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The temperature and magnetic-field dependence of lattice and carrier excitations in MnSi is studied in detail
using inelastic light scattering. The pure symmetry components of the electronic response are derived from the
polarization-dependent spectra. The E and T2 responses agree by and large with longitudinal and optical transport
data. However, an anomaly is observed right above the magnetic ordering temperature TC = 29 K that is associated
with the fluctuations that drive the transition into the helimagnetic phase first order. The T1 spectra, reflecting
mostly chiral spin excitations, have a temperature dependence similar to that of the E and T2 symmetries. The
response in the fully symmetric A1 representation has a considerably weaker temperature dependence than that in
the other symmetries. All nine Raman active phonon lines can be resolved at low temperature. The positions and
linewidths of the strongest four lines in E and T2 symmetry are analyzed in the temperature range 4 < T < 310 K.
Above 50 K, the temperature dependence is found to be conventional and given by anharmonic phonon decay
and the lattice expansion. Distinct anomalies are observed in the range of the helimagnetic transition and in the
ordered phase. Applying a magnetic field of 4 T, well above the critical field, removes all anomalies and restores a
conventional behavior highlighting the relationship between the anomalies and magnetism. The anomaly directly
above TC in the fluctuation range goes along with an anomaly in the thermal expansion. While the lattice
constant changes continuously and has only a kink at TC, all optical phonons soften abruptly, suggesting a direct
microscopic coupling between spin order and optical phonons rather than a reaction to magnetostriction effects.
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I. INTRODUCTION

A long-standing problem in the field of itinerant-electron
magnetism concerns the interplay of collective excitations
such as phonons, plasmons, or magnons with the conduction
electrons. While elements such as Fe, Ni, and Co are clearly
prototypical for itinerant-electron ferromagnetism and Cr is
prototypical for spin-density and charge-density wave order,
their relatively high transition temperatures imply large energy
scales for the collective excitations that result in a complex
interplay. A materials class that has played a major role
in the 1970s and 1980s for the development of the present
day understanding of itinerant-electron magnetism is weakly
magnetic transition-metal compounds such as ZrZn2 or Ni3Al.
For their description, a self-consistent phenomenological
model was developed taking into account dispersive spin
fluctuations associated with the damping due to the particle-
hole continuum [1,2]. This spin-fluctuation theory is in
excellent quantitative agreement with experiment and, during
the following decade, became the basis for the description of
magnetic quantum phase transitions [3,4].

Amongst the weakly magnetic itinerant-electron magnets,
the cubic B20 compound MnSi has so far probably been
studied most extensively. The interest originates thereby
in a well-defined hierarchy of energy scales comprising
ferromagnetic exchange on the strongest scale, followed by
Dzyaloshinsky-Moriya interactions on an intermediate scale
and higher-order crystal-electric fields on the weakest scale.
Focusing mainly on the highest energy scale, MnSi was
studied extensively in the spirit of an essentially ferromagnetic
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material. These studies motivated in particular a detailed
investigation of the suppression of the magnetic transition
temperature under hydrostatic pressure, for which a marginal
breakdown of the standard model of the metallic state, Fermi-
liquid theory, was anticipated.

In contrast, while hydrostatic pressure experiments revealed
a suppression of magnetic order at pc = 14.6 kbar, the
transition was not continuous as expected but rather displayed
a first-order character. Despite this lack of (second-order)
quantum criticality [5], the low-temperature resistivity of MnSi
abruptly changes from the T 2 Fermi-liquid dependence for
p < pc to a stable T 3/2 non-Fermi-liquid (NFL) behavior for
p > pc [6]. This NFL regime persists over a remarkably wide
range in temperature, pressure, and field and is accompanied
by partial magnetic order in a small pressure and temperature
range on time scales between 10−10 s and 10−11 s for pc <

p < p0 ≈ 21 kbar [7,8]. Taken together, these findings clearly
indicate the importance of the weak spin-orbit interactions in
MnSi intimately connecting the NFL behavior to the magnetic
structure which indeed is ferromagnetic only on short length
scales, i.e., for large momenta.

The extent of this mysterious NFL resistivity appears
to be related to the specific form of spin-orbit coupling
and magnetic anisotropies mentioned above, which
generate a long-wavelength helimagnetic modulation with
λh ≈ 180 Å along the crystalline 〈111〉 axes. An important
consequence of the underlying hierarchy of energies concerns
the onset of magnetic order at ambient pressure and TC ≈ 29 K,
which may be described within a Brazovskii scenario [9]. If
TC is approached from the mean-field-disordered paramagnet
at high temperatures, isotropic chiral fluctuations evolve on
a sphere in reciprocal space with a radius corresponding
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to the helical pitch λh. As the temperature is decreased
further, these fluctuations start to interact which gives
rise to a fluctuation-disordered regime which inhibits
the transition until it becomes first order at TC [10].
In a magnetic field, the fluctuations are quenched and the
phase transition changes to conventional second order at a
field-induced tricritical point [11].

Finally, in recent years the largest scientific interest MnSi
and its isostructural siblings have attracted was related to the
discovery of the skyrmion lattice, i.e., a regular arrangement
of topologically nontrivial spin whirls, in a small phase pocket
just below TC [12–19]. If current is passed through this
magnetic texture, the spins of the conduction electrons adi-
abatically follow the local magnetization, thereby collecting
a Berry phase. The latter may be interpreted as an emergent
magnetic field of the flux quantum that each skyrmion carries
and leads to a topological contribution to the Hall effect [20].
In combination with the weak collective defect pinning of
the skyrmion lattice [21], this very efficient coupling allows
for spin-transfer torque effects already at ultralow current
densities [22–24]. A careful study of the evolution of the
topological Hall effect as a function of pressure suggests
an intimate connection of the skyrmion lattice at ambient
pressure with the NFL regime at high pressure [25,26]. While
this finding clearly suggests the presence of topologically
nontrivial spin textures above pc, the microscopic origin of
the stable T 3/2 dependence of the resistivity remains puzzling.

In order to unravel the underlying mechanisms that cause
the NFL resistivity at high pressures, however, a full account
for the conduction at ambient pressure is an important
prerequisite. In fact, due to the complex Fermi surface of
MnSi, multiple bands are expected to contribute which requires
a probe of the electrical conductivity that circumvents the
limitations of conventional electric transport measurements
and separately accounts for these different contributions.

A further important aspect concerns the coupling of the
conduction electrons to the lattice since a change of the lattice
constant by less than a percent, caused by either pressure [5]
or substitutional doping [27,28], is already sufficient to sup-
press magnetic order and distinctively change the electronic
properties. A substantial impact of the conduction electrons
on the lattice was also found in ultrasonic attenuation [29,30]
and thermal expansion measurements, where an influence of
magnetism can be detected up to 200 K [31–33].

These issues may be addressed via Raman spectroscopy,
i.e., inelastic light scattering, for which selection rules al-
low the separate detection of excitations having different
symmetries. An improved optical setup permits us to collect
enough inelastically scattered photons to study MnSi at low
temperatures and in an external magnetic field. As will be
illustrated in the following, the Raman response may be
separated: (i) A lattice contribution which is particularly
informative here since all optical phonons are Raman active
as shown for the isostructural compound FeSi [34,35]. In
particular, also the infrared (IR) active polar phonons can
be observed by light scattering due to the missing inversion
symmetry in MnSi. The phonons are related to magnetovolume
effects via the Grüneisen parameter. Beyond that, they can be
used as microscopic probes providing information on possible
spin-lattice interactions which may have eluded macroscopic

thermodynamic measurements. (ii) A particle-hole continuum,
where the pure symmetries correspond to different regions in
the Brillouin zone [36,37]. The electronic continuum provides
access to the anisotropy of fluctuations [38–40] and to the k
dependence of the (two-particle) electronic relaxation rates.

To the best of our knowledge, there is only one Raman
study carried out on MnSi prior to our work. Tite et al. reported
Raman data for elevated temperatures resolving eight out of
nine predicted phonons [41]. IR spectroscopy investigations
were performed at low temperatures by Mena et al. [42]. Here,
the authors studied the frequency and temperature dependence
of the optical conductivity and the effective mass of the
charge carriers revealing an optical conductivity below TC that
may not be described by the standard Drude formalism but
with a phenomenological approach. The scattering rate and
the Kramers-Kronig related effective mass thus deviate from
Fermi-liquid behavior which is surprising as it contradicts the
results of conventional transport experiments. Yet, if the relax-
ation depends on momentum k, as expected for MnSi [43], IR
spectroscopy yields averages over the entire Fermi surface.

The paper is organized as follows. In Sec. II, we start
with a short account for material-specific parameters, the low-
temperature Raman setup, and further experimental details,
where we refer to the Appendices for additional information.
Results on the phononic and the electronic parts of the Raman
spectra are shown in Secs. III A and III B, respectively. The
temperature dependence of phonon frequencies and linewidths
as well as on the electronic carrier properties will be discussed
in Sec. IV before we finally summarize our findings.

