
PHYSICAL REVIEW B 90, 024409 (2014)

Theory of fast time evolution of nonequilibrium spin states in magnetic heterostructures
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The temporal evolution of highly nonequilibrium and spatially nonuniform spin states is analyzed on the
basis of a general, phenomenological spin dynamics theory, employing the concept of both local (relativistic)
and nonlocal (exchange) spin relaxations. The developed theory is applied here to describe the ultrafast spin
evolution arising after the action of a femtosecond laser pulse on magnetic heterostructures containing layers
of two different ferromagnets; specifically, we consider here both Ni-Fe and Ni-Ru-Fe heterostructures. As a
consequence of the laser excitation, nonuniform spin distributions are created in the layered systems, which
form the initial state for the spin dynamics calculations. The results obtained provide an explanation of recent
experiments on the magnetization recovery in laser-pumped Ni-Ru-Fe heterostructures. The importance of the
nonlocal character of the magnetization recovery for such systems is established. In particular, the experimentally
observed strong dependence of the spin recovery on the relative orientation of the magnetic moments of the
layers is explained theoretically. If the nonlocal spin relaxation is dominating, the evolution from an initial
nonuniform magnetization profile is concurrent with the creation of a strong spin current flowing between the
layers.
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I. INTRODUCTION

The excitation of magnetic materials with short laser pulses
has revealed fascinating and unexpected magnetization dy-
namics. An unanticipated, fast laser-induced demagnetization
within a few hundred femtoseconds was observed in elemental
3d ferromagnets such as nickel [1–4]. As the demagnetization
time is much shorter than the characteristic magnetization
evolution time, this discovery has initiated intensive research
in ultrafast laser-induced magnetization dynamics (see, e.g.,
Ref. [5]) and has led to a fierce debate as to what mechanisms
could be responsible for the ultrafast demagnetization [6–15].

Even though the mechanisms of laser-induced demagneti-
zation in elemental ferromagnets are not yet unambiguously
clarified, recent experimental efforts have focused on laser-
induced magnetization dynamics in inhomogeneous magnetic
materials [16–21]. Several different kinds of inhomogeneous
materials have recently been studied. Magnetic alloys con-
taining more than one sublattice with distinct sublattice
magnetizations, such as ferromagnetic FeNi alloy [17] and
ferrimagnetic GdFeCo alloy [16], revealed recently unusual
spin dynamics, connected to the different exchange-coupled
spin angular moments present on the sublattices. The excitation
of GdFeCo alloys with a short laser pulse caused a switching of
the magnetization on a picosecond time scale [16], something
which holds promise for the development of ultrafast magnetic
recording. The origin of the switching is in the focus of
recent theoretical studies [22–24]. Other inhomogeneous
materials which were recently investigated are various rare-
earth–transition-metal alloys (TbCo, GdCo) [21] and thin
magnetic films with magnetic inhomogeneities (domains)
and/or chemical inhomogeneity [18–20]. An ultrafast spin
angular momentum transfer between different lateral regions
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in the magnetic films has been observed in the latter studies,
as well as between the different sublattices in the investigation
of the alloys [21].

A third class of recently investigated inhomogeneous
materials—which is the focus of the present study—is that of
layered metallic heterostructures [25–27], as well as layered
magnetic tunnel junctions [28], for which laser-induced
switching is a recent goal [29,30]. Laser excitation of a Ni-
Ru-Fe trilayer system from the Ni side revealed an intriguing,
entangled spin dynamics in the interlayer exchange coupled
Ni and Fe layers: for a parallel alignment of the Ni and Fe
magnetizations, demagnetization of the Ni layer led to an
ultrafast magnetization increase of the Fe layer, whereas for
an antiparallel alignment of the Ni and Fe magnetizations,
demagnetization of the Ni layer caused a demagnetization of
the Fe layer [25]. The unusual spin response measured on the
Fe layer has been explained by a superdiffusive spin current
perpendicular to the layers, causing an ultrafast spin transfer
from the Ni to the Fe layer [25]. This initial spin transfer, due
to superdiffusive nonequilibrium, nonthermal carriers [13,31],
is expected to be active until electron thermalization has
occurred, which for metals happens approximately in some
300 femtoseconds [32–34]. After electron thermalization, a
further unusual spin evolution has been observed [25,35]: the
spin relaxation back to equilibrium is much faster for the
antiparallel configuration of the Ni and Fe magnetizations than
for the parallel configuration.

The difference in spin evolution of the two configurations
is intriguing. The Ruderman-Kittel-Kasuya-Yoshida (RKKY)
coupling between the layers is typically very weak, so that
in the first instance no difference would be expected for the
spin evolution in the two layers treated, say, on the basis
of the Landau-Lifshitz (LL) equation [36] or the Landau-
Lifshitz-Bloch (LLB) equation [37], which are both local,
and spin dynamics would hence proceed independently in
the two layers, and even in different points of the system

1098-0121/2014/90(2)/024409(12) 024409-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.024409


I. A. YASTREMSKY, PETER M. OPPENEER, AND B. A. IVANOV PHYSICAL REVIEW B 90, 024409 (2014)

(see the discussion in Sec. III A). This suggests that a different
theoretical formulation needs to be developed to explain the
observed spin evolutions.

Here we develop such a formulation, which, in contrast
to the Landau-Lifshitz model, builds on longitudinal spin
dynamics. The following ideas were used for deriving a
qualitative description of the experimental observations. The
laser pulse (with duration of less than 100 fs) has, after
electron thermalization, induced a highly nonequilibrium
magnetization distribution, which plays the role of an initial
condition for the subsequent magnetization dynamics, which
are described by an equation for longitudinal spin dynamics
derived from Bar’yakhtar’s equation [38–40], called also
LLBar equations [41]. The time evolution of the initial state at
times longer than 0.5 ps can appropriately be evaluated with
evolution equations for the individual layer magnetizations
alone, in a manner similar to a recent treatment of sublattice
magnetization dynamics [23]. Our analysis of the longitudinal
spin dynamics reveals the conditions under which the rate of
the spin recovery back to equilibrium depends strongly on the
configuration of layer magnetizations, that is, whether these
are antiparallel or parallel. The here-developed theory is antic-
ipated to be important for predicting fast magnetization equi-
libration and possibly reversal in coupled magnetic layered
systems.

II. MODEL

A. Theoretical formulation

The Landau-Lifshitz equation [36], with the standard
relaxation terms [36,42], preserves the magnetization length.
This fact limits the applicability of the LL equation to the
dynamics of the unit vector of the normalized magnetization, a
restriction which was already mentioned in the original article
[36]. Note that the commonly used relaxation terms [36,42]
give in fact equivalent expressions.

