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Hole propagation in the Kitaev-Heisenberg model:
From quasiparticles in quantum Néel states to non-Fermi liquid in the Kitaev phase
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We explore with exact diagonalization the propagation of a single hole in four magnetic phases of the
t-J -like Kitaev-Heisenberg model on a honeycomb lattice: the Néel antiferromagnetic, stripe, zigzag, and Kitaev
spin-liquid phases. We find coherent propagation of spin-polaron quasiparticles in the antiferromagnetic phase
by a mechanism similar to that in the t-J model for high-Tc cuprates. In the stripe and zigzag phases clear
quasiparticles features appear in spectral functions of those propagators where holes are created and annihilated
on one sublattice, while they remain largely hidden in those spectral functions that correspond to photoemission
experiments. As the most surprising result, we find a totally incoherent spectral weight distribution for the
spectral function of a hole moving in the Kitaev spin-liquid phase in the strong-coupling regime t � J relevant
for iridates. At intermediate coupling the finite systems calculation reveals a well-defined quasiparticle at the
� point; however, we find that the gapless spin excitations wipe out quasiparticles at finite momenta. Also for
this more subtle case we conclude that in the thermodynamic limit the lightly doped Kitaev liquid phase does
not support quasiparticle states in the neighborhood of �, and therefore yields a non-Fermi liquid, contrary to
earlier suggestions based on slave-boson studies. These observations are supported by the presented study of the
dynamic spin-structure factor in the Kitaev spin liquid regime.
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I. INTRODUCTION

Carrier propagation in Mott or charge-transfer insula-
tors is a challenging problem particularly motivated by
strongly correlated superconducting cuprates [1–4]. While
holes move incoherently in one-dimensional systems featuring
charge and spin separation [5], as well as in systems with
antiferromagnetic (AF) Ising interactions [6–8], the hole
motion becomes coherent and quasiparticles (QPs) arise
at low energy in the quantum AF t-J model [9]. These
QPs are indeed observed in angle-resolved photoemission
spectroscopy (ARPES) experiments in cuprates [10]. In
general, low-energy QPs coexist with incoherent processes
at high energy, as in the AF phase on the square [9] or
honeycomb lattice [11]. This is, however, not always the case,
as shown by ARPES experiments for the spin-orbit Mott
insulator Na2IrO3 [12], without clear evidence for QPs at
low energy [13]. In a recent study, hole-doped Li2Ir1−xRuxO3

with honeycomb structure was found insulating at all doping
levels [14].

Electronic systems with honeycomb lattice include
graphene [15,16], optical lattices [17], topological insula-
tors [18], and frustrated magnets [19–26]. Interest in the
latter was triggered by theoretical predictions [23,27] that
Na2IrO3 may host Kitaev model physics and quantum spin
Hall effect. The ground state of this model is a Kitaev spin
liquid (KSL) characterized by finite spin correlations only
for nearest-neighbor (NN) spins [28]. The KSL belongs to
the spin-disordered phases which are the center of interest
in quantum magnetism [19,20]. In Mott insulators where
the strong spin-orbit interaction generates a Kramers doublet
from partly filled t2g orbitals [23,25], as in Na2IrO3, effective

S = 1/2 pseudospins stand for local, spin-orbital entangled
t2g states which form orbital moments [29]. Both Kitaev
and Heisenberg interactions emerge from the spin and orbital
coupling on the honeycomb lattice of iridium ions and form the
Kitaev-Heisenberg (KH) model [23]. Experimental observa-
tions revealed zigzag (ZZ) magnetic order in Na2IrO3 [30–32];
it may be explained within the KH model with next-nearest
neighbor (NNN) J2 and third NN (3NN) J3 AF interac-
tions [25,26]. The phase diagram of the frustrated Heisenberg
J1-J2-J3 AF model [33,34] includes the Néel AF, ZZ, and also
stripy (ST) phase. These phases survive when more general
spin interactions with symmetric off-diagonal exchange are
considered [35].