II. EXPERIMENTAL METHODS

A. Sample preparation

MnSi crystallizes in the noncentrosymmetric cubic B20
(P 213) structure. Large high-quality single crystals were
prepared in an ultrahigh vacuum compatible image fur-
nace [28,44]. With optimized parameters, the residual re-
sistivity ratio (RRR) of the single crystals grown can be as
high as 300. Further details about the preparation and the
characterization can be found in Ref. [28]. The sample used
for the Raman experiments had a RRR of approximately 100.
An extensive study of the thermal conductivity as measured
on samples from the same batch (cf. Fig. 11) will be published
elsewhere. At 532.3 nm and room temperature, the complex
index of refraction was determined to be n̂ = 3.28 + 2.36 i.
Using n̂, the fraction of the absorbed photons and their
polarization inside the sample can be calculated [45]. Before
being mounted in the cryostat, the sample was oriented via
Laue diffraction and cleaved.

B. Raman experiment

The Raman spectra were collected with the sample mounted
in a bespoke He-flow cryostat permitting studies at temper-
atures between 1.8 and 330 K. For the measurements, the
sample was inserted through a load-lock chamber into the He
gas atmosphere of the variable temperature insert. The sample
was thereby positioned in the center of a superconducting
solenoid providing a magnetic field of up to 8 T.

As a light source, a solid-state laser emitting at 532.3 nm
was used. A custom-made objective lens collected the scattered
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light. The objective lens covered a solid angle of 0.37 sr
(numerical aperture N.A. = 0.34) and corrected geometrical
aberrations introduced by the cryostat windows. Extreme care
was taken to control any extrinsic background. Thus, the
scattered light had to be spatially filtered. At the CCD detector,
approximately 1 count (s mW)−1 arrived in the maximum of
the strongest phonon peak and less than 0.1 counts (s mW)−1

in the electronic continuum as can be seen in the spectra shown
in Fig. 1. For one spectrum, six individual exposures of 300 s
each were added. This integration time was a tradeoff between
the probability of cosmic spikes and the readout noise of the
detector. For a total exposure of 1800 s and an absorbed laser
power Pabs = 4 mW, approximately 200 photoelectrons per
point were collected in the electronic continuum of the spectra
corresponding to a statistical error of 7%. Further details are
described in the Appendices.

C. Temperature determination

The physical properties observed in the light scattering
experiment corresponded to the temperature in the illuminated
spot Ts which, due to local heating by the absorbed laser
light, was higher than the temperature Th of the sample holder
by �T (Th). In MnSi, the standard methods to determine the
laser heating fail due to the low scattering intensity and the
lack of strongly temperature-dependent features in the spectra
throughout the whole temperature range. To circumvent this
problem, the laser heating was determined using a method that
was developed for V3Si [46] and then applied to Nb3Sn [47].
The application to other (cubic) materials is possible since the
transmission coefficient for light T = 1 − R and the thermal
conductivity λ(T ) are the only parameters relevant for the
determination of �T (Th). For more details, see Appendix B.
At the selected temperatures of the sample holder Th = 2,
30, and 300K, �T is 2.9, 1.3, and 0.4K, respectively, for an
absorbed laser power Pabs = 4mW. All measurements shown
below are corrected for the laser heating. To simplify the
notation, the temperature in the laser spot Ts is referred to as
T in the following.

D. Response and selection rules

Raman active excitations have spectral and symmetry
properties. The measured spectra are proportional to the
van Hove function Si,s(q ≈ 0,ω) with i and s indicating
the polarizations of the incoming and scattered photons,
respectively. Upon division by the thermal Bose factor
{1 + n(ω,T )} = (1 − e−�ω/kBT )−1 the Raman response Rχ ′′

i,s
is obtained, where R is a constant that absorbs experimental
factors and takes care of the units.

The light polarizations êi,s are the key to access the sym-
metry properties of the excitations. The symmetry provides
information on, e.g., phonon eigenvectors, collective modes,
or spin excitations and allow selective access to electron
momenta in the Brillouin zone in the case of electron-hole
excitations [36,37]. êi and ês are set outside the cryostat such
that the light polarization inside the sample is aligned with
respect to the crystalline axes (cf. Appendix A). x and y denote
linear polarizations along the crystallographic [100] and [010]
axes, respectively. x ′ and y ′ are rotated by 45◦ and point
along [110] and [1̄10], respectively. Left and right circularly

polarized photons are represented as l and r . The measurement
configuration is given in Porto notation (êi ês). In all cases, a
linear combination of symmetries is projected out.

In the space group of MnSi only the three irreducible
representations A, E, and T exist implying that, e.g., x ′y ′ +
xy − rl ≡ 0. This holds true only for the phonons (cf. Ref.
[35]) but not for the continua having a strong antisymmetric
component x ′y ′ + xy − rl = 2T1 [see Fig. 2(a)]. A distinction
between the symmetric T2 and antisymmetric T1 contributions
is only possible in the next higher space group O with the
replacements A → A1, E → E, and T → T2 (for further
details see Appendix E). In O the main polarizations yield

xx = A1 + 4
3 E, xy = T1 + T2,

x ′x ′ = A1 + 1
3 E + T2, x ′y ′ = E + T1,

rr = A1 + 1
3 E + T1, rl = E + T2.

(1)

Factor group analysis predicts nine Raman active phonons in
MnSi (2A1 + 2E + 5T2) [35]. The response of a symmetry μ

can be determined via linear combinations of measured spectra

A1 = 1
3 [(xx + x ′x ′ + rr) − (x ′y ′ + rl)],

E = 1
3 [(xx + x ′y ′ + rl) − 1

2 (xy + x ′x ′ + rr)],

T1 = 1
3 [(xy + x ′y ′ + rr) − 1

2 (xx + x ′x ′ + rl)],

T2 = 1
3 [(xy + x ′x ′ + rl) − 1

2 (xx + x ′y ′ + rr)].

(2)

If the two spectra of each line in Eq. (1) are added, the entire
response is obtained. The three sums should return exactly
the same results and can be used to check the consistency
of the measurements as shown, e.g., in Fig. 2(b). This
consistency check was performed at 17, 36, 288 and 311 K.
At other temperatures only xy, x ′y ′, rr , and rl spectra were
measured. Four spectra are still sufficient to calculate the
pure symmetries, e.g., E = (x ′y ′ + rl − xy)/2, but are not
enough for the full consistency check. In magnetic field, only
the circular polarizations were measured because they are not
affected by polarization rotations due to the Faraday effect.

III. RESULTS

We studied electronic and lattice excitations of MnSi in the
temperature range 1.8 < Th < 310 K as a function of the light
polarizations. The main emphasis was placed on the tempera-
ture range below 50 K close to the helimagnetic transition at
TC = 29 K. In some measurements, a magnetic field of 4 T
was applied to suppress the helimagnetic modulation.

In Fig. 1, Raman spectra Rχ ′′
i,s at 288 and 17K are shown.

The results for the various polarization combinations are offset
by 0.7 counts (s mW)−1 each. Along with the measurements,
the linear combination of symmetry components contributing
to the spectra is indicated. All spectra consist of sharp
peaks, originating from lattice excitations, and a very weak
continuum arising from electron-hole or other excitations
having a broad spectrum.

The pure symmetry components can be derived from the
experimental spectra (Fig. 1) via the linear combinations
compiled in Eq. (2) and are shown in Fig. 2(a) for low
temperatures. Figure 2(b) demonstrates that the six spectra
shown in Fig. 1(b) are consistent. This holds for both the
phonons and the continuum.
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FIG. 1. (Color online) Raman spectra of MnSi at (a) 288 and (b)
17 K. Plotted is the Raman susceptibility Rχ ′′

i,s(ω, T ) as a function
of the energy shift ω. The spectra are measured with different
sets of light polarizations with respect to the crystallographic axes
as explained in the text. For each polarization combination, the
symmetry components are indicated. For clarity, the spectra are
consecutively offset vertically by 0.7 counts (s mW)−1. To point out
the small frequency differences between E and T2 phonons, the
positions of the two E phonons in the xx spectra are marked by dashed
lines. Whenever both E and T2 excitations contribute to a spectrum,
double-peak structures appear. Upon lowering the temperature, all
phonons harden. The black horizontal arrows indicate these frequency
shifts for the E phonons.

A. Phonons

In the raw data in Fig. 1, not all phonons are immediately
observable since some of them are rather close in energy.
However, the temperature dependence of the four strongest
lines can be read directly from the data: two in E (marked
by dashed lines) and two in T2 symmetry. The energies of the
two strong T2 lines are only slightly different from those of
the E phonons. Therefore, the E and T2 modes in the x ′x ′ and
rl spectra appear as double-peak structures. However, they
can be observed independently in the x ′y ′ and xy spectra,
respectively. There are also three weak T2 and two weak A1

phonon lines. These low-intensity phonons are hardly visible

FIG. 2. (Color online) Symmetry-resolved spectra of MnSi at
17 K. (a) Pure symmetries can be obtained via linear combinations
of Raman spectra measured with different polarization settings
according to Eq. (2). For clarity, the spectra are offset by 0.35
counts (s mW)−1. All Raman active phonons (2E + 5T2 + 2A) pre-
dicted by factor group analysis [35] are observed (marked by arrows).
In the A1 and T1 spectra, there are additional peaks due to polarization
leakage (marked by stars). The inset shows the weaker phonons of T2

and A1 symmetry on an expanded intensity scale (spectra offset by 0.1
counts (s mW)−1). The T1 spectrum contains the chiral excitations. It
is featureless except for polarization leakage (stars), but the intensity
of the continuum is in the same order of magnitude as the other
symmetries. (b) Sums of spectra having orthogonal polarizations of
the scattered photons. Two orthogonal measurements cover the full
response of the sample, thus their sums must be invariant. This is
used to check the consistency of the measurements.

on the scale of Fig. 1, but are nonetheless marked in Fig. 2. As
expected, no phonons are present in T1 symmetry.