The question of what the correct structure of the relaxation
terms in the LL equation should be was previously considered
by Bar’yakhtar [38–40]. On the basis of general symmetry
arguments and Onsager relations, Bar’yakhtar derived the
general form of such an equation for the magnetization
dynamics, which comprises two distinct relaxation terms, one
of relativistic origin and a nonlocal spin-conserving relaxation
term, giving a purely exchange related relaxation. The resulting
expression can be written as [38]

∂ �M
∂t

= −γ [ �M× �Heff] + λr �Heff − a2λnl∇2 �Heff, (1)

where γ is the gyromagnetic ratio, λr is a relativistic relaxation
constant, λnl is a nonlocal (exchange) relaxation constant,
�Heff = −δ�/δ �M is an effective magnetic field, and � is a

thermodynamic potential. The multiplier a2 (a is of the order
of the lattice constant) is added to have the same dimension
for both damping constants, λr and λnl. It is worth noting here
that not only is the nonlocal term with λnl in Eq. (1) absent
in the standard equations, but also the form of the relativistic
term differs from that of the standard relaxation terms, which
are, as mentioned, limited to the dynamics of the normalized
magnetization.

To illustrate the differences between the standard formu-
lation and that of Bar’yakhtar, we note that the Eq. (1)
describes both the standard (transversal) LL dynamics of
the magnetization of a ferromagnet corresponding to the
magnetization precession around the effective field, as well
as the longitudinal dynamics. To clarify this, let us assume
�M = M �m, �m2 = 1 and rewrite Eq. (1) as the set of equations

for the unit vector �m and the modulus M ,

∂ �m
∂t

= −γ [ �m× �Heff] + λr

M
[ �Heff − �m( �m · �Heff)]

+ a2λnl[ �m( �m · ∇2 �Heff) − ∇2 �Heff], (2)

∂M

∂t
= λr( �m · �Heff) − λnla

2( �m · ∇2 �Heff), (3)

where ( �m · �Heff) = −δ�/δM .
Note first that the equation for the transversal variable

�m with λnl = 0 has the form of the LL equation, and the
relativistic relaxation term in the equation adopts the standard
Landau-Lifshitz form. It is equivalent to the commonly
used Gilbert damping term with the dimensionless Gilbert
damping constant αG = λr/γM at small αG. The transversal
dynamics and relaxation differ from the standard one only
by the presence of a specific nonlocal exchange contribution
with ∇2 �Heff . This term is of significant importance, because
it determines the correct asymptotic form of the magnon
damping γk at large wave vector k → ∞, which is of the
form γk ∝ λnlωkk

2, where the magnon frequency ωk ∝ k2; see
Ref. [38]. This asymptotic behavior is in accordance with the
well-known result of the microscopic theory by Dyson [43].

The transversal dynamics is characterized by the relatively
long precession time 2π/γH⊥

eff , where H⊥
eff = | �H⊥

eff|, �H⊥
eff is

the transversal (with respect to the magnetization �M) part of
the effective field. H⊥

eff originates from several magnetic inter-
actions (Zeeman energy, magnetic anisotropy, demagnetizing
field) and it rarely exceeds 1 T. Thus, the characteristic time of
the transversal dynamics is of the order of nanoseconds, much
longer than the subpicosecond exchange time.

Evidently, Eq. (1) (even for λnl = 0) describes a much
faster spin dynamics regime, corresponding to the change
of the modulus of magnetization. If only the relativistic
term in Eq. (1) is taken into account, the equation for M

adopts the form of the Landau-Khalatnikov equation [44],
∂M/∂t = −λrδ�/δM . This equation was originally used for
the description of the evolution of the modulus of the order
parameter of He II, and it is well confirmed by experiments. For
ferromagnets, this equation describes the uniform relaxation
of the magnetization modulus M to its equilibrium value M0,
in the linear approximation M − M0 ∝ exp(−t/t0), with the
relaxation rate 1/t0 being of relativistic origin, but exchange
enhanced [38]. The value of t0 found from Eq. (1) is of the order
of picoseconds in accordance with the microscopic theory,
based on the nonequilibrium thermodynamics of the magnon
gas [45].

The equation for �M , containing a relaxation term of the
form of λ̂ �Heff , with the coefficient λ̂ anisotropic with respect
to �m, is known as the Landau-Lifshitz-Bloch equation; it is
frequently considered as a good approximation for nonsmall
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temperatures [37,46], as was confirmed by atomistic spin
dynamics simulations [47]. It is worth to note here that the
anisotropy of the tensor λ̂ plays no role for the case of our
interest, the fast longitudinal magnetization dynamics.

The two completely different spin dynamics regimes,
longitudinal and transversal, are thus both described by Eq. (1)
and are governed by two universal relaxation constants, λr and
λnl. This offers the possibility to determine these constants
from different experiments. For example, the value of λr

(or, equivalently, Gilbert constant αG) found, say, from fer-
romagnetic resonance measurements, can be then used for the
analysis of uniform perturbations of M . The exchange constant
λnl can be determined from the aforementioned asymptotic
behavior for short-wave magnon damping, and then used for
description of highly nonuniform evolution of M . In particular,
the value of λnl was estimated for magnetic dielectrics like
yttrium-iron garnet [38]. For itinerant-electron ferromagnets,
the short-wavelength asymptotics for magnons decrement
(called q2 damping) was recently calculated microscopically
[48] and gives a temperature-independent λnl.

In the linear approximation the two equations, (2) and (3),
are uncoupled. The coupling of M with �m gives an additional
channel of dissipations for nonlinear excitations, like magnetic
domain walls [49], solitons [50], and Bloch points [51]. For
all the above problems—occurring on a comparably long
time scale—the quantity M − M0 can be considered as a
slave variable; it follows the dynamics of �m with the same
characteristic time as for transversal dynamics.

In contrast, for the problem of ultrafast magnetization
dynamics in ferromagnets, the initial state contains nonsmall
longitudinal deviations of the magnetization from the equilib-
rium. Thus, in the evolution of these states the longitudinal
dynamics dominates; the characteristic time is of the order of
t0 and it is faster than that for standard transversal dynamics.
The transversal deviations of �M , even if they are present in the
initial state, just cannot develop during such a short time [52].
Thus, the longitudinal dynamics can be treated independently,
a fact that will be used in the analysis below.

The analysis will be done with full accounting of both
constants, λnl and λr, which act completely differently. As we
have mentioned above, when neglecting λnl, the equation for
M acquires the form of a nonlinear diffusion equation (NDE)
with a nonlinear source term, i.e., ∂M/∂t = λrA∇2M −
λr∂�un/∂M . Here �un is the part of �, not containing the
gradients of M and leading to nonconservation of the total
spin of the system, A is a nonuniform exchange constant [see
below Eq. (5)].