Doping the KSL is particularly exciting as the ground
state is spin disordered and it is unclear whether QPs would
form [36]. Moreover in the KSL interactions could emerge, that
may lead to unexpected forms of superconductivity. Indeed,
slave-boson studies found here p-wave superconductivity
at intermediate doping [37–40], whereas Fermi liquid was
claimed at light doping [41]. An important first step to explore
hole doping is, however, the study of single-hole motion and
the existence of QPs. So far, spin-charge separation was shown
for the kagome lattice, being a prototype of a spin liquid, while
small QP peaks were found at some momenta in a frustrated
checkerboard lattice [42]. The t-J -like KH model provides
here a unique opportunity to investigate hole propagation
in quite different magnetic phases emerging from frustrated
interactions. We note here that in the Kitaev limit the dominant
spin correlations are extremely short ranged, which enhances
the relative precision of finite size calculations in comparison
with Heisenberg antiferromagnets on the square or honeycomb
lattice [43].
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The purpose of this paper is (i) to investigate the evolution
of the spectral properties in the KH model under increasing
frustration of magnetic interactions, (ii) to recognize the QP
behavior in various magnetic phases of the frustrated KH
model, and (iii) to establish whether the disordered KSL
indeed realizes a paradigm of a Fermi liquid at light doping,
as suggested in Ref. [41]. In our study, we employ exact
diagonalization (ED) of finite periodic clusters, which has the
important advantage that no approximations have to be made.
This is particularly important as the analytical theory of hole
motion in the KH model is notoriously difficult and largely
unexplored. The possible problems with the ED approach
are finite size effects and the difficulty to extrapolate to the
thermodynamic limit (TL). As important results, we present
the spectral functions of the different ordered phases and
their respective QP features. Moreover, we report a totally
incoherent spectral weight distribution for a hole moving in
the KSL phase in the strong-coupling regime, i.e., relevant for
the iridate systems. The absence of QPs in this case for finite
systems clearly suggests that also in the TL there are no QPs at
strong coupling. For this reason we conclude that then a dilute
gas of holes (that are individually no QPs) will not turn into a
Fermi liquid.

The paper is organized as follows. In the Sec. II we outline
the KH model and discuss the calculation of various correlation
functions that are used to determine the phase diagram of
the KH model. Section III deals with the motion of holes
in the ordered phases of the model and discusses the different
propagators and spectral functions used. In Sec. IV we address
the hole motion in the KSL and analyze the spectral weight
distribution. The latter is discussed in the intermediate and
strong-coupling limit. Moreover, the dynamic spin-structure
factor is analyzed for the KSL for both the Kitaev and the KH
model in order to explore the different scattering channels for
holes. Results are summarized in Sec. V.

II. THE KITAEV-HEISENBERG MODEL

A. Frustrated spin interactions

We consider the following t-J -like KH model (t > 0), on
the honeycomb lattice [Fig. 1(a)]:

HtJ ≡ t
∑
〈ij〉σ

c
†
iσ cjσ + JK

∑
〈ij〉‖γ

S
γ

i S
γ

j + J1

∑
〈ij〉

�Si · �Sj

+ (1 − α)

⎧⎨
⎩J2

∑
{ij}∈NNN

�Si · �Sj + J3

∑
{ij}∈3NN

�Si · �Sj

⎫⎬
⎭ .

(1)

It consists of the kinetic energy term ∝t of projected fermions
with flavor σ [13,37,38] which move in the restricted space
without double occupancies as a result of large on-site
Coulomb repulsion U . The spins S = 1/2 are defined in terms
of fermionic creation (annihilation) operators c

†
iσ (ciσ ) with

flavor σ at site i,

S
γ

i ≡ 1
2 c

†
iσ τ

γ

σσ ′ciσ ′ , (2)

where τ
γ

σσ ′ are Pauli matrices, γ = {x,y,z}. We emphasize
that already the Kitaev terms ∝JK with different Ising spin
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FIG. 1. (Color online) (a) Periodic cluster of the honeycomb
lattice (solid and dashed bonds) with N = 24 sites and the elementary
translations �e1(2) that connect atoms A within one sublattice, i.e.,
connect unit cells consisting of one atom A and one B each.
Heisenberg couplings between NN (J1), NNN (J2), and 3NN (J3) in
HtJ (1) are indicated by solid and dashed lines; Kitaev couplings JK

involve a single spin component for each bond direction, γ ∈ {x,y,z}.
(b) First BZ with high-symmetry Mγ and Kγ points (in the absence
of symmetry breaking these points are equivalent to one another).

interactions that depend on bond direction introduce strong
spin frustration in Eq. (1). In the following we shall assume
ferromagnetic (FM) Kitaev (JK < 0) and AF Heisenberg
(J1 > 0) exchange,

JK ≡ −2Jα, J1 ≡ J (1 − α). (3)

Here J is the energy unit and α ∈ [0,1] is a parameter that
interpolates between the Heisenberg and Kitaev exchange
couplings for NN spins S = 1/2. The model Eq. (1) includes
NNN ∝ J2 and 3NN ∝ J3 AF terms as well.