In Table I, we show the frequencies of the phonons
measured at 17 and 288 K along with the results of Tite
et al. [41]. At room temperature, only eight of the nine expected
phonons can be detected while all are seen at low temperature.
The missing T2 line turns out to be very weak and appears only
as a shoulder at 332 cm−1 on the high-energy side of the line
at 318.6 cm−1. A comparison with the phonon positions in the
isostructural compound FeSi [35] supports this finding.

024411-4



RAMAN STUDY OF THE TEMPERATURE AND MAGNETIC- . . . PHYSICAL REVIEW B 90, 024411 (2014)

TABLE I. Energies of the Raman active phonon modes in MnSi.
At low temperatures, all nine predicted peaks are resolved. Room-
temperature measurements are shown together with the phonon
positions derived in Ref. [41]. The frequency values of the four intense
phonons can be determined with an accuracy of about ±0.2cm−1

using Voigt fits (boldface). The other phonons are determined with a
precision of ωph ± 1cm−1.

Phonon frequency ωph (cm−1)

T ≈ 295 K T = 288 K T = 17 K
(Ref. [41]) (This work) (This work)

A1 268 268 271
A1 398 396 402
E 193 193.5 196.9
E 319 318.5 323.4
T2 194 196.3 200.9
T2 236 239 244
T2 316 313.9 318.6
T2 332
T2 448 447 452

Tite and co-workers [41] performed their measurements
at elevated temperatures using various high-laser powers.
Considering their laser power Pabs and their focus size r0

in Eq. (B2), the associated temperatures may be estimated
to be as high as 650 K. The huge heating �T implies an
inhomogeneous broadening of the phonon lines explaining
the different linewidths reported in Ref. [41] and in our study.
On the other hand, if the temperature dependence of the
phonon energies ωph(T ) is assumed to be linear above room
temperature, Tite et al. are able to extrapolate the phonon
positions down to 295 K in satisfactory agreement with our
data (cf. Table I).

In our study, the temperature range was extended down
to 4 K. Particular emphasis was placed on the temperature
range around the helimagnetic phase transition at 29 K. With
decreasing temperature, all phonons shift to higher energies.
At the transition, this trend is reversed, and the phonons soften
by typically half a percent. To verify these small shifts in the
phonon frequencies, the stability of the experimental setup
was rechecked before and after each measurement with the
spectral lines of a neon calibration lamp. Fitting Voigt profiles
to the phonon lines allowed us to reproducibly determine the
frequencies and widths with an accuracy of approximately
±0.2 cm−1. A Voigt fit consists of a convolution of a Lorentzian
and a Gaussian profile. The Gaussian width was fixed at 2 cm−1

and represents the spectral resolution. The width, position, and
spectral weight of the Lorentzians were the fitting parameters.
In this way, better results could be obtained than with pure
Lorentzian line shapes since the phonons are rather narrow,
and the spectral resolution can not be reduced any further for
intensity reasons. The position of the phonon lines was deter-
mined from raw data rather than from pure symmetry spectra to
avoid artifacts arising from linear combinations of the spectra
(cf. Fig. 2). Also, the E and T2 phonons that are very close in
frequency can be separated by using x ′y ′ and xy measurements
[cf. Eq. (1)]. The results for the temperature dependence of the
position and linewidth of these phonons are shown in Figs. 4
and 5 in Sec. IV A and will be discussed there in detail.

The xy spectrum projects both T symmetries. In T1

symmetry, neither phonons nor conduction electrons appear,
but only excitations where the chiral symmetry changes.
These excitations include transitions between states with
well-defined orbital character such as crystal-field excita-
tions [48]. As shown in Fig. 2(a), displaying the pure symme-
tries, the response does not vanish, indicating the presence of
excitations beyond scattering from phonons and electron-hole
pairs that will be addressed in Secs. III B and IV B. In addition,
the inset of Fig. 2(a) demonstrates that the T1 continuum is
too strong to be neglected. Therefore, if the continua of the
other symmetries are to be analyzed, only the pure symmetries
[Fig. 2(a)] can be used. Prior to an analysis of the continuum,
it is necessary to subtract the phonons. To this end, we apply
the fitting procedure described above to all phonons, subtract
them, and thereby obtain the isolated continuum.

B. Continuum

The electronic continua observed in the pure symmetries
are plotted in Fig. 3 for various temperatures in the range
13 � T � 288 K. The continua were obtained by subtracting
the individually fitted phonons from the spectra. Although
the fits were reproducible and stable, there are occasionally
remainders of phonons after the subtraction, particularly in the
low-temperature spectra having phonon linewidths similar to
the spectral resolution. The data are relatively noisy in general
since the scattering cross sections are low (see Sec. II B) and
the spectra in pure symmetries are the result of subtraction
procedures [cf. Eq. (2)].

In all symmetries, the spectra exhibit a substantial tempera-
ture dependence at low energies. The E, T1, and T2 spectra are
also temperature dependent at higher energies. At 13 K, the A1,
E, and T1 spectra are too steep below 50 cm−1 to allow the ex-
trapolation to zero at ω → 0 to be observed. In fact, χ ′′(−ω) =
−χ ′′(ω) is expected since, for causality reasons, the response
is antisymmetric. Only the T2 spectra show the expected
linear energy dependence at all temperatures and extrapolate
approximately to zero. The variation with temperature implies
a substantial increase of the initial slope of the response.

As discussed in detail by Opel and co-workers [49], the
inverse initial slope [∂χ ′′(ω)/∂ω]−1 corresponds to a Raman
resistivity and is therefore a useful quantity to be compared
with transport measurements. It can be extracted in a similar
fashion as conductivity from the optical spectra (IR) if a wider
energy range is known. In the case of the Raman spectra, the
requirements as to the known spectral range are much more
relaxed than in optical spectroscopy since the Kramers-Kronig
transform converges rapidly [49]. The results of this analysis,
in particular those in the zero-energy limit, will be shown and
discussed in Sec. IV B (Figs. 7–9).

IV. DISCUSSION

Major anomalies of the lattice and the carrier properties
are observed close to TC while the high-temperature range
develops more conventionally. First, we discuss the phonons,
then the electronic response. In each case, we start with the
behavior above the helimagnetic transition at TC followed by
a detailed study close to TC.
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FIG. 3. (Color online) Temperature and symmetry dependence
of the electronic continua in all pure symmetries μ = A1, E, T1, T2.
The response is obtained via linear combinations of xy, x ′y ′, rr , and
rl spectra. Phonons were fitted with Voigt profiles and subtracted.

A. Temperature dependence of the phonons

Figures 4 and 5 show the temperature dependencies of
the frequencies and linewidths of the two strongest T2 and
E phonons as derived from Voigt fits (cf. Sec. III A). As
temperature decreases in the range T > 35 K, there is the typi-
cal blue-shift and line narrowing. Right above TC, in the range
between 35 and 29 K, there is a dip in all phonon frequencies.
Below the transition, the phonons anomalously soften by ap-
proximately 0.5 cm−1 as can be seen more clearly in panels (c)
and (d) of Figs. 4 and 5. Except for the high-energy T2 mode, all
lines harden again below approximately 1/2 TC. The T2 mode
at 201 cm−1 [Fig. 5(d)] reaches the same energy as found at TC,

FIG. 4. (Color online) Temperature dependence of the E

phonons. Shown are the frequencies (left scale) and linewidths (right
scale) of the two strongest lines with representative error bars (labeled
by E(318) and E(194) according to their room-temperature positions).
(a) and (b) show the analysis for the full temperature range, (c) and (d)
zoom in on low temperatures. For both phonons, E(318) and E(194), the
linewidth can be described by the model of anharmonic decay [51]
(black lines). The main contribution to the frequency change is due
to thermal expansion and can be described by a constant Grüneisen
parameter γi = 2.5 above 35 K (orange line). Right above TC (dashed
vertical line) in the fluctuation disordered regime [11] (shaded) there
is a dip in the phonon frequency. If the helical order is suppressed by
a magnetic field of 4 T (triangles and circles), the anomalies in the
phonon frequencies disappear.

whereas the E lines (Fig. 4) even exceed the low-temperature
extrapolation value expected from the range T > TC.