Such NDE was first studied in the pioneering works by
Kolmogorov, Petrovsky, and Piskounov [55] and by Fisher [56]
to treat propagations of some nonlinear wave (diffusive front)
into the region occupied by the unstable state. In magnetism the
NDE was used for a description of moving domain walls and
solitons in weak ferromagnets [57] and processes of formation
of longitudinal waves after the ultrafast demagnetization in
ferromagnets [58].

In the opposite case, with negligible λr, the character of the
evolution is completely different. It is clear that the exchange
interaction cannot change the total spin of the system, and
the pure exchange evolution of the magnetization for a simple
ferromagnet is described by an equation of the form of a local

conservation law [38], ∂ �M/∂t = −∂ �j (M)
i /∂xi , where �j (M)

i is
the spin current; see further below for the concrete form of
this equation. If both the relaxation channels are accounted
for, i.e., λnl �= 0 and λr �= 0, the equation for M is much more
complicated; it contains nonlinear terms with ∇2M as well
as the term with ∇4M . Most of the rigorous mathematical
methods, developed for the NDE, cannot be extended to
higher-order equations [59,60]. Thus, one can expect that the
character of the magnetization evolution depends strongly
on the ratio of these two constants. In this respect, it is
essential that longitudinal spin evolutions of different kinds
arise naturally within the relatively simple equation (3), even
within the approximation of purely longitudinal dynamics. Our
analysis will be done with full accounting for both constants,
λnl and λr, which act completely differently.

B. Modeling the heterostructures

Considering now the typical sample geometry of the recent
experiments to probe the ultrafast spin dynamics in Ni-Fe
and Ni-Ru-Fe heterostructures [25,26], we note that the size
of the focused light spot is much larger than the thickness
of each layer and of the whole structure. The initial spin
deviation strongly depends on the coordinate x, chosen here
perpendicular to the structure, but within the spot region it is
practically uniform in the plane of the structure. Thus, a quasi-
one-dimensional evolution with M = M(x,t) is expected for
our problem. As has been mentioned in the above section,
we can limit ourselves to the longitudinal dynamics only,
and Eq. (3) for the length of the magnetic moment M = | �M|
acquires the form

∂M

∂t
= λrHeff − a2λnl

∂2Heff

∂x2
. (4)

For the thermodynamic potential we adopt the Landau model

� = 1

8χ‖M2
0

(
M2 − M2

0

)2 + A

2

(
∂M

∂x

)2

, (5)

where M0 is the (temperature-dependent) equilibrium value
of the magnetic moment of the bulk material, χ‖ is the static
equilibrium value of the parallel susceptibility of the material;
below the critical temperature χ‖ 
 1. For the longitudinal
dynamics only the parallel part of the effective field, Heff ,
enters the problem,

Heff = − 1

2χ‖M2
0

(
M2 − M2

0

)
M + A

∂2M

∂x2
.

Substituting the explicit form of the Heff into Eq. (4), dividing
Eq. (4) by M0, and introducing dimensionless variables, one
obtains

∂m(ξ,t)

∂t
= [

m2
0(ξ ) − m2(ξ,t)

]
m(ξ,t) + ∂2m(ξ,t)

∂ξ 2

− ε
∂2

∂ξ 2

{[
m2

0(ξ ) −m2(ξ,t)
]
m(ξ,t) + ∂2m(ξ,t)

∂ξ 2

}
,

(6)

where the dimensionless coordinate ξ is used, the time is
measured in units of t0, which is of order of the time of uniform
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relaxation of the total spin, and the quantity ε is the ratio of
the nonlocal (exchange) and relativistic relaxation constants,
viz.

ξ = x

x0
, x2

0 = 2Aχ‖, t0 = 2χ‖
λr

, ε = λnl

λr
. (7)

The value of x0 for temperatures far from the Curie tempera-
ture is of the order of a few lattice constants [51], but it becomes
large in the vicinity of the critical temperature. It is worthwhile
to note here that it is difficult to make formal arguments for
the use of any kind of continuous differential equation for
nonuniform states with the characteristic scale of the order
of the lattice spacing. However, the comparative analysis of
discrete and continuous models for magnetic vortices [61] and
domain walls [62] in highly anisotropic magnets shows quite
good agreement even for the characteristic sizes like 1.5–2
lattice constants, and hence, we believe that our approach gives
a good approximation to the problem.

To model the Ni-Fe heterostructure we choose the interface
between the metals as the ξ = 0 point; the region ξ < 0
corresponds to Ni and ξ > 0 to Fe. For the magnetization
in the nonuniform magnets, we have chosen the parameter
function m0(ξ ) such that the values of m0 are different in
different layers. For the concrete calculations, the values
m0 = 1 inside the nickel layer and m0 = ±1.5 inside the
iron layer were chosen; the signs (+) and (−) correspond to
the parallel configuration (PC) and antiparallel configuration
(AC), respectively. Thus, the value of M is normalized to the
equilibrium magnetization of nickel.

The values of the material parameters χ‖, A, λr, and λnl are
different in the Ni, Ru, and Fe layers. However, as our aim is to
demonstrate the general features of the problem we assume that
the values of the material parameters in Eqs. (6) and (7) are the
same for all layers of the system. This assumption simplifies
the calculations and gives us the possibility to understand the
role of the different relaxation channels.

There is in addition the interlayer magnetic (RKKY)
coupling, which depends on all layers and could be fer-
romagnetic or antiferromagnetic, depending on electronic
structure properties of the interface. The most interesting case
is the weak antiferromagnetic coupling, for which the layer
magnetizations of the stack (parallel or antiparallel) can be
changed by a relatively weak magnetic field (in the recent
experiment [25], such a case is realized by ∼20 mT for a
1-nm-thick Ru layer). This relatively small quantity does not
influence the magnetization relaxation. For the two alternative
configurations, we will see below a large difference in the
spin-dynamics behavior, despite the fact that the sign of the
coupling is the same.

Within the considered model systems of contacted layers of
different magnets, the interfaces are considered very thin, but
of finite width, of the order of one atomic size; hence, a space-
dependent m2

0 = m2
0(ξ ) should be considered. Specifically, for

the Ni-Fe system the following simple functions are chosen:

m0(ξ ) = 5
4 + 1

4 tanh(ξ ),

for PC, and

m0(ξ ) = − 1
4 − 5

4 tanh(ξ ),

(a)

(b)

FIG. 1. (Color online) The equilibrium magnetization profile
meq calculated from the solution of the equation Heff = 0. (a) The
profile of the Ni-Fe system; (b) that of the Ni-Ru-Fe system. Here
and henceforth in all consecutive figures, red lines correspond to
the parallel and blue lines correspond to the antiparallel magnetization
configuration, respectively.

for AC. Note that near boundaries between the materials prox-
imity effects are expected and the equilibrium distribution of
the magnetization meq(ξ ) differs from m0(ξ ). The equilibrium
distribution of the magnetization can be found through the
solution of the equation Heff(meq) = 0.