B. Exact diagonalization and phase diagram

We use ED within the Lanczos algorithm for a periodic
cluster of N = 24 sites which accommodates all point group
symmetries of the infinite lattice. The momenta correspond-
ing to allowed symmetry representations are presented in
the first Brillouin zone (BZ) in Fig. 1(b). We introduce
Mz = (0,2π/

√
3), Mx/y = (π, ± π/

√
3), and ±Pγ , where

Mγ ⊥ Pγ and 2Pγ ≡ Kγ . Note that in the absence of a
symmetry-breaking field, Kz and −Ky are identical and only
two distinct representations at the BZ corner exist, ±Kz.

In the present ED approach of finite systems there is no
spontaneous symmetry breaking, and the spin components x,
y, and z are equivalent. The intrinsic spin-order parameter
S� in the ground state can be determined by identifying and
calculating the respective correlation functions that reflect the
emerging long-range order [44,45],

S2
� ≡ 12

N2

N/2∑
i,j=1

ei�k· �Rij
〈(
Sz

iA ± Sz
iB

)(
Sz

jA ± Sz
jB

)〉
, (4)

for each phase �, where 〈· · · 〉 ≡ 〈0| · · · |0〉 is the average over
the ground state |0〉. In this definition we select the “−” sign
for the spin components Sz

jB for the Néel AF phase and the

“+” sign for the staggered and ZZ phase, �k = � for the Néel
(� = AF), �k = Mz for the ST (� = ST), and either �k = Mx

or �k = My for the ZZ (� = ZZ) phase (these points are
equivalent in this case). Here i and j label unit cells [Fig. 1(a)],
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FIG. 2. (Color online) (a) Order parameters S� (4) representing
the Néel (� = AF), the ZZ (� = ZZ) phase and the Kitaev invariant
L (5) obtained for J2 = 0 and J3 = 0.4J . (b) Phase diagram of the
KH model Eq. (1) in the (α,J3/J ) plane (points) for J2 = 0, with AF,
ST, ZZ, and KSL phases. The insets show types of magnetic order
(arrows) or disorder (circles).

and �Rij = �ri − �rj . The order parameter S� (4) is large when
spin correlations are close to the ones expected for a magnetic
phase �; in all other phases it is negligible. Two examples are
shown in Fig. 2(a): (i) For α < 0.5 one finds largeSAF 
 1, and
(ii) for 0.5 < α < 0.85 this order parameter drops to SAF � 1
but SZZ increases to SZZ > 0.6. Indeed, a transition between
the AF and ZZ phases is found here [see the dotted line in
Fig. 2(b)], while the ST phase is unstable here and SST is
small.

In the KSL phase spin correlations 〈Sγ

i S
γ

j 〉 vanish beyond
NN spins at α = 1 [21,28,46], and further neighbor corre-
lations remain small in the Kitaev liquid regime at α �= 1
[46]. This results in S� � 1 for all conventional spin-order
parameters [47]. To identify the KSL we introduce here an
average of the Kitaev invariant [21] on a single hexagon C6,

L ≡ 26

〈∏
i∈C6

S
γ

i

〉
, (5)

where γ labels the spin component Sγ

i interacting with a spin at
site j along the outgoing bond 〈ij 〉, with j /∈ C6, via JKS

γ

i S
γ

j .
One finds that L → 1 when the ground state of the Kitaev
model is approached at α → 1; see Fig. 2(a).

The phase diagram in the J3 versus α plane is displayed
in Fig. 2(b). We recognize the AF phase at small α, the
intermediate ST phase, and at large α > 0.8 the Kitaev liquid
phase. At large further neighbor exchange interaction J3 the ZZ
phase emerges in the intermediate range of α. Theses phases
were identified by the order parameters discussed above, while
the phase boundaries were determined by a different powerful
tool, namely the study of the fidelity susceptibility [48,49],
i.e., the changing rate of the overlap between ground states at
adjacent points. Note that the AF ↔ ZZ transition at α = 0.5
follows from symmetry arguments and, as such, is independent
of the cluster size.

III. CARRIER PROPAGATION IN QUANTUM
ANTIFERROMAGNETIC PHASES

In the following we analyze the spectral properties of a hole
inserted into the ordered ground state |0〉, being the quantum
Néel AF, ST, or ZZ phase. The KSL phase is explored in detail
in the subsequent section. We use here the standard numerical
Lanczos algorithm, which spans efficiently the relevant Krylov
space and yields spectral functions in form of a continued
fraction [2,50]. The calculation begins with the determination
of the ground state |0〉 and the subsequent addition of a hole,
that is, the annihilation of an electron as in a photoemission
experiment.