All anomalies of the phonon energies vanish completely
in a magnetic field of 4 T (see Fig. 4), which is well above
0.6T, the upper critical field of the helimagnetic modulation.
Nevertheless, a crossover temperature Tcr continues to exist
that separates the regimes dominated by either magnetism
or temperature. For MnSi at B = 4T, Tcr is approximately
40 K [50]. However, no anomalies in the phonon positions
and widths are detected at this temperature, suggesting that
the phonon anomalies originate from the chiral order.
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FIG. 5. (Color online) Temperature dependence of T2 phonons.
Shown are the frequencies (left scale) and linewidths (right scale)
of the two strongest lines (labeled by T

(314)
2 and T

(197)
2 according

to their room-temperature positions). (a) and (b) show data for the
full temperature range, (c) and (d) zoom in on low temperatures.
The phonon width deviates from the predictions of the Klemens
model [51] (black lines) only for the T

(197)
2 phonon below TC

(dashed vertical line). Above 35 K, the frequency change of both
phonons can be explained in terms of a thermal expansion shift
�

(1)
i (T ) (orange lines) assuming a constant γi = 2.5 for all phonon

modes i. There is a dip in the phonon frequency right above TC

in the fluctuation-disordered region [10,11] (shaded). The dip can
be reproduced qualitatively if the macroscopic Grüneisen parameter
γmacro(T ) is inserted into Eq. (9) as described in the text (dashed
magenta line). In the helimagnetic phase the phonon frequencies are
lower than those predicted by the thermal expansion.

We first focus on the high-temperature part. In the harmonic
approximation of lattice dynamics, the phonon frequencies
are not temperature dependent, and the phonon lifetime is
infinite. In real systems and to describe the experimentally
observed temperature dependencies of frequency and lifetime,
anharmonic contributions to the lattice potential have to be
taken into account. A consequence of these anharmonic terms
are collisions between phonons which lead to changes in
the phonon frequency and to the creation or annihilation of

phonons resulting in a finite lifetime. Frequency shift and
broadening can be described in terms of the real and imaginary
parts of the self-energy [52]

�i(T ) = �i(T ) + ı	i(T ) (3)

corresponding to the position and width of phonon i, respec-
tively. The anharmonic effects can be treated perturbationally
and were extensively studied by several authors [51–54].

Here, we consider only optical phonons in the center
of the Brillouin zone. Taking into account energy and
momentum conservation, an optical phonon with q = 0
decays into two acoustic phonons of opposite wave vectors
ω1(q,j1) + ω2(−q,j2) = ωph. The indices j1 and j2 label
acoustic phonon dispersion branches. Klemens assumes [51]
that the most relevant decay channels are symmetric,
ω1(q,j1) = ω2(−q,j1) = ωph/2, and within the same acoustic
phonon branch, e.g., j1. Then, the temperature dependence of
the linewidth of phonons reads as

	ph, i(T ) = 	i(0)

[
1 + 2λp−p,i

exp
(

�ωi (0)
2kBT

) − 1

]
. (4)

The width 	i(0) and position ωi(0) of the ith Raman line
for T → 0 can be obtained by extrapolating 	ph, i(T ) to zero
temperature from the range above TC before the anomalies set
in. As temperature rises, the linewidth increases by two times
the Bose factor at ωi(0)/2, representing the symmetric decay
channel. λp−p,i was introduced as the only fitting parameter
and is interpreted as phonon-phonon coupling strength. More
general calculations including asymmetric decay channels
result in a better agreement with experiment in some semicon-
ductors [52,55]. In MnSi, however, asymmetric phonon decays
as well as four phonon processes turn out to be negligible, and
the Klemens model provides a reasonable fit to the linewidth
of all phonons studied, except T

(197)
2 at low temperatures.

The frequency shift of the peaks is described by the real
part of the self-energy �i(T ) in Eq. (3). The temperature
dependence of phonon i reads as

ωph,i(T ) = ωi(0) + �i(T ). (5)

Here, only the two lowest-order contributions �i(T ) =
�

(1)
i (T ) + �

(2)
i (T ) will be discussed. A detailed description

may be found in Refs. [52,55]. The leading term �
(1)
i (T )

originates from the thermal lattice expansion, hence is related
to a macroscopic quantity. Before we derive �

(1)
i (T ), we

show that �
(2)
i (T ) is small for the phonon energies and the

temperature range studied here.
The second-order contribution �

(2)
i (T ) results from the

anharmonic decay of phonons. The approximate relationship
between the eigenfrequency ωi(0), the resonance frequency
ωph,i (peak maximum), and the linewidth 	i (FWHM) ωph,i =√

ωi(0)2 − 	2
i of a damped harmonic oscillator along with

Eq. (4) yield a shift

�
(2)
i (T ) = −Ci

[
1 + 4λp−p,i

exp �ω0
2kBT

− 1

]
, (6)

with Ci = 	i(0)2/2ωi(0) and all other parameters as defined
above. The parameters for the phonons analyzed here are
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TABLE II. Phonon parameters. According to their symmetry
and room-temperature frequency, the phonons i are labeled E(194),
E(318), T

(197)
2 , and T

(314)
2 . ωi(0), 	i(0) are experimentally determined

constants. The phonon-phonon coupling strength λp−p,i results from
the fit of the phonon width according to Eq. (4) and was used again
in Eq. (6).

Fit parameter
E(194) E(318) T

(197)
2 T

(314)
2

ωi(0) (cm−1) 197.5 324.1 201.2 319.2
	i(0) (cm−1) 2.3 3.5 4.4 7.2
Ci = 	i(0)2/2ωi(0) (cm−1) 0.013 0.019 0.048 0.081
λp−p,i 0.15 0.2 0.07 0.14

compiled in Table II. The additional factor 2 in the numerator
compared to Eq. (4) is due to the damped harmonic oscillator
approximation. For the phonon-phonon coupling λp−p,i , the
values obtained from Eq. (4) are used again. It turns out that
the coupling is stronger for E than for T2 phonons and also
stronger for the high-frequency modes.

As 	i(0) is small in comparison to ωi(0), the coefficient Ci is
small and the contribution of �

(2)
i to the phonon shift is at least

two orders of magnitude smaller than the thermal expansion
shift �

(1)
i and therefore negligible. �

(2)
i gives significant con-

tributions only for phonons with very low frequencies or tem-
peratures in excess of the Debye temperature 
Debye being as
high as 600K here [54,56,57]. Obviously, the dominating con-
tributions to the widths and the frequency shifts of the phonons
result from different mechanisms and thus are not directly in-
terrelated. This explains why the anomalies in the phonon fre-
quencies do not have a direct correspondence in the linewidths.

The first-order term �
(1)
i depends on the unit-cell volume.

In general, the resonance frequencies of the phonons increase
upon decreasing the unit-cell volume since the forces between
the atoms increase with decreasing distance. The change can
be quantified via the microscopic Grüneisen parameter γi [58]
of mode i being defined as the negative logarithmic derivative
of a normal-mode frequency ωi with respect to the volume V :

γi = −∂(ln ωi)/∂(ln V ). (7)

The related thermodynamic quantity is the macroscopic
Grüneisen parameter γmacro(T ) which is a weighted average
of the contributions from the lattice, as well as from charges
and magnetism [59]. For the phonon part it can be shown that
the relative weight is given by their individual contributions
to the specific heat [58]. While γmacro(T ) is approximately
constant in conventional insulators, it may vary considerably
with temperature in complex metallic systems whenever
different contributions determine the thermodynamic proper-
ties [59,60]. γmacro(T ) can be determined from experimentally
accessible thermodynamic properties alone [60]:

γmacro(T ) = 3α(T )K(T )V mol(T )

Cmol
p (T )

(8)

and can directly be calculated up to 100 K using the published
data of the coefficient of thermal expansion α(T ), the bulk
modulus K(T ), the molar volume V mol(T ), and the molar
heat capacity Cmol

p (T ) [11,30,33,61]. Each of the quantities

contributing to γmacro is temperature dependent with strong
anomalies close to TC. Consequently, also γmacro depends on
temperature as shown in Fig. 14 in the Appendix. For T → 0,
γmacro(T ) is expected to asymptotically approach zero as
α vanishes. Upon approaching TC from low temperatures,
Eq. (8) yields large negative values of approximately −15.
Slightly above the transition there is a pronounced dip-hump
structure with the minimum at 30 K, the maximum at 35 K,
and a sign change in-between. Upon further increasing
the temperature, γmacro(T ) asymptotically approaches the
constant value of 2.5 from above. Therefore, γmacro was set
to 2.5 above 100 K because not all quantities entering Eq. (8)
were available up to room temperature.

In MnSi magnetostrictive effects contribute to the anoma-
lies of γmacro(T ) around TC, and relatively large values even
at elevated temperatures are to be expected. For instance, the
magnetic contributions to α(T ) play an important role up to
at least 200 K and are of the same order of magnitude as
the nonmagnetic ones [32]. At low temperatures, magnetic
order drives α(T ) even negative, i.e., the lattice expands
upon cooling, and leads to the strong dip of γmacro(T ) around
TC [30,32,33].