For the Ni-Ru-Fe heterostructure the middle of the Ru layer
is adopted as ξ = 0. To account for the Ru layer, we assume
that inside the Ru layer the parameter m2

0(ξ ) has a negative
value. For this system we will keep the full thickness of Ni-
Ru-Fe system as 50 dimensionless units, with the thickness
of the Ru layer equal to ten dimensionless units. In Fig. 1 the
calculated equilibrium magnetizations meq are plotted for the
Ni-Fe and Ni-Ru-Fe systems.

Thus, the initial conditions for Eq. (6) can be cast in
the form m(ξ,0) = meq(ξ ) + 
m(ξ ), where for meq(ξ ) we
use the numerical results presented in Fig. 1 and the term

m(ξ ) is an initial redistribution of the magnetization.
This initial distribution of the magnetization is taken to be
the resulting magnetization emerging after the laser-created
nonequilibrium electron distribution has thermalized. This
process is known [32–34] to be completed within 300–400 fs.
This magnetization distribution can, e.g., be taken as the final
distribution found within the superdiffusive approach [13,31].
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For the numerical solution of the PDE (6) we assume free
boundary conditions (the first and the second derivatives at
edges of a sample are zero). Additionally, we use a condition
∫ 
m(ξ )dξ = 0, which means that the total magnetization of
the system remains unchanged after the first “femtosecond”
stage.

In the numerical investigations, presented below, we have
considered the spin relaxation for two opposite limit cases,
for ε = 200, where the nonlocal relaxation actually controls
the situation, and for ε = 0.1, where the relativistic relaxation
dominates. First of all, in Sec. III we will present results for the
simpler Ni-Fe system, and subsequently we will account for
the presence of the nonmagnetic (ruthenium) layer between
the ferromagnetic metals (in Sec. IV).

III. RESULTS: THE Ni-Fe SYSTEM

We start with considering the Fe-Ni model system with a
direct interface between the Fe and Ni layers, for different
values of the ratio of the nonlocal (exchange) constant to the
local (relativistic) damping constant, ε. We will discuss this
heterostructure by considering two different spin redistribu-
tions, namely the uniform redistribution, for which some part
of the magnetization is homogeneously removed from Ni, after
which it is homogeneously added to the Fe magnetization, and,
secondly, a dip-peak shaped redistribution.

For the concrete analysis of the uniform redistribution the
condition will be chosen as


m(ξ ) = c tanh(ξ/2), (8)

where the parameter c gives what part of the magnetization is
removed from Ni (here and further below we omitted in the
equations exponential corrections caused by the finiteness of
the system size). The initial distributions are shown in Fig. 2(a).

An alternative case is that of a nonuniform “dip-peak”
redistribution, in which some part of the magnetization of
Ni is removed from a region, located close to an interface
between the two metals, and this magnetization is added
in a region of the Fe layer, again close to the inter-
face. In fact, the latter dip-peak magnetization redistribution
[see Fig. 2(b)] is consistent with the final distribution found
within the superdiffusive approach [25,31].

We approximate the dip-peak distribution as


m(ξ ) = 2eA2

cL
ξ exp

(
−2eA2

c2L2
ξ 2

)
. (9)

Here and henceforth, L is the full size of the system (the
thickness of the single Ni or Fe layer is L/2 for the Ni-Fe
system), c is a part of the magnetization moved from Ni to
Fe, the parameter A equals to relative height of the peaks
and e 
 2.718 28 is Euler’s number. Below the following
values will be used for the explicit analysis of the Ni-Fe
system: c = 0.2, as this gives a reasonable value (20%) of
the removed magnetization amount, L = 50, as it corresponds
to the thickness of the Ni and Fe layers of the order of several
nanometers and A = 0.9. In addition, in Sec. III C some other
initial states will be discussed.

(a)

(b)

FIG. 2. (Color online) (a) Initial magnetization distributions
for homogeneous magnetization displacement, m(ξ,0) = meq (ξ ) +
0.2 tanh(ξ/2). The thin dotted lines here and in following figures
depict the equilibrium magnetization distribution m0(ξ ). (b) Initial
magnetization distributions m(ξ,0) = meq (ξ ) + 
m(ξ ) for a dip-
peak-shaped starting magnetization redistribution located near the
interface.

A. Ni-Fe, uniform spin redistribution

1. Small nonlocality, ε = 0.1

Figure 2 shows the initial distributions of the magnetization
for PC and AC configurations. The results calculated with
Eq. (6) are plotted in Fig. 3; they demonstrate that the time
evolution of magnetization in the Ni layer proceeds almost
independently of that in the Fe layer.

One can easily find an approximate description of the time
evolution of the magnetization starting from the quasiuniform
redistribution (8). Since both the value of the equilibrium mag-
netization m0(ξ ) and the value of 
m(ξ ) in the redistribution
(8) are independent on the coordinate, except for in a small
region near the boundary, one can suppose that m2

0(ξ ) = 1
and 
m(ξ ) = −c in the Ni layer. Under these two simplifying
assumptions the magnetization dynamics is independent of the
coordinate in the Ni layer and terms with spatial derivatives in
Eq. (6) can be omitted. These assumptions lead immediately
to the simple ordinary differential equation ∂m/∂t = m − m3.
Integrating this equation and multiplying the derived m(t)
by the size of the Ni layer, one obtains an approximate
formula for the time-dependent magnetization of the Ni
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FIG. 3. (Color online) Time evolutions of the total magnetization
in the Ni layer from its initial value, both for parallel and antiparallel
configurations (ε = 0.1) The dashed line presents the approximate
result from Eq. (10). Note that here and henceforth in corresponding
figures the value of the function MNi(t) at t = 0 is chosen as zero,
i.e., only the essential remagnetization dynamics is shown.

layer,

MNi(t) = L(1 − c)

2
√

(1 − c)2 + [1 − (1 − c)2] exp(−2t)
. (10)

Figure 3 shows that there is good agreement of the analytical
formula (10) with the numerical data. The small discrepancy
is caused by the region close to the boundary between the
metals, where both the equilibrium magnetization m2

eq(ξ ) and
the initial redistribution (8) depend on the coordinate.

In the linear approximation, c → 0, Eq. (10) transforms
to MNi(t) 
 (L/2)[1 − c exp(−2t)], with the relaxation time
equal to 0.5, whereas the numerical values are 0.63 for PC
and 0.67 for AC. Thus, the role of the nonlinear effect,
which reduces the speed of the relaxation for nonsmall
m, is important. Further we will use the dependence (10)
as a reference curve to compare with evolutions of the
magnetization of the Ni layer, both for different redistributions
and for different values of the parameter ε.