Therefore, we consider in the following the hole creation
operator, c�k↑, in form of a plane wave that includes all sites
of the honeycomb lattice equally and, alternatively, a hole
creation operator, d�k↑, where holes are created only on one
sublattice [11], namely sublattice A,

c�k↑ = 1√
N

∑
i

ei�k·�ri ci↑, d�k↑ ≡
√

2

N

∑
i∈A

ei�k·�ri ci↑. (6)

When a hole is created in the ground state |0〉, the spectral
functions,

Ac(�k,ω) = 1

π
Im〈0|c†�k↑

1

ω − iη + E0(N ) −HtJ

c�k↑|0〉, (7)

Ad (�k,ω) = 1

π
Im〈0|d†

�k↑
1

ω − iη + E0(N ) −HtJ

d�k↑|0〉, (8)

correspond to the physical Green’s function Gc(�k,ω) that
is measured in ARPES experiments (7) or to the sublattice
Green’s function Gd (�k,ω) (8). In the definition of the spectral
functions, Eqs. (7) and (8), excitation energies are measured
relative to the ground-state energy E0(N ) of a Mott insulator
with N electrons.

In all phases the spectra Ac(�k,ω) and Ad (�k,ω) shown in
Figs. 3 and 4, respectively, have the total width W 
 6t as
for free hole motion on the honeycomb lattice. For small
α < 0.4 the model (1) is weakly frustrated and |0〉 is the
quantum AF Néel state; see Fig. 2(b). Taking t/J = 5, a value
representative for strong coupling (t > J ) [52], i.e., when
the kinetic energy of a hole is larger than the energy of a
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TROUSSELET, HORSCH, OLEŚ, AND YOU PHYSICAL REVIEW B 90, 024404 (2014)

0

0.2

0.4

0

0.2

0.4

A
c(k

,ω
)

k=Kγ
k=Mγ

0

0.2

0.4

k=Pγ
k=Γ

-2 0 2 4ω/t
0

0.2

0.4

(a) α=0.2

(d) α=0.9

(b) α=0.6

AF

ST

KSL

(c) α=0.6, J
3
=0.4J ZZ

FIG. 3. (Color online) Spectral function Ac(�k,ω) (7) for one-hole
excitations [51] at strong coupling, t = 5J , obtained by ED at four
distinct momenta �k (solid, dashed, dash-dotted, and dotted lines) for
(a) the Néel phase at α = 0.2, (b),(c) ST and ZZ phases at α = 0.6,
and (d) the KSL phase at α = 0.9. Parameters: J2 = 0, η = 0.1t , and
J3 = 0, except in (c), where J3 = 0.4J .

magnetic bond, one finds that the spectral function Ac(�k,ω)
has a QP at low energy and its spectral weight is large at
the Kγ and much weaker at the � point; see Fig. 3(a). In this
phase no qualitative differences between Ac(�k,ω) and Ad (�k,ω)
functions are observed [see Figs. 3(a) and 4(a)], except near
ω = 0 for the � point.

The sublattice spectral function, Ad (�k,ω), where holes are
injected/removed on the same sublattice, reveals large spectral
weight at low energy. For the ST and ZZ phases the low-
energy features in Ad (�k,ω) can indeed be identified as QPs
accompanied by incoherent spectral weight; they are more
pronounced in the ZZ phase; cf. Figs. 4(b) and 4(c). Yet, the
QP features are suppressed at the � and P points in these
phases in the physical spectral function Ac(�k,ω); cf. Figs. 3(b)
and 3(c). As shown before [13], this is consistent with the
observed absence of QPs in ARPES for Na2IrO3 [12].

The momentum �k dependence of the low-energy QPs shown
in Fig. 5 reveals the strong dependence of hole dispersion on
the magnetic order. As in cuprates [9], the QP dispersion in
the Néel AF phase is narrowed from the free (unconstrained)
fermionic bandwidth ∝6t by strong correlations and is deter-
mined by the magnetic exchange ∝J1. The dispersion has a
minimum (maximum) at the K (�) point and is further reduced
when frustration of magnetic exchange increases from α = 0
to α = 0.2 [Fig. 5(a)]. At finite J3 the hole energy decreases at
the P point, but otherwise the dispersions at α = 0.2 are quite
similar; cf. Figs. 5(a) and 5(b).
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FIG. 4. (Color online) Spectral function Ad (�k,ω) (8) for a hole
excitation created on one sublattice [51]. The method, lines, and
parameters are the same as in Fig. 3.