It is not the purpose of this study to systematically disen-
tangle the various contributions to γmacro(T ) or to determine
their respective weight. Rather, we wish to find out to which
extent �

(1)
i (T ) can be understood in terms of bulk properties

and where microscopic effects can be pinned down. We first
calculate �

(1)
i (T ) using Eq. (7). For constant γi , Eq. (7) can be

integrated [53] yielding an expression for the frequency shift
�

(1)
i (T ) of phonon i:

�
(1)
i (T ) = ωi(0)

{
exp

[
−3γi

∫ T

0
α(T ′)dT ′

]
− 1

}
. (9)

The phonon frequency ωi(0) is the only free parameter which
can be determined for each branch i by a fit to the high-
temperature data. The temperature dependencies of ωph,i(T )
according to Eq. (9) are plotted as orange lines in Figs. 4
and 5. At temperatures above 100 K, the frequency changes
of the Raman phonons are well described by �

(1)
i (T ) with

a constant Grüneisen parameter γi = 2.5 in good agreement
with the asymptotic limit of γmacro(T ). Approaching the phase
transition from above, the phonon frequencies may increase
slightly as does γmacro(T ) (see also Fig. 14). Similarly, the
experimentally observed dip at 30 K > TC has a corresponding
anomaly in γmacro(T ). At TC all phonon frequencies jump back
to the value at T > 30 K and then soften again. The phonon
anomaly at TC is unparalleled in any of the macroscopic
quantities. While the T

(314)
2 phonon seems to stay at lower

frequency, the other phonons reach frequencies above ωi(0).
The prediction according to Eq. (9) shows only a tiny kink
which originates from α(T ) [since all other quantities in Eq. (9)
are constant]. For T → 0, �

(1)
i (T ) vanishes as

∫
α dT ′ in the

exponent goes to zero.
To summarize this part, we find that the widths of the

four strongest phonons can be well understood in terms
of symmetric anharmonic decay in the entire temperature
range studied. The phonon energies are compatible with the
thermodynamic properties in the temperature range above
50–100 K. More specifically, constant and mode-independent
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Grüneisen parameters γi which, additionally, coincide here
with γmacro are sufficient. Below 50–70 K, γmacro increases
towards a maximum at 35 K (see Fig. 14). A similar maximum
may be present for the T

(197)
2 phonon [Fig. 5(d)]. As to the

other three lines, the experimental accuracy is insufficient to
resolve deviations from the simple expectation on the basis of
constant γi parameters. While the anomaly at 30 K right above
TC is still clearly visible in the temperature dependence of both
γmacro and the phonon frequencies, we find phonon anomalies
without a corresponding anomaly in the bulk right at TC in
contrast to what is found in insulating magnets [62–64]. The
results with applied field demonstrate that there are no phonon
anomalies without short- or long-ranged chiral order.

In order to disentangle thermodynamic and microscopic
properties we insert γmacro in Eq. (9) and recalculate �

(1)
i (T ).

This is motivated by the proximity of the anomalies in the
phonon energies ωph,i(T ) and of γmacro(T ) but can not be
justified mathematically since Eq. (7) yields Eq. (9) only for
a constant γi . As shown in Fig. 5, the shift obtained in this
way (dashed magenta lines) is identical to that for γi = 2.5
(orange lines) down to approximately 50 K but deviates below.
The anomaly of ωph,i(T ) observed right above TC has now a
correspondence in the prediction, while that at TC can not be
reproduced. Similar results are found for E symmetry but are
not plotted to avoid overloading Fig. 4.

The interrelation of microscopic and thermodynamic prop-
erties can be visualized in a better way by looking at the
difference between the experimental frequencies ωph,i(T ) and
those calculated on the basis of Eq. (9) using γmacro(T ).
Figure 6 demonstrates that the anomaly above TC vanishes al-
most completely (with small phonon-specific variations) while
that at TC is rather pronounced. Although the use of γmacro(T )
in Eq. (9) is sloppy, it is safe to conclude that the anomaly
in the fluctuation-disordered regime has a correspondence in
the macroscopic properties while that at TC is of microscopic
origin. In this way, the temperature dependence indicates that
the phonons and γmacro(T ) react differently to the formation
of helimagnetic order, whereas the thermodynamic properties
and the phonons are similarly affected by the fluctuations.
The discrepancies between microscopic and macroscopic
properties are largest at TC. However, they are significant
also below. We recall that the Grüneisen parameter turns
negative right above TC meaning that the phonon frequencies
anomalously increase along with the volume. In the case
of MnSi this anomaly in γmacro can be traced back to the
thermal expansion [32,65]. The strong discrepancies between
microscopic and macroscopic properties highlight that the
global volume changes observed around TC are insufficient
to explain the phonon anomalies. Rather, there are interactions
that leave a much stronger imprint on the phonons studied
here than on the overall bulk properties. In fact, Fawcett
et al. [31,66] found large magnetic contributions in studies
of the specific heat and the elastic properties below TC

which they interpreted in terms of a magnetic Grüneisen
parameter γmag. The authors found a γmag as large as −45
and constant in a temperature range from 14 to 32 K except
for significant deviations very near to TC. Also, Pfleiderer and
co-workers argue that there is a sizable anomalous contri-
bution to the thermal expansion beyond the conventional T 2

variation [65].

FIG. 6. (Color online) Difference of the experimental phonon
energies ωph(T ) and those calculated via Eqs. (5) and (9) using
γmacro(T ). Note the logarithmic temperature scale. The anomalies
above TC vanish almost completely while those at TC have no
correspondence in the thermodynamical properties.

In contrast to the itinerant helimagnet MnSi studied here,
the understanding of the spin-phonon interaction in insulating
magnets is much more advanced as shown in various pub-
lications [62–64]. There, the temperature dependence of the
phonon energies can be readily described by the mean-field-
like variation of the macroscopic magnetization. A similar
proportionality may be compatible with the data of the T

(314)
2

line [Fig. 5(c)] below TC but not for any of the other lines. The
anomalies found in the fluctuation range (TC < T < 32 K) can
not be explained in this scenario. Similarly, the nonmonotonic
variation of the phonons E(194), T

(197)
2 , and E(318) in the

low-temperature limit need further attention. We conclude that
the four phonon lines studied here exhibit unexpected features
in the fluctuation range right above TC , at the transition, and in
the ordered state below TC which do not have a correspondence
in Heisenberg-type magnets.

B. Carrier properties

We now derive and discuss electronic properties from the
Raman continua examples of which are shown in Fig. 3.
It is a standard procedure in optical (IR) spectroscopy to
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derive transport lifetimes τ (ω,T ) or scattering rates 	 = 1/τ

as well as the optical mass m∗/mb = 1 + λ(ω,T ) from the
reflectivity [67,68] or from ellipsometry data. Since the current
response is typically not very k selective, IR yields only
averages over the entire Fermi surfaces. However, if the
single-particle relaxation depends on the momentum k, as
expected for MnSi [43], some momentum resolution may be
similarly useful as in the cuprates, for instance [49].

For this reason, electronic Raman scattering can provide
additional information [36]. For the normal state, Opel and
co-workers [49] demonstrated that the relaxation or mem-
ory function approach proposed by Götze and Wölfle [69]
theoretically and worked out for IR spectroscopy by Allen
and Mikkelsen [67] can be adapted to facilitate the derivation
of lifetimes τγ γ (ω,T ) or scattering rates 	γγ = 1/τγγ and
mass enhancement factors 1 + λγγ (ω,T ) from the electronic
continuum (see Fig. 3) that is part of the total response Rχ ′′

γ γ .
Opel et al. showed in particular that absolute numbers for all
quantities can be obtained. In the context here, γ is shorthand
for γ (k) and represents the Raman vertex or form factor
which projects out symmetry-dependent parts of the Brillouin
zone. For simplicity and in order to avoid confusion with the
Grüneisen parameters, we label the derived quantities by the
symmetry projection μ rather than the vertex γ .

For the analysis of the electronic part, we use symmetry-
resolved spectra such as those shown in Fig. 3. There, one
realizes that the continuum in μ = T1 symmetry is approxi-
mately as strong as those in the other symmetries. However,
excitations having T1 symmetry (similarly as A2g excitations in
tetragonal systems) correspond to antisymmetric off-diagonal
elements in the Raman tensor α which are present whenever
the off-diagonal elements are not equal, αi,j 
= αj,i . In the
nonresonant Raman response, continuous T1 contributions
are expected to be absent in nonmagnetic metallic systems
and are usually found to be weak [70]. Here, they are
relatively strong but can not be identified unambiguously as
discussed in detail in Appendix E. Therefore, while showing
the results of the memory function analysis, that remains valid
for energy-dependent relaxation processes, we can discuss
possible implications of the T1 response only on a preliminary
level.

Figure 7 shows the dynamical relaxation rates 	μ(ω,T ) de-
rived from the energy-dependent response Rχ ′′

μ(ω,T ) (Fig. 3)
as described in Ref. [49]. They all have a similar temperature
dependence at high energies but exhibit substantial differences
close to zero energy. While 	T 1, and 	T 2 become rather flat at
room temperature, 	A1 dips down at low energy, thus reducing
the overall temperature dependence between 13 and 288 K.
In contrast, 	E(288 K) increases slightly towards low energy.
The rates reflect the variation of the raw data (Fig. 3) but,
owing to the derivation procedure [49], show some features in
a more pronounced fashion such as the low-energy variation
with temperature.

For being derived from Rχ ′′
μ(ω,T ) in the same way,

the dynamical mass renormalization factors 1 + λμ(ω,T ) =
m∗

μ(ω,T )/mb, where mb is the band mass, are expected to
similarly emphasize the variations close to zero energy. In
fact, Fig. 8(b) shows an anomaly of 1 + λE(ω,T ) at 288 K.
While all other masses increase monotonically with decreasing
energy (other panels of Fig. 8), as typically expected for metals,

1 + λE(ω,288K) is reduced and even becomes negative at low
energies. On the high-energy side, the masses saturate between
1 and 2 as expected. For the A1, T1, and T2 symmetries,
the masses decay monotonically. In the zero-energy limit
they reach temperature-dependent values between 0.8 (T2)
and 5 (A1).