2. Large nonlocal term, ε = 200

The computed results, presented in Fig. 4, show that when
assuming a large nonlocal term ε = 200, the recovery of the
Ni magnetization becomes faster than for the case ε = 0.1
(for the chosen parameters roughly three times faster). The
surprising fact is that the time dependence of the total magnetic
moment of the Ni subsystem—as for the local case ε = 0.1—is
practically independent on the state of the system, parallel
or antiparallel. Moreover, for the considered strong nonlocal
damping term the difference between the behavior for AC and
PC states is even weaker than for the case ε = 0.1.

To understand this result and to summarize our finding for
an almost uniform redistribution, we present a more detailed
consideration, including the analysis of the time-resolved
relaxation process, illustrated in Fig. 5.

The data presented in this figure show that the character of
the evolution is completely different for all cases of interest,
different configurations and (or) different ε’s. The difference
in the local and nonlocal dissipation scenarios manifests itself

FIG. 4. (Color online) The computed magnetization evolutions
of Ni for parallel and antiparallel configurations (ε = 200), for
the case of homogeneous redistribution. For easy comparison to
the calculation with ε = 0.1, the approximate dependence given by
Eq. (10) is depicted by the dashed line. Also, some results of fitting
with the scaled Eq. (10) are presented, see the text. The inset shows
the remagnetization dynamics at short times.

in the fact that the time dependence of MNi cannot be fitted by
rescaling the time (like t → ηt , with η a fitting parameter) in
the simple formula (10); compare Figs. 3 and 4. As expected,
see above, for the case ε = 0.1, the spin relaxation becomes
almost local at different points of the sample; see the dashed
lines in Figs. 5(a) and 5(b). In contrast, for the case ε = 200 the
formation of a front of the longitudinal spin relaxation takes
place; one can recognize a “spin flow” from right to left in
both Figs. 5(a) and 5(b). The region where this flow is seen is
appreciably wide, exceeding the width of the interface region.

The shapes of the functions m(ξ,t) are different for PC
and AC. The behavior of the difference of the instantaneous
magnetization and its equilibrium value is however much more
similar for these two states, especially in the Ni region, see
Fig. 5(c), despite the difference in some local details, e.g., the
presence of the “hump” near the interface for AC. These humps
are local accumulations of spin and they are likely associated
with those points, where the effective field—which is a driving
force for the spin current—is small; see Fig. 5(d). Thus, the
similarity of the integrated characteristics in MNi can be present
even for processes with different spatial-temporal behavior.
As we will see below, for other sorts of initial conditions,
not only the details of instantaneous distributions, but also the
integral characteristics like the time-dependence of MNi(t) are
dissimilar for the two alternative configurations of the system,
PC and AC.

B. Dip-peak-shaped spin redistribution

Next we consider a different initial spin distribution,
namely, the highly nonuniform redistribution having the
bipolar form of a minimum and a maximum; see Eq. (9). Such
bipolar shaped redistribution is more realistic from the concept
of superdiffusive spin quenching [27,31]. Note that such a
bipolar shaped spin redistribution gives completely different
shapes for the initial distributions of the layer magnetizations
in the cases of PC and AC; see Fig. 2(b).
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FIG. 5. (Color online) Time evolutions of the layer-resolved magnetization m(ξ,t) for the homogeneous initial conditions m(ξ,0) =
0.2 tanh ξ , shown for successive times computed with a time step 
t = 0.06, for parallel (a) and antiparallel (b) configurations, respectively.
Results obtained for different values of ε are shown. The data for a dominating nonlocal dissipation (ε = 200) are present by full lines, red and
blue colors give PC and AC, respectively. The data obtained for ε = 0.1 are depicted by black dashed lines in both panels. The inset to panel
(b) presents the data on a different scale, comparable to that in panel (a). Vertical arrows indicate the directions of time evolution. Panel (c)
presents the time evolution of the deviation of the magnetization from the equilibrium and panel (d) shows the time evolution of the effective
field Heff , for ε = 200.

1. Small nonlocal term, ε = 0.1

The computed evolutions of the Ni magnetization for both
PC and AC are presented in Fig. 6. Curiously, in spite of the
locality of the dominating relativistic damping term, the time
evolution of Ni strongly depends on the orientation of the Fe
magnetization. Such behavior of a spin system—for an initial
spin redistribution located near a boundary—is a consequence
of the following effects: (i) even for λnl = 0, diffusive effects

FIG. 6. (Color online) Calculated time evolutions of the total
magnetization of the Ni layer for parallel and antiparallel configu-
rations (ε = 0.1) for a starting dip-peak spin redistribution localized
at the interface.

caused by the term A∇2M are present in the LLBar equation.
(ii) the state of Fe changes the equilibrium magnetization of
Ni in a region of the order of a few atomic sizes, and, as
it follows from Eq. (6), influences the recovery speed of Ni
(close to the interface). We also would like to emphasize that
for a spin redistribution comparable to that obtained within the
superdiffusive approach, our relaxation data can no longer be
fitted by an exponential function.

2. Large nonlocal term, ε = 200

Considering next the case of large nonlocal effects, we
find that the spin recovery of the Ni layer for a bipolar
spin redistribution proceeds much faster for ε = 200 than for
ε = 0.1 (for the here-used parameters roughly 50 times). In
addition, the results given in Fig. 7 show that the Ni spin
relaxation does depend substantially on the alignment of the
Fe spin to that of the Ni spin. However, we find, for this system
and under these conditions, that the PC still exhibits faster spin
relaxation, whereas the recent experiments showed an opposite
behavior [25].

The recovery behavior for ε = 200 is fully determined by
the nonlocal damping features which strongly relate to the
difference in the initial distributions for AC and PC states.
As one can see from the data given in Fig. 2 (bottom), well-
defined peaks of different signs are present for PC, whereas
for AC such peaks are “absorbed” by the nonuniformity of
the interface. The initial stage of the dissipation process for
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FIG. 7. (Color online) Time evolutions of the Ni magnetization
for parallel and antiparallel Ni-Fe configurations, computed for the
localized bipolar initial spin redistribution and ε = 200. In the inset
the initial stage of the PC relaxation is presented together with the fit
by a square-root dependence.

PC can qualitatively be treated as a spin diffusive widening of
both peaks, with the “annihilation” of the magnetization of one
peak through moving to the region of the magnetization dip;
see Fig. 8. This scenario is confirmed by the nearly square-root
dependence of MNi(t) taking place for PC; see the inset of
Fig. 7. Conversely, the time dependence of the magnetization
is almost linear for AC. Probably, such a diffusive scenario,

caused by the contribution from nonuniform exchange to the
effective field, is responsible for the observed difference of
the relaxation rates for AC and PC, even for the model with
ε = 0.1; see Fig. 6.