In contrast, the dispersion is absent in the ST phase [see
Fig. 5(a)], as coherent hole propagation is hindered here due
to the alternating AF and FM bonds. Instead, for FM chains in
the ZZ phase the dispersion appears reversed with respect to
that found for the Néel phase; now a minimum (maximum) is
at the � (K) point. While this dispersion decreases from weak
(t = J/2) to strong (t = 5J ) coupling, its shape remains the
same [dashed line in Fig. 5(b)].

At first glance, one might conclude from the spectral
functions for the KSL, displayed in Figs. 3(d) and 4(d), that
hole propagation in the KSL is similar to that in the ZZ
phase [Figs. 5(a) and 5(b)]. In this case, the lowest excitation
energy is found at the � point. Again, one finds a distinct
peak in Ad (�,ω) which is absent in Ac(�,ω), suggesting also
here a hidden QP. As we see below, the fine structure of the
low-energy peaks in the spectral function shown in Fig. 4(d)
does not represent well-defined QPs in the case of the KSL.

IV. CARRIER PROPAGATION IN THE KITAEV
SPIN-LIQUID PHASE

A. Spectral weight distribution

Next we show that the KSL phase is manifestly different
from all the ordered phases discussed so far. We address the
nature of low-energy states by analyzing first the intermediate
coupling regime of t/J = 0.25. Again one finds distinct
low-energy peaks in Ad (�,ω) [53] [see Fig. 6(b)], missing
in Ac(�k,ω) [Fig. 6(a)]. In contrast, both spectral functions are
rigorously identical at the K point; cf. Ac(K,ω) and Ad (K,ω)
in Figs. 6(a) and 6(b). We note that for the honeycomb lattice
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FIG. 5. (Color online) (a) Dispersion of lowest single-hole en-
ergy obtained by ED for the KH model Eq. (1) for different phases
at strong coupling t/J = 5, J2 = 0, and increasing α. (b) The size of
the dispersion in the ZZ phase at J3 = 0.5J decreases from weak to
strong coupling, t = J/2 and 5J , respectively, with similar shape
when rescaled (dashed line). Hole energies are respective to the
ground-state energy E0(N ).

K corresponds to the Dirac point which is the degeneracy point
of noninteracting electrons [15].

A surprise comes when the fine structure of the sublattice
spectral function is analyzed in absence of spectral broadening
[at η = 0 in Eq. (8)],

A
(0)
d (�k,ω) = lim

η→0
Ad (�k,ω), (9)

which may be rewritten using spectral weights:

A
(0)
d (�k,ω) =

∑
n

αd (�k,ωn)δ(ω − ωn). (10)

In the following we see the advantage of studying the single-
particle propagation directly in terms of the spectral weight
distribution,

αd (�k,ωn) = |〈ψ�k,n(N − 1)|d�k,↑|0〉|2, (11)

at excitation energies

ωn = E�k,n(N − 1) − E0(N ), (12)

and |ψ�k,n(N − 1)〉 is an excited state in the space with one

extra hole and total momentum �k that contributes with a finite
spectral weight. We stress that αd (�k,ωn) is in mathematical
terms a distribution and not a function, although in the TL it
may contain parts that can be represented by continuous curves
in some cases.
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FIG. 6. (Color online) Spectral functions for the KSL phase
obtained by ED in the intermediate coupling regime t/J = 0.25
at four nonequivalent momenta �k (solid, dashed, dash-dotted, and
dotted lines) with η = 0.1t : (a) full spectral function Ac(�k,ω), and
(b) sublattice function Ad (�k,ω). Panel (c) shows the spectral weights
αd (�k,ω) (11) (symbols) larger than 3×10−3 at low energy (shaded)
for different �k values; dashed lines are guides for the eye. Parameters:
α = 0.9, J2 = J3 = 0.

When looking at the spectral weight distribution in Fig. 6(c),
we recognize a robust QP, that is, a well-separated bound
state at lowest energy, only at the � point with large spectral
weight αd (�,ω0) 
 0.45. At all other �k points no bound states
exist but instead rather continuous distributions of weights
αd (�k,ωn) are found in the range of the lowest eigenvalues
ωn (12). From the spectral weight distribution displayed in
Fig. 6(c) it is clear that, for example, at the P point the spectra
are represented by a superposition of several many-body states
in the (N − 1)-particle sector with slightly different energies
and there is no dominant pole that could be considered as a
QP state. On the other hand, simply by looking at the spectral
function Ad (�k,ω) in Fig. 6(b) one may easily overlook the
breakdown of the QP picture. We stress that in all cases there
is substantial incoherent spectral weight at higher energies that
extends to the upper edge of the spectrum at 6t .