The dynamical carrier properties found here with light
scattering are in overall agreement with those derived from
the reflectivity [42]. While the magnitudes and temperature
dependencies of 	μ(ω,T ) and 1 + λμ(ω,T ) are similar below
300 K, there are important differences which may lead to new
insights: (i) The masses found here are generally above unity
indicating the existence of interactions at all temperatures and
energies. (ii) The symmetry dependence is significant. This is
a unique feature of light scattering and indicates the existence
of anisotropies in the Brillouin zone which can not be derived
from the optical conductivity.

However, as opposed to the cuprates [36,37] or the iron-
based compounds [70,71], it is not as straightforward to
directly map the symmetries on separate bands or regions
in the Brillouin zone since only three of the seven Fermi
surfaces are in high-symmetry positions around the 	 (0,0,0)
and R (π,π,π ) points [72]. The four other Fermi surfaces
have similar shapes and can be thought of as being built of
three tubes intersecting around the 	 point. For the reader’s
convenience, all Fermi surfaces are shown in Fig. 15. In
general, the minority- and majority-spin Fermi surfaces can
not be distinguished. However, according to the lowest-order
Brillouin zone harmonics for cubic crystals [73], carriers on the
Fermi surfaces around the 	 and R points may be projected out
predominantly in A1 symmetry. In addition, the lowest-order
nontrivial A1 vertex γ

(1)
A1 = cos kx + cos ky + cos kz has its

nodes very close to the big tubular Fermi surfaces. This means
that they should contribute predominantly to the E and T2

spectra. For example, the E spectra are dominated by the necks
around the X points, (π,0,0) and the T2 spectra are more sen-
sitive in the centers of the octants. More detailed information
about the projections may be obtained by calculating the band
curvatures which yield the sensitivities for a given band struc-
ture in the nonresonant case [37,71]. In any case, the selection
rules suggest that the electronic interactions in MnSi have a
mild dependence on the band index and on momentum on an
individual band.

While the results in the A1 and T2 symmetries are
compatible with metallic behavior at all temperatures, the E

spectra deviate remarkably from what one expects for a metal.
The deviation is seen best in the dynamics of the mass at
288 K which varies nonmonotonically. At room temperature,
this observation is paralleled by the IR results reported by
Mena et al. [42]. Not surprisingly, it survives down to lower
temperatures in the Raman spectra since the Brillouin zone
projections are more selective.

As to the interpretation, the relaxation rates are more
intuitive. The increase towards zero energy indicates either
a new relaxation channel or pseudogaplike behavior at higher
temperatures. Similar anomalies have in fact been observed in
organic conductors [74] and cuprates [75]. For heavy-fermion
systems, this type of temperature dependence can be explained
in terms of a Kondo-type interaction [76]. However, it is
unusual that the anomaly appears here at high temperature and
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FIG. 7. (Color online) Temperature and symmetry dependence
of the relaxation rates 	μ(ω,T ). The rates were obtained from
the electronic continua as shown in Fig. 3. To calculate 	μ(ω,T ),
the procedure described by Opel and co-workers [49] was used.
The smooth lines are phenomenological fits to the data according
to Eq. (11).

vanishes below 100 K. Obviously, at least parts of the Fermi
surface exhibit insulating behavior at higher temperature.
Whether or not this can be observed in ordinary transport
remains open at the moment since there are no data available
at elevated temperature. In addition, the metallic parts could
short circuit the insulating ones in a similar fashion as in
the cuprates [77]. We note that a vanishing or even negative
mass [Fig. 8(b)] can also result from multiband effects which,

FIG. 8. (Color online) Temperature and symmetry dependence
of the optical masses 1 + λμ(T ) obtained via the same formalism
as the relaxation rates. The smooth lines are derived from the fits to
the relaxation rates via Kramers-Kronig transformation, hence obey
causality (see text). They are in reasonable agreement to the data
except for a constant offset.

however, need to be studied numerically on the basis of a
realistic band structure.

We now focus on the static (dc) limit. To reliably extract
the zero-energy extrapolation values of 	μ(ω → 0,T ) and 1 +
λμ(ω → 0,T ) from the relatively noisy data (cf. Sec. II), we
use phenomenological functions having the correct analytical
behavior in the limits ω → 0 and ω → ∞: (i) 	μ(ω,T ) (as
opposed to the imaginary part of the single-particle self-
energy �′′) is a symmetric function 	μ(−ω,T ) = 	μ(ω,T ),
(ii) λμ(ω → 0,T > 0) is finite, and (iii) 	μ(ω,T ) saturates at

024411-11



H.-M. EITER et al. PHYSICAL REVIEW B 90, 024411 (2014)

high energy. The latter condition is a restriction in the spirit
of the Mott-Joffe-Regel limit which, strictly speaking, applies
only for single-particle lifetimes. In the case of two-particle re-
sponse functions, there are contributions to the carrier response
beyond the mean-free path, and general statements as to the
high-energy behavior become impossible [78]. Since most of
the relaxation rates derived here saturate, the introduction of
a temperature-dependent limiting value 	max

μ (T ) is justified
experimentally but is not well supported theoretically.

On this basis, the minimal model is the parallel-resistor
formalism with a quadratic energy dependence at ω → 0 [79]:

1

	μ(ω,T )
= 1

	∗
μ(ω,T )

+ 1

	max
μ (T )

, (10)

where 	∗
μ(ω,T ) = c(T ) + a(T )ω2 dominates at low frequen-

cies while 	max
μ (T ) describes the high-energy part. Inversion

yields

	μ(ω,T ) = [c(T ) + a(T )ω2]	max
μ (T )

c(T ) + a(T )ω2 + 	max
μ (T )

, (11)

with the zero-frequency limit 	μ(0,T ) given by

	μ(0,T ) = c(T )	max
μ (T )

c(T ) + 	max
μ (T )

. (12)

The fits to the relaxation rates 	μ(ω,T ) according to
Eq. (11) are shown in Fig. 7. As expected, the ω → 0
extrapolation [Eq. (12)] depends on both the high-frequency
limit 	max

μ (T ) and the offset c(T ). Each point in Fig. 9 is
obtained from such a dc extrapolation of 	μ(ω,T ).

The static Raman relaxation rates 	μ(0,T ) can be compared
to the longitudinal dc resistivity ρ(T ). To this end, we show
the resistivity measured on a comparable sample on the
right axis of Fig. 9. In a Drude model, the resistivity is
related to the carrier relaxation rate 	ρ(T ) = �/τ (T ) via the
plasma frequency ωpl as 	ρ(T ) = ε0 ω2

pl ρ(T ) with the vacuum
permeability ε0 and ωpl = 2.3 eV [42]. An additional factor
of 0.73 was introduced to match 	ρ(T ) and 	μ(ω = 0,T )
(see Fig. 9). A factor smaller than one can be explained
by the frequency cutoff at 400 cm−1 in the relaxation rate
analysis (Fig. 7). In addition, it can not be expected that the
relaxation rates obtained from the light scattering experiment
and from transport coincide completely since the higher-order
corrections to the respective response are different and in the
10% range [81]. The Raman data points 	μ(0,T ) in μ = E,
T1, and T2 symmetry agree with 	ρ(T ) in the temperature
range from 310 to 30 K. The experimental error of about
±30 cm−1 was estimated from the scatter of neighboring points
and the error of the dc extrapolation of 	μ(ω,T ), plotted in
Fig. 7. It is remarkable that also the relaxation rates in T1

symmetry, which may reflect properties of chiral excitations,
follow the resistivity curve at high temperatures. Provided
that the T1 symmetry projects in fact chiral excitations (for a
further discussion, see Appendix E), one can argue that chiral
excitations are allowed also above TC where no helimagnetic
order is present because also in the high-temperature phase
the crystal structure lacks inversion symmetry. Thus, chiral
excitations could be created with inelastic photon scattering
even up to room temperature as anticipated in Ref. [32].

FIG. 9. (Color online) Static Raman relaxation rates and trans-
port data. Panel (a) shows the Raman relaxation rates 	μ(ω = 0,T )
(points, left axis) as a function of symmetry μ as derived from
	μ(ω,T ) (see text). If the longitudinal dc resistivity ρ(T ) (black line,
right axis) [80] is converted into a relaxation rate 	ρ(T ) using a Drude
model with the experimental plasma frequency ωpl = 2.3 eV [42],
an extra factor of 0.73 is needed to match transport and Raman
data. Above TC (dashed vertical line), the Raman data in E, T1,
and T2 symmetry agree with ρ(T ), while the data in A1 symmetry
do not. (b)–(e) Zoom in on low temperatures. The phase transition
has only a minor effect on 	μ(ω = 0,T ). Above TC close to the
fluctuation-disordered regime (shaded), there may be a dip in A1

and T2 symmetry. Below the phase transition 	μ(ω = 0,T ) decreases
slower than 	ρ(T ).

However, as discussed in the Appendices, a final interpretation
of the T1 data is premature.