To summarize our findings, for all above-considered cases
the general observation is the following: the spin relaxation
in Ni occurs faster for the PC than for the AC. This is in
contradiction with the experimental observation, which shows
that the recovery of the total magnetic moment of nickel occurs
faster for the AC state of the system [25].

C. Dip-peak-shaped spin redistributions with different
peak positions and widths

The conclusion from the above simulations is that, in
order to find the regimes with faster relaxation for AC,
we need to consider some differently shaped initial spin
distributions. In the above calculations we have used the same

m(ξ ) for both PC and for AC. The data found within the
superdiffusive approach could be a good guide for seeking
appropriate distributions. In the superdiffusive data the final
nonequilibrium spin redistribution for AC looks a little bit
sharper than for PC [25,31]. Hence, we will assume next
a sharper redistribution for AC. In advance to showing the
results, we mention that we have found that such initial states,
for the model with nonsmall nonlocal relaxation term, could
lead to the desired result, i.e., provide agreement with the
experiment.

(a) (b)
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FIG. 8. (Color online) Time evolutions of the magnetization m(ξ,t) computed for the localized dip-peak initial spin redistribution, shown
for successive times computed at time steps 
t = 0.06, for parallel (a) and antiparallel (b) configurations, respectively. Results are shown for
different values of ε. The data for a dominating nonlocal dissipation (ε = 200) are present by full lines, red and blue lines give PC and AC,
respectively. The data for small nonlocal spin dissipation (ε = 0.1) are depicted by black dashed lines in panels (a) and (b). Panels (c) and
(d) present the time evolution of the deviation of the magnetization from the equilibrium and the time evolution of the effective field Heff ,
respectively, for ε = 200.
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FIG. 9. (Color online) Time evolutions of the Ni magnetization
for parallel and antiparallel magnetization configurations, calculated
for the localized initial spin redistribution and ε = 200. Using the
same redistribution 
m(ξ ) for both PC and AC, a slightly faster
spin relaxation occurs for PC (red line) than for AC (dashed blue
line). However, AC recovers faster than PC when a sharper spin
redistribution for AC than for PC has been used (except for extremely
short times; see inset).

We consider some different initial redistributions having a
bipolar shape, where the dip and peak are placed deep inside
the Ni and Fe layer, respectively. These spin redistributions
can be modeled by the function


m(ξ ) = −ANi exp

[
−π

(
2ANi

cL

)2

(ξ + ξNi)
2

]

+AFe exp

[
−π

(
2AFe

cL

)2

(ξ − ξFe)2

]
, (11)

where ξFe and ξNi stand for the distances of the peaks in the
Fe and Ni layers, measured from the boundary between the
metals, and the parameters ANi and AFe are the amplitudes
of the peaks in the Ni and Fe layers. For the concrete
analysis of these dip-peak-shaped redistributions the part of
the magnetization moved from Ni to Fe is chosen as c = 0.1.

The results of the analysis of the evolution of the total Ni
spin for equivalent peaks in both AC and PC (ANi = AFe = 0.45
and ξFe = ξNi = 5) are shown in Fig. 9. As was the case for
the previous considerations, PC relaxes slightly faster for this
initial distribution. In a next step, we use peak-shaped initial
conditions of the form of Eq. (11), yet with a sharper peak
in the Fe layer for AC. Specifically, the peak in the Fe layer
is chosen to be higher, and hence narrower, and is situated
closer to the interface, with the concrete values ANi = 0.6,
AFe = 0.9, and ξNi = 4, ξFe = 2.5. In fact, doing so we try
to model the form of 
m found within the superdiffusive
approach [31].

The results presented in Fig. 9 evidence that for this
modification of the bipolar distribution the magnetization
recovery in the AC becomes faster. This implies that such
distributions provide a way to explain the experiment. Note
that this faster relaxation for AC, shown in Fig. 9, appears
because of two assumptions: the sharper peak of the initial
spin redistribution in the Fe region in the case of AC and the

FIG. 10. (Color online) Time evolutions of the Ni layer magne-
tization for the same initial spin redistributions as adopted in Fig. 9
(with a sharper peak for AC) but employing a dominant relativistic
damping ε = 0.1.

dominant role of the nonlocal spin relaxation (large ε). The
time evolution of the Ni magnetization for the same initial
conditions as used in Fig. 9, but for dominating relativistic
damping (ε = 0.1), is presented in Fig. 10. One recognizes
that in spite of using a sharper spin redistribution for AC,
the PC relaxation is again faster than that of AC. This is one
more evidence of the fact that the time evolution of the Ni
magnetization in the Ni-Fe bilayer system crucially depends
on the parameter ε.

The derived conclusions should however not depend on
particularities of an assumed initial spin redistribution. We
have therefore repeated the analysis for some other types
of initial magnetization redistributions, with different peak
shapes and (or) bipolar functions. All these calculations
did show that in the case of a dominating relativistic spin
relaxation, the relaxation of the PC is always faster than that
of AC (the red lines, corresponding to PC, are always above
the blue lines of AC in the figures). For a dominating nonlocal
relaxation term (ε = 200) the situation is more diverse; for
some special kinds of initial spin redistributions the relaxation
for AC becomes a little bit faster than for PC. Thus, our
simulations demonstrate the principal possibility to control the
speed of spin relaxation in coupled bilayers by manipulating
the initial spin redistributions.

For ε = 0.1 the local recovery process of the Ni magnetiza-
tion depends on the value of the Fe magnetization, especially
for initial redistributions localized near the interface between
the metals. But for all used redistributions PC exhibits a faster
spin relaxation than AC. Thus, in spite of the richness of
physical processes in nanometer size systems for ε = 0.1,
for our purpose relativistic relaxation appears uninteresting as
under such circumstance PC is always faster than AC (while
in the experiment [25] an opposite situation was observed).

Conversely, for ε = 200, we have demonstrated, by using
sharper spin redistributions for AC (comparable to the final
redistributions appearing after completing the initial nonequi-
librium stage) that the spin relaxation of the AC can be faster
than for PC (around 20%).
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IV. RESULTS: THE Ni-Ru-Fe SYSTEM

As illustrated in Fig. 1(b), the presence of the Ru-spacer
layer makes the transition in the equilibrium magnetization
profile from Ni to Fe for PC sharper than for the simpler
Ni-Fe system. For AC an opposite scenario is realized; here,
m(ξ,0) seems to be smoother. This difference offers an
additional opportunity for achieving better agreement with
the experiment. In the previous analysis we have found that
the high rate of the nonlocal spin relaxation is necessary for
explaining the experiment. In addition, the influence of the
nonlocal relaxation term is found to be more pronounced
for a sharp initial distribution m(ξ,0) = meq(ξ ) + 
m(ξ ). In
the Ni-Fe system the transition from Ni to Fe and the initial
redistributions 
m(ξ ) enhance each other so that the resulting
distribution m(ξ,0) becomes more inhomogeneous. Therefore,
the variation of the magnetization from Ni to Fe in the Ni-Fe
system enhances the relaxation of PC. As mentioned, the
presence of the Ru layer could be expected to reduce this
enhancement.