To understand this striking difference of the character of the
spectra at low energy at � and P,M,K , respectively, we need
to investigate the spin excitations in the Kitaev liquid regime.
Finally, it is the scattering of carriers from spin excitations that
determines whether they can propagate as QPs or whether they
are completely overdamped.

B. Spin excitations in Kitaev spin liquid

Our aim here is to explore the spin excitations of the KH
model in the KSL regime. However, our discussion will be
more transparent when we first focus on the pure Kitaev model
at α = 1 and subsequently analyze by numerical simulation the
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changes of the spin-structure factor for the KH case in the KSL
regime (0.8 < α < 1.0).

We employ here the usual representation of the Kitaev
model in terms of σ

γ

i = 2S
γ

i spin operators

HK = −1

2
J

∑
〈ij〉‖γ

σ
γ

i σ
γ

j , (13)

where JK = −2Jα and α = 1, according to Eq. (1). Spin
excitations are most easily understood by transforming
the Kitaev model into the Majorana representation [21].
Kitaev introduced a representation for the spin algebra
[σa

i ,σ b
j ] = iεabcσ

c
i δij in terms of four Majorana operators η

γ

i ,
γ = 0,x,y,z, per lattice site which obey the anticommutation
relations, {ηγ ,ηγ ′ } = 2δγ,γ ′ .

Here each spin operator component is expressed by a
product of two Majorana fermions,

σα
i = iη0

i η
α
i , α = x,y,z, (14)

where ηα
i is associated with the bond direction and η0

i = ηi ,
with the respective vertex (at site i). We suppress the upper
index in η0

i further on. Using this representation one can write
the Hamiltonian as follows,

HK = −1

2
J

∑
〈ij〉γ

iηiu
γ

〈ij〉ηj , (15)

where uα
〈ij〉 are the bond operators,

uα
〈ij〉 = iηa

i η
α
j . (16)

To take care of the fermionic property uα
〈ij〉 = −uα

〈ji〉 we adopt a
notation where i(j ) is on the A(B) sublattice, respectively. The
important point is now that the so-defined bond operators (16)
commute with the Hamiltonian,[

HK,uα
〈ij〉

] = 0. (17)

Hence, they are conserved quantities and due to their definition
as products of two Majoranas [see Eq. (16)], these operators
can only take the values uα

〈ij〉 = ±1.
In the ground-state sector all uα

〈ij〉 have the same sign on
all bonds, either +1 or −1. A change of a bond variable
leads to a vortex pair excitation with a gap �P 
 0.26|JK |.
In addition, there is a second class of spin excitations which
result from the motion of the η Majorana particles described
by the Hamiltonian in Eq. (15). Here we concentrate on the
symmetric case, with equal exchange constants along three
directions in the honeycomb lattice, Jx = Jy = Jz; in this case,
the Majorana excitations are gapless [21].

Next we investigate the dynamic spin-structure factor in
the Kitaev limit α → 1 by ED and explore the changes in the
Kitaev-liquid regime of the KH model for α �= 1, which cannot
be solved analytically. This is demonstrated by a calculation
of the dynamic spin-structure factor S+−(�k,ω) defined as [54]

S+−(�k,ω) = 1

N

∑
ν

|〈ν|S+
�k |0〉|2δ(ω − Eν + E0), (18)

where S
γ

�k = ∑
�r ei�k·�rSγ

�r , and γ = +,− denotes spin raising
(lowering) operators, respectively. Here |0〉 and |ν〉 are the
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FIG. 7. (Color online) Dynamic spin-structure factor S+−(�k,ω)
(18) for the undoped KSL in the case of the KH model Eq. (1) at four
distinct momenta, for (a) α = 0.9 and (b) α = 0.99. The curves are
obtained by ED of a 24-site cluster with periodic boundary conditions
and are smoothened using a Lorentzian broadening η = 0.05J .

ground and excited states, with energies E0 and Eν , respec-
tively. The spin quantization axis is chosen parallel to the zth
spin axis of the Kitaev term for convenience.

Figure 7(a) shows S(�k,ω) for the KH model Eq. (1) in
the KSL regime at α = 0.9 for four different �k points: �, K ,
M , and P . The numerical calculations were performed for a
24-site cluster with periodic boundary conditions.