The A1 symmetry component of the light scattering
susceptibility, which has always an isotropic part, is screened
by long-range Coulomb interaction in the limit q → 0. This
is referred to as backflow, required to comply with particle-
number conservation and gauge invariance in crystals with
free charge carriers [37]. This screening effect may be one
reason why the A1 symmetry component of the dc relaxation
rates does not match the resistivity data. The nodes of the
first nontrivial A1 vertex may be another one since they black
out the response from the big Fermi surface and highlight that
from the small Fermi surfaces enclosing 	 and R, as described
above and in Appendix F. Progress is probably only possible
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if the data are analyzed with a phenomenological model and
on the basis of a realistic band structure.

Below TC the Raman relaxation rates for all symmetries stay
well above the transport data and decrease at a lower rate but,
finally become very small and, at least in E and T2 symmetry,
approach values close to what one expects from the transport.
The observation of this decrease makes it unlikely that the
saturation observed in IR [42] or in the other symmetries is
an artifact resulting from the rather small relaxation rates,
and we conclude that the discrepancies between IR, transport,
and Raman scattering in the ordered state need to be taken
seriously. More specifically, the convex and the concave
T 2-like behavior found in Raman and, respectively, in ordinary
transport seem to be two sides of the same coin which
need to be explained theoretically. Finally, it is interesting
to note that in the temperature range of the skyrmion phase
(26–28 K) [82], exhibiting a topological Hall signal [25,26],
all Raman relaxation rates are in the range 100–150 cm−1

and temperature independent. This experimental observation
supports the assumption of an approximately momentum-
independent carrier lifetime in the theoretical description of
the topological Hall signal [83,84]

Similarly surprising is the anomaly right above TC which
is particularly pronounced in T2 symmetry [Fig. 9(e)] but
probably present also in A1 and E symmetry. It goes along
with the dip in the phonon frequencies (Figs. 4 and 5). The
simultaneous observation of the anomaly in the phonon energy
and in the electronic continuum at the same temperature makes
us confident that the effect is significant. While the anomaly
in the phonon channel is also observed independently in the
Grüneisen parameter as derived from the thermal expansion,
the nonmonotonic variation in the carrier relaxation is a new
observation underpinning the impact of the phase transition
and the preceding fluctuations on the electrons. The detailed
analysis below 40 K clearly reveals unexpected interactions
between spin, charge, and lattice at the phase transition.

V. CONCLUSIONS

We have studied phonons and electronic excitations in
MnSi by Raman spectroscopy. The phonons show conven-
tional behavior above the helimagnetic transition but exhibit
pronounced anomalies slightly above and below TC. Most
remarkably, the phonon energy dips down already at 31 K
clearly above the transition. This anomaly is tracked by the
Grüneisen parameter. At TC the phonon energy first recovers
and then softens before increasing at the lowest temperatures.
Hence, the temperature dependence at and below TC has no
correspondence in the thermodynamic properties and may
indicate that the optical phonons scrutinized here couple to
the spin order directly rather than via magnetostriction effects.
In an applied magnetic field of 4 T, in the field polarized state,
the phonon anomalies disappear. This suggests a connection
of the anomalies and helimagnetism.

The electronic relaxation rates in E and T2 symmetry agree
reasonably well with conventional transport above 31 K. Sig-
nificant deviations are only found in the range 4 < T < 31 K.
However, theoretical support is required to understand these
deviations from conventional transport and their symmetry

dependence. The narrow minimum at TC + 2 K highlights the
importance of the fluctuation range for the phase transition.
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APPENDIX A: EXPERIMENTAL SETUP

For excitation a solid-state laser emitting at 532.3 nm was
used. The light path in the vicinity of the sample is sketched in
Fig. 10. The incoming beam passes a polarizer (1) and a Soleil-
Babinet compensator (2) to prepare the light polarization such
that the photons inside the sample have the proper polarization
state. Since the incoming light is focused on the sample surface
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FIG. 10. (Color online) Sketch of the light path close to the
sample. With a polarizer (1) and a Soleil-Babinet compensator
(2), the polarization and phase of the incoming laser light (dark
green) can be adjusted. The laser light is directed via a prism
(3) to an achromat (4) focusing on the sample surface (6). Since
separate optical components are used for excitation and collection,
the direct reflex (7) from the mirrorlike sample surface does not
enter the collection optics (8) (f ≈ 30 mm, N.A. = 0.34) for the
scattered light (light green). Reflexes from the cryostat windows
(5) are blocked separately. This considerably reduces the amount of
elastically scattered light and fluorescence reaching the spectrometer.
The residual background signal is further reduced by a spatial filter (9)
in the path of the scattered light consisting of two confocal achromatic
lenses (f = 75 mm) and a circular aperture of 150 μm in the common
focus. A quarter wave plate (10) and an analyzer (11) select the
polarization of the scattered light. The sample is located in a He-flow
cryostat in the center of a superconducting solenoid (12).
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at an angle of 30◦, the absorption of photons polarized parallel
and perpendicular to the plane of incidence is not equivalent.
Circularly polarized light, for example, assumes an elliptical
polarization inside the sample. The Soleil-Babinet compen-
sator (2) takes care of this problem by facilitating independent
access to polarization and phase [45]. In terms of the example
above, the light is elliptically polarized outside the sample such
that the absorbed light is circularly polarized inside the sample.
To this end, one has to keep track of all optical elements in the
light path. The major effect comes from the sample surface
and is determined by the complex index of refraction n̂ (cf.
Sec. II A). Via a mirror and a prism (3) the photons are directed
to an achromat (4) and focused on the sample surface (6). The
angle of incidence of 30◦ guarantees that the photons reflected
(7) off the sample surface do not enter the collection optics
(8). In this configuration, the contributions from fluorescence
in the optics and from the laser light are minimized. The
Raman light is collected by a custom-made objective lens
(8) having a numerical aperture of N.A. = 0.34 corresponding
to a solid angle of 0.37 sr. For maximal throughput and best
imaging properties, the geometrical aberrations introduced by
the cryostat windows (5) are corrected by the objective lens
(8). In this way, the scattered light can be spatially filtered (9)
without excessive losses. The objective (8) and the spatial filter
(9) are the key parts which facilitate measurements on samples
with very few scattered photons. The scattering geometry is
dictated by a solenoid (12) which allows us to apply magnetic
fields up to 8 T.

Before the scattered photons arrive at the entrance slit of the
spectrometer the desired polarization states are selected with
a quarter wave plate (10) and an analyzer (11). For dispersion
a triple-stage spectrometer (Jobin-Yvon T64000) with the
spectral resolution set at approximately 2 cm−1 is used. The
transmitted photons are recorded with a liquid-nitrogen-cooled
charge coupled device (CCD) detector.

APPENDIX B: TEMPERATURE DETERMINATION

The physical properties depend crucially on the temperature
in the illuminated spot Ts. The absorbed light heats the sample
locally and induces a sizable difference �T between the holder
temperature Th and Ts, particularly at low temperatures. In the
main paper, Ts is referred to as T for simplicity. A precise
temperature determination is essential to decide if anomalies
in the spectra close to TC are actually appearing above, at, or
below the transition.

One common method to determine the amount of heating
is to compare Stokes and anti-Stokes intensity, i.e., energy-
gain and energy-loss spectra. They differ by an exponential
factor due to thermal occupation which can in principle be
used to compute the temperature. However, this method is
not always reliable, in particular at temperatures below 100 K
and in materials such as MnSi with low scattering intensities.
Alternatively, strongly temperature-dependent features in the
spectra can be analyzed using combinations of various laser
powers Pabs and holder temperatures Th. Ideally, Pabs and Th

are selected in a way that the spectral features assume the same
shape for at least two combinations. Then, if �T is moderate,
one can expect that the spot temperatures are equal. However,

there are no strongly temperature-dependent features in the
spectra of MnSi throughout the whole temperature range.

The laser heating used here was determined from previ-
ous results on V3Si [46,47]. There, the strong temperature
dependence of the gap mode in the superconducting state
was used to determine the amount of laser heating. Together
with data for the thermal conductivity λ(T ) the complete
temperature range of a material becomes accessible. This
method can be used for other materials having isotropic heat
conduction by appropriately taking into account n̂ and λ(T ).
The extrapolation of this procedure worked for Nb3Sn [47].
Noticing that MnSi, while not having sufficiently temperature-
dependent features, is an isotropic metal, we apply that
procedure and provide a few details.

The starting point is the equation for thermal conductivity
in semispherical geometry. The laser power Pabs is deposited
within the illuminated spot with radius r0. It is assumed that
the complete energy is transferred to the sample holder via heat
conduction in the sample. This is an excellent approximation
for metals in both vacuum and gas atmosphere, but probably
not when the sample is immersed in superfluid He. In the case
of transport in the metal, the heat flow through a shell with
area 2πr2 and thickness dr is given by

Pabs = −λ(T )2πr2 dT

dr
, (B1)

where dT is the temperature drop across the radial incre-
ment dr . If the sample is large compared to r0, integration

FIG. 11. (Color online) Temperature determination from thermal
conductivity. (a) Thermal conductivity measurement; (b) integrated
thermal conductivity. According to Eq. (B2), the integral

∫
λ dT =: α

from Th to Th + �T is constant as long as the laser power and the
focus size are not changed. For the experimental setup used here,
α is 6.4 W/m for an absorbed laser power of 4 mW. The inset of
(b) illustrates how �T can be obtained from α and the integrated
conductivity.
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FIG. 12. (Color online) Temperature dependence of the laser
heating �T for an absorbed laser power of 4 mW. Points correspond
to the laser heating for various holder temperatures Th and are
determined from the integrated thermal conductivity as described
in Fig. 11. An exponential fit was used to obtain �T in the full
temperature range.

yields [47,85]

α(Pabs,r0) := Pabs

2π r0
=

∫ Th+�T

Th

λ(T )dT . (B2)

Th is measured with a Cernox resistor having a vanishingly
small magnetoresistance of less than 0.2% for magnetic fields
up to 4 T. �T = Ts − Th is the average laser-induced heating.
α depends only on r0 and Pabs but not on any strongly
temperature-dependent property of the sample. Hence, the
knowledge in one sample, such as V3Si, is sufficient for
deriving �T of other compounds. The main nontrivial sample
dependence comes from λ(T ) which has to be known in detail.
Then, �T can be determined for any Th if the integral over
λ(T ) is known (cf. Fig. 11).

