [Fig. 6(a)]. In the case of hybridization,
however, this period is enlarged by 2π/a‖, that is by the entire
extension of one Brillouin zone [Fig. 6(d)]. The periodicity
of the band structure remains unchanged with 2π/a‖, as is
obvious within an extended zone scheme.

The effect of hybridization on the periodicity of the edge
states can be understood by making use of the periodicity
of the Brillouin zone. By identifying k‖ = 0 and k‖ = 2π/a‖
the edge Brillouin zone becomes a cylinder (Fig. 7). Within
this representation bulk bands form broad rings encircling the
cylinder’s surface. In the systems of Fig. 6 two edge modes
show up. The topologically nontrivial mode corresponds to
the blue thread in Fig. 7(a) labeled “nontrivial edge mode.”
By twisting the cylinder (i.e., rotation of its top or bottom) the
nontrivial mode is continuously transformed into a line parallel
to the rotational axis of the cylinder. However, the trivial mode
[green thread in Fig. 7(a) labeled “trivial edge mode”] forms a
closed loop around the cylinder’s surface and, therefore, will
not change under twisting.
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FIG. 6. (Color online) Hybridization of a topologically nontrivial with a trivial edge magnon. The local density of states (LDOS) for the
edge geometry of Fig. 2(a) is shown as a color scale for several exchange parameters of the edge sites [(a)–(d); as indicated at the top of each
panel]. D/JN = 0.1, JN = 1 meV, and JNN = 0.

For the unperturbed edge [Fig. 6(a)] the trivial mode
is located at a lower energy than the nontrivial mode; it
is concealed almost entirely by the lower bulk band. For
increasing perturbation J

edge
N , this trivial mode is shifted

towards higher energies and, eventually, approaches the energy

FIG. 7. (Color online) Topology and hybridization of a topolog-
ically nontrivial with a trivial edge magnon. Cylinder representation
of a system with two bulk bands (black). The dashed line indicates
the “seam” at k‖ = 0 = 2π/a‖. (a) Sketch of the band structure in
Fig. 6(a). Trivial edge modes (green) circle around the cylinder;
nontrivial edge modes (blue) connect the bulk bands. The trivial
modes’ energy is not located within the energy range of the nontrivial
mode. (b) Sketch of the band structure in Fig. 6(d). A hybridization
of a trivial and nontrivial edge mode generates a nontrivial mode
circulating the cylinder (red).

range covered by the nontrivial mode. Thus the topologically
trivial and nontrivial mode hybridize with each other [red
thread labeled “nontrivial hybridized edge mode” in Fig. 7(b)].
As a result, a nontrivial edge mode is formed that not only
connects the two bulk bands but also encircles the cylinder’s
surface for another entire circulation; an additional extension
of the Brillouin zone (2π/a‖) is necessary to traverse the
band gap. Mathematically the hybridization can be understood
as a Dehn twist [24] applied to the cylinder about the
trivial mode modifying the nontrivial mode. As Dehn twists
are self-homeomorphisms the topology of the cylinder stays
untouched. We note in passing that a further increase of J

edge
N

shifts the trivial edge mode into the upper bulk band and the
original nontrivial mode with simple periodicity is recovered.

The above argumentation is readily generalized: if a
nontrivial mode hybridizes with n trivial modes, its period
is increased by n × 2π/a‖ since n Dehn twists are applied.
In any case, the resulting mode is always nontrivial due to its
topology determined by the bulk. Therefore, a twisting of the
cylinder will always transform the hybridized mode into a line
parallel to the cylinder’s rotational axis.

A similar hybridization has been observed in electronic
topological insulators: for Bi2Te3 covered by a monolayer of
Au, the Dirac surface state of Bi2Te3 hybridizes with sp states
of Au (Ref. [25]), thereby increasing its period in full analogy
to the magnon case presented here.

IV. OUTLOOK

Having analyzed in detail the topology of edge modes in
kagome lattices, it is obvious to extend such an investigation
to three-dimensional systems, especially to ferromagnetic
insulators with pyrochlore structure.

Our investigation of the edge modes in kagome systems
calls for experimental verification. The dispersion relation
could be mapped by spin-polarized electron energy loss
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spectroscopy (SPEELS) [26] or time-resolved spectroscopies
[27]. Within this respect, materials with different topological
phases are desirable, for example, Lu2V2O7 with positive and
In2Mn2O7 with negative thermal Hall conductivity [28]; these
should exhibit nontrivial surface modes with opposite slope of
the dispersion.

Recently, Matsumoto, Shindou, and Murakami derived a
theory of the thermal Hall effect in magnets with dipolar
interaction and in antiferromagnets [29]. In such systems,
pairs of edge states could occur that can be regarded as
time-reversed partners of each other, which calls for their
detailed investigation.
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