The main weight of the spin-structure factor is concentrated
between the vortex-type spin gap at �s ∼ 0.4J and ω ∼ 1.2J .
We observe a moderate momentum dependence with the vortex
spin gap at �, �s ∼ 0.46J , slightly larger than at K , M , and
P , where we find �s ∼ 0.40J . Moreover, we can conclude
that the dispersion of the gap and of the peak structures is due
to the Heisenberg terms in the Hamiltonian and disappears
when one approaches the Kitaev limit [55], as also seen
in Fig. 7(b).

Thus, we find here that the main contributions to the spin
response as measured by dynamic spin-structure factor (18)
come from the gapped vortex excitations. Furthermore, the
classification of spin excitations obtained for the pure Kitaev
model as well as the spin gap due to vortex excitations appears
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still relevant for the KSL phase of the KH model Eq. (1) at
α = 0.9.

C. Hole motion in the Kitaev spin liquid: Intermediate coupling

Our central argument why QPs at finite momentum are
destroyed at intermediate coupling, as shown in Fig. 6(c), is
outlined next. Our explanation rests on the fact that there are
two distinct types of elementary spin excitations from which
the holes can scatter in the KSL. These excitations can be
classified according to the exact solution given by Kitaev [21]
as (i) gapped vortex spin excitations with minimal gap �s and
(ii) gapless Majorana excitations.

We consider as intermediate coupling regime the range
0.1J < t < J , where the kinetic energy of holes is comparable
with the magnetic energy on the bonds and not much larger as
in the strong coupling regime, J � t . An important aspect of
the spectral functions at intermediate coupling, as in the case
of Fig. 6(c), which was calculated for J = 4t , is the large size
of the spin gap, � 
 0.4J 
 1.6t , in units of the t scale. As
the excitation energies ωn of the low-energy states of holes at
P , M , and K relative to the bottom of the band at the � point
ω0(�) are much smaller than the vortex spin gap � 
 1.6t

at J = 4t , no decay via vortex excitations [21] can occur.
Therefore, we conclude that the destruction of QPs is due to
the scattering of gapless Majorana fermion excitations and that
Fig. 6(c) has to be seen as a fingerprint of fractionalization of
electrons into holons and gapless Majorana fermions of the
Kitaev model [21]. Because of the dominant role of scattering
from gapless spin excitations we expect that in larger clusters
with a denser �k mesh, hole pockets near the � point are not
protected against strong scattering, and in consequence the
KSL does not turn into a Fermi liquid at low doping.

Before moving to the strong-coupling regime t � J we
highlight the striking difference of the spectral weight distribu-
tion αd (�k,ωn) (11) at low energy in the ZZ and the KSL phases,
respectively, at t = 0.25J . In Fig. 8(a) the spectral weight
distribution αd (�k,ωn) for the ZZ phase shows well-defined QP
bound states. Although the spectral weights of these QPs are
significantly reduced, the bound states are well separated from
the continuum (of incoherent states) at higher energy, except
for �k = K where this binding energy is much weaker. In the
KSL phase Fig. 8(b), on the other hand, a well-defined bound
state is seen only at the � point. Because of the size of the
vortex gap �s 
 1.6t the absence of QPs in Fig. 8(b) at P ,
M , and K is a smoking gun for the important role played by
scattering by gapless Majorana excitations. This is consistent
with the spectral shape of α(�k,ω), which is reminiscent of a
continuum, that may result from a convolution of holons and
gapless Majorana fermions.

D. Hole motion in the Kitaev spin liquid: Strong coupling

We turn now to the strong-coupling regime. In Fig. 8(c)
the strong-coupling case, t/J = 5, relevant for iridates [12], is
displayed. In this case the vortex spin gap becomes very small
(in units of t), i.e., �s = 0.08t . Thus, the strong-coupling result
for the spectral weight distribution in Fig. 8(c) highlights the
effect of the additional vortex excitations which form a new
decay channel and damp the excitations at the K , M , and P
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KSL

FIG. 8. (Color online) Spectral weight distribution αd (k,ω), as
obtained for (a) the ZZ phase and (b) the KSL phase, both
at intermediate coupling t = 0.25J , and (c) the KSL phase at
strong coupling t = 5J . Parameters: (a) α = 0.4 and J3 = 0.5;
(b), (c) α = 0.9 and J3 = 0 in Eq. (1).

points even further, as compared to the result at intermediate
coupling case at t = J/4 [Fig. 8(b)] where the vortex gap,
�s = 0.4J = 1.6t , is 20 times larger.