In V3Si αV3Si = 0.96 W/m was derived experimentally for
an absorbed laser power of 1 mW. For MnSi, we used Pabs =
4.0 mW for all light polarizations. Differences in the optical
setup of both experiments change the focus size by a factor of
0.6. Scaling αV3Si with these changed experimental parameters
results in αMnSi = 6.4 W/m. As an example, the graphical
solution of Eq. (B2) for the MnSi sample is shown in Fig. 11.
The experimental quantity αMnSi = 6.4 W/m for Pabs = 4 mW
is added to the integrated thermal conductivity at the holder
temperature Th. Then, a horizontal line intersects the integral∫

λ dT at the spot temperature Ts. The length of this line is
�T . In the example of Fig. 11, Th = 30 K, Ts = 31.3 K, and
�T = 1.3 K.

In the same way, the laser heating was determined at several
different holder temperatures between 4 and 300 K. These
temperatures are indicated as points in Fig. 12. An exponential
fit yields �T for all temperatures in-between and was used to
correct for the laser heating in all measurements presented
here. At selected holder temperatures Th = 2, 30, and 300 K,
�T is 2.9, 1.3, and 0.4 K, respectively, for Pabs = 4 mW.

FIG. 13. (Color online) Fit of the data on the example of an xx

spectrum at 17 K. Panel (a) shows the measured data (green) together
with the fit function (orange) consisting of a fifth-order polynomial
and four Voigt shaped peaks. (b) Shows the difference (blue) between
measurement and fit. A smoothed curve (red) points out how much
and at which frequencies the measurement and the fit differ beyond
the noise level. To separate the phononic part from the electronic
continuum, only the fits of the peaks are subtracted from the spectra.

APPENDIX C: DATA ANALYSIS

Another caveat in the analysis, connected with the low
scattering intensity, is the fitting procedure used to separate
the phononic contribution from the electronic continuum.
Figure 13 shows a typical example. The Raman response
Rχ ′′ (green) is fitted (orange) by a polynomial baseline
superimposed by several Voigt shaped peaks. The baseline
is a fifth-order polynomial fitted to 30 anchor points which
are distributed in the full energy range, but not close to the
peak positions. The baseline is subtracted to put the peaks on
a horizontal ground for the Voigt fit. Figure 13(b) shows the
difference (blue) between the data and the fit which is less
than 0.005 counts (s mW)−1 for most points. The smoothed
line (red) is a guide to the eye. To get the electronic continua
shown in Fig. 3, only the Voigt part of the fit at zero background
is subtracted.

APPENDIX D: GRÜNEISEN PARAMETER

The macroscopic Grüneisen parameter γmacro can be
determined from experimentally accessible thermodynamic
properties [58]

γmacro(T ) = 3α(T )K(T )V mol(T )

Cmol
p (T )

. (D1)

The published data on thermal expansion, bulk modulus, and
heat capacity were sampled in 1-K steps and then used to
calculate γmacro [11,30,33,61]. For T → 0, γmacro is expected
to vanish (dots in Fig. 14) as α goes to zero. At temperatures
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FIG. 14. (Color online) Grüneisen parameters in MnSi. The
macroscopic Grüneisen parameter γmacro(T ) (green) as derived from
thermodynamic properties in comparison with the constant phonon
Grüneisen parameter γi = 2.5 (orange) which describes the thermal
expansion shift of the Raman mode i.

below TC, γmacro is negative with the minimum of about −20
at TC. Above the transition, there is a steep increase and a
sign change. γmacro reaches a maximum of 7 at 36 K and
then approaches a value of 2.5 with increasing temperatures.
This is compatible with the phonon Grüneisen parameter γi

derived from the thermal expansion shift of the Raman modes
at elevated temperatures (Sec. IV A).

APPENDIX E: CONTRIBUTIONS IN T1 SYMMETRY

Contributions in T1 symmetry can arise either if there is a
background from light sources other than the sample or close
to resonances or if the chiral symmetries of the initial and the
excited states are different. (i) There are various possibilities
for external light sources (other than Raman scattering from
the sample) such as fluorescence in the optical elements or
residual light in the laboratory or background signal of the
CCD. The CCD background was determined experimentally
with closed shutter. Similarly, spectra were taken with open
shutter and blocked laser for checking the residual light.
The two results were found to be identical indicating that
the residual light level is negligible. The CCD background
was subtracted from the measured spectra. Without spatial
filtering (element 9 in Fig. 10), the fluorescence from optical
elements is approximately as strong as the signal. With pinhole
a reduction of at least 90% can be achieved. In addition, we
compared the spectra measured in the magnet cryostat close
to backscattering conditions with those obtained in pseudo-
Brewster geometry, where no laser light reaches the collection
optics, and found good agreement. Therefore, the background
problem can be considered under control. (ii) Away from
resonances when the photon energies ωI,S can be neglected
with respect to the gaps between the electron bands around
the Fermi energy, ωI,S � |εn(k) − εm(k + q)|, the effective
mass approximation applies [37], and one does not expect a
response from electron-hole excitations in T1 (or, in tetragonal
systems, A2g) symmetry [86] simply because the order of the
partial derivatives of the conduction band εc(k) is irrelevant.
Since in second-order perturbation theory with ωI,S > 0 the

matrix elements linear in the vector potential A, Mxy and Myx ,
are usually not identical, meaning that |Mxy − Myx |2 > 0, one
expects small but finite intensity in the T1 channel. Large
intensity may occur close to a narrow resonance. (iii) If
the chiral symmetry of the initial and the final states are
different such as in the case of crystal-field excitations for
instance [48] some of the matrix elements are antisymmetric.
In 1990, Shastry and Shraiman [87] derived the magnetic
Raman response for a Mott-Hubbard system and found that the
chirality operator Si · (Sj × Sk) couples to the light in linear
order and has antisymmetric matrix elements. Later Michaud,
Vernay, and Mila showed that this is not the case due to
cancellation effects [88]. Nevertheless, scattering from chiral
spin excitations is likely to be observed experimentally at least
in Heisenberg magnets [89] and may come from higher-order
excitations or strong resonance enhancement. On the basis of
the existing data the problem can not be settled satisfactorily
for any of the systems studied so far.

)b()a(

(c)

FIG. 15. (Color online) (a) Majority-spin and (b) minority-spin
Fermi surfaces of MnSi (without spin-orbit coupling) as derived by
Jeong and Pickett [72]. (c) Nodal hypersurface of the lowest-order
A1 Raman vertex.
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In summary, while contributions from residual light in the
laboratory and from fluorescence can safely be excluded to
be at the origin of the observed T1 spectra, it is complicated
to cleanly distinguish between resonance effects and chiral
excitations. Either the intensity comes from chiral spin
excitations due to higher-order scattering processes or results
from the inequivalence of the matrix elements Mxy and Myx

due to resonance effects. In the latter case, a similarity of
the T1 and the T2 spectra can be expected and is not very
interesting. In the other case, one could say that chiral and
carrier excitations have a similar temperature dependence
indicating some so far unexplained interrelation and possibly
far-reaching conclusions. Since the memory function approach
does not a priori specialize to a specific type of excitations, it
can, at least formally, be applied also in T1 symmetry. However,
for the reasons explained here, we wish to be conservative
and do not analyze the T1 results in detail. In fact, a study
of the resonance behavior of the T1 continuum using various
laser lines for excitation would be a major step towards a
clarification and should precede the interpretation.

APPENDIX F: FERMI SURFACES
AND THE A1 RAMAN VERTEX

Figure 15 shows the Fermi surfaces of MnSi as derived
from band-structure calculations without spin-orbit coupling
by Jeong and Pickett [72]. Figures 15(a) and 15(b) show the
Fermi surfaces for majority and minority spin, respectively.
Figure 15(c) shows the surface in k space on which the
lowest-order nontrivial A1 Raman vertex γ

(1)
A1 = cos kx +

cos ky + cos kz derived from Brillouin zone harmonics [73]
vanishes. Electrons close to this part of the Brillouin zone
are not projected out. Hence, only the central pockets and
those located on the corners are projected in A1 symmetry
with appreciable intensity. The E and T2 vertices, in contrast,
have finite weight on major parts of the large Fermi surfaces.
A distinction between majority and minority bands does not
seem to be possible here. Since spin-orbit coupling effects
are expected to be small for Mn [72], they are unlikely to
have an effect on the symmetry-based arguments outlined
here.
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