To verify this hypothesis we analyze the following explicit
examples. We consider the model for the Ni-Ru-Fe system,
with a total thickness of the size of 50 dimensionless units, of
which the Ru-layer thickness equals ten dimensionless units.
To investigate the spin relaxation process, we solve Eq. (6),
where the presence of Ru layer is accounted for by setting the
parameter m2

0(ξ ) = −1 inside the Ru layer; see Sec. II A above.
The calculated equilibrium magnetization profile meq(ξ ) for
the Ni-Ru-Fe system is shown in Fig. 1(b) above.

The initial conditions we again represent by the form
m(ξ,0) = meq(ξ ) + 
m(ξ ). It is worth noting that the presence
of the Ru layer was not taken into account in the simulations
within the superdiffusive approach [25]. Consequently, we
have no firm picture of how the initial nonequilibrium
magnetization peaks are positioned in the layers with respect
to the boundaries between the metals. Again, we need to try
different initial nonequilibrium states in the analysis of the
macroscopic spin-density evolution.

To approximate the shape of the laser-induced spin re-
distribution 
m(ξ ) in the Ni-Ru-Fe trilayer system we also
use Eq. (11), but the parameters have the following values:
L = 50 is the size of the system (thicknesses of Ni, Ru,
and Fe layers are 20, 10, and 20, respectively), ξNi and ξFe

are the positions of peaks relative to the middle of the Ru
layer (ξ = 0), and c = 0.1 is the part of the magnetization
removed from Ni. To start with, we calculate the spin relaxation
for both PC and AC using the same initial redistribution,
consisting of two equivalent peaks, as in Eq. (11) above,
with the values ξNi = 6 and ξFe = 4. For such 
m(ξ ), 10%
of the total magnetic moment is redistributed. We consider
first the process for the initial conditions with equivalent
peaks both for PC and for AC. The results given in Fig. 11
demonstrate that the spin-relaxation processes of Ni will be
almost equivalent for PC and AC. Next, following the previous
results, we construct a sharper peak for AC, with ANi = 0.6
and AFe = 0.9, and with ξNi = 4 and ξFe = 2.5, with the same
value of the magnetization removed from Ni layer, c = 0.1.
From the computed results shown in Fig. 11 one can see that
for this case the recovery of the Ni magnetization is around
two times faster for AC than for PC.

FIG. 11. (Color online) Time evolutions of the Ni magnetization
for parallel and antiparallel magnetization configurations in the Ni-
Ru-Fe system, computed for the localized initial spin redistribution
and ε = 200. Adopting the same spin redistribution 
m(ξ ) both for
PC and AC a similar relaxation behavior is obtained for PC (red line)
and AC (dashed blue line). The Ni magnetization recovers faster for
AC than for PC if a sharper initial redistribution for AC than for PC
has been adopted (blue line).

Again, as for the Ni-Fe system, the experimentally obtained
behavior, namely, the faster relaxation for AC, appears only
for the system when the nonlocal damping dominates. For the
same initial conditions with two nonequivalent peaks, but for
the same trilayer model with ε = 0.1, the spin-relaxation times
for AC and PC configurations become practically equivalent
(yet with an even smaller difference between red PC and
blue AC curves as present in Fig. 3 above; not shown here).
This observation once more confirms our conjecture of the
importance of the nonlocal (exchange) relaxation.

V. CONCLUSIONS

We have developed a theoretical formulation to describe the
longitudinal, fast spin dynamics in coupled magnetic layers.
Several starting nonequilibrium spin distributions have been
considered in the calculation of the consecutive occurring spin
evolution. Our calculations demonstrate the principal possibil-
ity of controlling the relaxation processes in nanometer-size
layered systems both in the case of purely relativistic and of
nonlocal magnetization dampings. For example, by selecting
special forms of the initial redistributions, the spin relaxation
of the antiparallel configuration can be made faster than that
of the parallel configuration, as has been detected in the recent
experiments on metallic trilayers [25,26]. This we find to be the
case both for the simple Ni-Fe and more complicated Ni-Ru-Fe
heterostructures, for the identified initial spin conditions.

In addition to the discussed layer-resolved measurements on
metallic trilayers, we note that faster magnetization recovery
dynamics has recently been observed, too, for the antiparallel
state of magnetic tunnel junctions consisting of two CoFeB
layers separated by a thin MgO barrier [28].

The magnetization recovery is also found to be sensitive
to the presence of the nonmagnetic Ru layer. Namely, for
the Ni-Ru-Fe trilayer we have obtained that in the AC the
spin recovery occurs almost two times faster than in the PC.
Thus, our approach provides an opportunity for the qualitative
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description of the experiment. Especially, this steering of the
magnetization evolution is found to be efficient for materials
with strong nonlocal damping (large ε). Additionally, for
large ε we obtain a clear manifestation of spin flow instead
of local relaxation, i.e., a spin current resulting from the
initial nonequilibrium state in conjunction with the nonlocal
relaxation. This spin current is clearly seen as a flow of spin
in the heterostructures for different initial spin distributions;
see Figs. 5 and 8. Our analysis underlines that such fast spin
currents can typically be anticipated in heterostructures with
strongly nonequilibrium spin distributions.

To conclude, our theory predicts the important effect of
the fast nonlocal evolution of the longitudinal magnetization
of magnetic layered systems (synthetic ferrimagnets), which is
very sensitive to the details of the initial spin redistributions. A
future dream could of course be to construct something like an
“inverse method,” which gives the possibility to predict some
details of the initial spin redistribution through the analysis of
integral characteristics, like time dependencies of the magnetic
moment of some specific layer or so. At present the equations
are however too complicated for realization of such a theory.
Conversely, designing specific starting spin conditions could

pave a way to achieving an exceptionally fast remagnetization.
As we have shown, the presence/absence of peaks in the
initial spin redistribution and even the presence/absence of
differences in the widths of the peaks leads to clearly detected
effects for these characteristics. In particular, the possibility of
having a faster spin recovery for the antiparallel configuration
of a system is observed, and the conditions under which
these occur have been established here. Fast longitudinal spin
dynamics under such conditions would provide an explanation
of the recent experimental observations [25,26,35].
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[11] G. P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, and T. F. George,
Nat. Phys. 5, 499 (2009).