Furthermore, it may be instructive to go back to the spectral
function Ad (k,ω) in Fig. 4(d), which basically contains the
same information for the strong-coupling case (t = 5J ) of
the KSL as the spectral weight distribution shown in Fig. 8(c).
The fine structure seen in αd (�k,ωn) can only be resolved
in Ad (k,ω) when the resolution parameter η is taken small
enough. For ARPES experiments, where actually Ac(k,ω) is
measured, this implies that a sufficiently high momentum and
energy resolution is required.

We conclude, that the peak at �, which appeared as a
separate bound state at intermediate coupling in Fig. 8(b),
appears now at strong coupling [see Fig. 8(c)], rather as
the edge of the continuum than as an isolated bound state.
Moreover, when a single hole does not propagate as a QP, then
a dilute gas of holes will not form a Fermi liquid. Therefore,
we stress that the absence of a well-defined separate bound
state is a new qualitative feature which speaks against QPs
and Fermi liquid behavior at low doping, and here, i.e., for the
strong coupling case, the argument emerges from a diagnosis
at the � point itself.

V. SUMMARY

We have shown that hole propagation is modified in a
remarkable way when increasing Kitaev interactions drive the
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system from the Néel order via other ordered antiferromagnetic
(AF) phases towards the Kitaev spin liquid (KSL). Quasipar-
ticles (QPs) are found in the Néel phase, whereas coherent
hole propagation is hindered in stripe and zigzag phases,
where hidden QPs with weak dispersion result from coexisting
ferromagnetic and AF bonds. As the most unexpected result, in
the Kitaev liquid phase we have found unprecedented spectral
weight distribution at low energy that signals the absence of
QPs, both at intermediate and strong coupling. Thus, it appears
clearly that carrier motion in the lightly doped Kitaev liquid is
non-Fermi-liquid-like.

The above conclusion follows from the short-range nature
of spin correlations in the KSL [28]. Unlike in a quantum
antiferromagnet on a square [9] or honeycomb [11] lattice
where spin-flip processes couple to a moving hole and
generate a new energy scale for coherent hole propaga-
tion, the KSL phase is characterized by Ising-like nearest
neighbor spin correlations of one spin component. Such
correlations are insufficient to generate coherent hole prop-
agation. They are well captured by the present cluster size
of N = 24 sites, and qualitative changes of the described
scenario are therefore unexpected when the cluster size is
increased.

Summarizing, we have given clear arguments that shed
serious doubts on the claim from a slave-boson approximation,

namely, that the low doped KSL phase is a Fermi liquid [41].
The first of these arguments rests on the exact solution for
the spin excitations in the Kitaev model in the intermediate
coupling regime, and on our finding that gapless Majorana
excitations are responsible for the absence of QPs away from
the � point. From the gaplessness we conclude that also states
in the closer vicinity of � are not protected.

Our second argument emerges in the strong-coupling case
from the result for the spectral distribution αd (�k,ω) at the �

point itself, which has no similarity to a QP in this case but
appears rather as the edge of a continuum. We consider this
as evidence that at strong coupling there are no QPs in the
single-hole case near the � point, and from this finding we can
safely conclude that Fermi liquid behavior is absent in the low
doping regime.

ACKNOWLEDGMENTS

We thank Bruce Normand for valuable advice, as well
as Mona Berciu, George Jackeli, and Roser Valentı́ for
insightful discussions. A.M.O. acknowledges support by the
Polish National Science Center (NCN) under Project No.
2012/04/A/ST3/00331. W.-L.Y. acknowledges support by the
Natural Science Foundation of Jiangsu Province of China
under Grant No. BK20141190.

[1] Elbio Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[2] K. J. von Szczepanski, P. Horsch, W. Stephan, and M. Ziegler,

Phys. Rev. B 41, 2017 (1990).
[3] V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev. B 56,

6120 (1997).
[4] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78,

17 (2006); M. Ogata and H. Fukuyama, Rep. Prog. Phys. 71,
036501 (2008).

[5] P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); Z. Y. Weng,
D. N. Sheng, Y.-C. Chen, and C. S. Ting, Phys. Rev. B 55, 3894
(1997).

[6] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 1324 (1970).
[7] S. A. Trugman, Phys. Rev. B 37, 1597 (1988); C. D. Batista and

G. Ortiz, Phys. Rev. Lett. 85, 4755 (2000).
[8] M. Daghofer, K. Wohlfeld, A. M. Oleś, E. Arrigoni, and
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N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009).

[28] G. Baskaran, S. Mandal, and R. Shankar, Phys. Rev. Lett. 98,
247201 (2007); S. R. Hassan, P. V. Sriluckshmy, S. K. Goyal,
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