[12] J.-Y. Bigot, M. Vomir, and E. Beaurepaire, Nat. Phys. 5, 515
(2009).

[13] M. Battiato, K. Carva, and P. M. Oppeneer, Phys. Rev. Lett. 105,
027203 (2010).

[14] K. Carva, M. Battiatio, and P. M. Oppeneer, Nat. Phys. 7, 665
(2011).

[15] K. Carva, M. Battiato, and P. M. Oppeneer, Phys. Rev. Lett. 107,
207201 (2011).

[16] I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A.
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N. Pontius, E. Beaurepaire, and C. Boeglin, Nat. Commun. 5,
3466 (2014).

[22] T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia,
O. Chubykalo-Fesenko, S. El Moussaoui, L. Le Guyader,
E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto,
A. Itoh, D. Afanasiev, B. A. Ivanov, A. M. Kalashnikova, K.

024409-11

http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.76.4250
http://dx.doi.org/10.1103/PhysRevLett.85.844
http://dx.doi.org/10.1103/PhysRevLett.85.844
http://dx.doi.org/10.1103/PhysRevLett.85.844
http://dx.doi.org/10.1103/PhysRevLett.85.844
http://dx.doi.org/10.1103/PhysRevB.72.014437
http://dx.doi.org/10.1103/PhysRevB.72.014437
http://dx.doi.org/10.1103/PhysRevB.72.014437
http://dx.doi.org/10.1103/PhysRevB.72.014437
http://dx.doi.org/10.1038/nmat1985
http://dx.doi.org/10.1038/nmat1985
http://dx.doi.org/10.1038/nmat1985
http://dx.doi.org/10.1038/nmat1985
http://dx.doi.org/10.1103/RevModPhys.82.2731
http://dx.doi.org/10.1103/RevModPhys.82.2731
http://dx.doi.org/10.1103/RevModPhys.82.2731
http://dx.doi.org/10.1103/RevModPhys.82.2731
http://dx.doi.org/10.1103/PhysRevLett.85.3025
http://dx.doi.org/10.1103/PhysRevLett.85.3025
http://dx.doi.org/10.1103/PhysRevLett.85.3025
http://dx.doi.org/10.1103/PhysRevLett.85.3025
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevLett.95.267207
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.78.174422
http://dx.doi.org/10.1103/PhysRevB.80.180407
http://dx.doi.org/10.1103/PhysRevB.80.180407
http://dx.doi.org/10.1103/PhysRevB.80.180407
http://dx.doi.org/10.1103/PhysRevB.80.180407
http://dx.doi.org/10.1038/nphys1315
http://dx.doi.org/10.1038/nphys1315
http://dx.doi.org/10.1038/nphys1315
http://dx.doi.org/10.1038/nphys1315
http://dx.doi.org/10.1038/nphys1285
http://dx.doi.org/10.1038/nphys1285
http://dx.doi.org/10.1038/nphys1285
http://dx.doi.org/10.1038/nphys1285
http://dx.doi.org/10.1103/PhysRevLett.105.027203
http://dx.doi.org/10.1103/PhysRevLett.105.027203
http://dx.doi.org/10.1103/PhysRevLett.105.027203
http://dx.doi.org/10.1103/PhysRevLett.105.027203
http://dx.doi.org/10.1038/nphys2067
http://dx.doi.org/10.1038/nphys2067
http://dx.doi.org/10.1038/nphys2067
http://dx.doi.org/10.1038/nphys2067
http://dx.doi.org/10.1103/PhysRevLett.107.207201
http://dx.doi.org/10.1103/PhysRevLett.107.207201
http://dx.doi.org/10.1103/PhysRevLett.107.207201
http://dx.doi.org/10.1103/PhysRevLett.107.207201
http://dx.doi.org/10.1038/nature09901
http://dx.doi.org/10.1038/nature09901
http://dx.doi.org/10.1038/nature09901
http://dx.doi.org/10.1038/nature09901
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1073/pnas.1201371109
http://dx.doi.org/10.1038/ncomms2108
http://dx.doi.org/10.1038/ncomms2108
http://dx.doi.org/10.1038/ncomms2108
http://dx.doi.org/10.1038/ncomms2108
http://dx.doi.org/10.1038/ncomms2007
http://dx.doi.org/10.1038/ncomms2007
http://dx.doi.org/10.1038/ncomms2007
http://dx.doi.org/10.1038/ncomms2007
http://dx.doi.org/10.1038/nmat3597
http://dx.doi.org/10.1038/nmat3597
http://dx.doi.org/10.1038/nmat3597
http://dx.doi.org/10.1038/nmat3597
http://dx.doi.org/10.1038/ncomms4466
http://dx.doi.org/10.1038/ncomms4466
http://dx.doi.org/10.1038/ncomms4466
http://dx.doi.org/10.1038/ncomms4466


I. A. YASTREMSKY, PETER M. OPPENEER, AND B. A. IVANOV PHYSICAL REVIEW B 90, 024409 (2014)

Vahaplar, J. Mentink, A. Kirilyuk, Th. Rasing, and A. V. Kimel,
Nat. Commun. 3, 666 (2012).

[23] J. H. Mentink, J. Hellsvik, D. V. Afanasiev, B. A. Ivanov, A.
Kirilyuk, A. V. Kimel, O. Eriksson, M. I. Katsnelson, and Th.
Rasing, Phys. Rev. Lett. 108, 057202 (2012).

[24] S. Wienholdt, D. Hinzke, K. Carva, P. M. Oppeneer, and U.
Nowak, Phys. Rev. B 88, 020406(R) (2013).

[25] D. Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J. M.
Shaw, E. Turgut, P. Maldonado, S. Mathias, P. Grychtol,
H. T. Nembach, T. J. Silva, M. Aeschlimann, H. C. Kapteyn,
M. M. Murnane, C. M. Schneider, and P. M. Oppeneer,
Nat. Commun. 3, 1037 (2012).

[26] E. Turgut, C. La-o-vorakiat, J. M. Shaw, P. Grychtol,
H. T. Nembach, D. Rudolf, R. Adam, M. Aeschlimann, C. M.
Schneider, T. J. Silva, M. M. Murnane, H. C. Kapteyn, and S.
Mathias, Phys. Rev. Lett. 110, 197201 (2013).

[27] A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel,
K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and
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[33] H.-S. Rhie, H. A. Dürr, and W. Eberhardt, Phys. Rev. Lett. 90,
247201 (2003).

[34] M. Lisowski, P. A. Loukakos, U. Bovensiepen, J. Stähler, C.
Gahl, and M. Wolf, Appl. Phys. A 78, 165 (2004).

[35] D. Rudolf, Ph.D. thesis, Forschungszentrum Jülich, Germany,
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