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Determination of the interstitial electron density in liquid metals: Basic quantity to calculate the
ion collective-mode velocity and related properties
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Considering that various investigations identified a correlation between the interstitial electron density in
crystalline metals and some ground-state properties, including the compressibility, we propose a procedure to
estimate the interstitial electron density in liquid metals starting from the experimental static structure factor.
From the calculated electron density, starting from the standard approximation, which describes a liquid metal as
made up of a homogeneous classic ion plasma with Coulomb interaction and a homogeneous interacting electron
gas, we determine the ion collective mode velocity. The so-derived collective mode velocity is compared to the
experimental data and a coherent view in different metallic systems at the melting point is obtained. Some guess
about the collective mode damping is also presented because of the connection to the local static fluctuations of
the interstitial electron density.
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I. INTRODUCTION

The study of the high-frequency ion dynamics of liquid met-
als has been the subject of several theoretical and experimental
investigations because of its basic interest and the possibility of
deriving valuable information on the electron-electron and ion-
electron interactions [1–14]. Despite the copious information
that is now available, it is not yet clear how to correlate the
experimental results and the theoretical approaches, even if
the electron-electron interaction can be investigated as the
ions act like a (weak) probe in the electron fluid. Indeed, the
propagation of well defined collective ion modes in liquid
metals can be described using a two component model of the
system, a model simple enough for analytic approximations.
The relevance of the interacting electron fluid in liquid metals
is well enhanced by the surprising case of lithium ammonia
solutions, a very low electron density system that shows quite
an anomalous collective mode dispersion curve [11,12] and
damping [13]. Although the two-component model of the
liquid metal is an appealing one, a rather basic aspect has been
left out. The electron fluid is modeled using a homogeneous
electron gas the density of which cannot be easily determined
from the known property of the system apart from the case
of alkali metals, where it is safely assumed that the electron
gas is generated by uniformly distributing one electron per
atom. In general, the possibility of a well defined comparison
of different systems is limited as there is no straightforward
way to determine the electron gas density and the proper ion
charge. In this paper, we propose an approach that can be used
for a uniform description of different liquid metals by using
some experimental information on the structure of the liquid
to infer the proper electron gas density.

Long time ago, it was recognized that the compressibility
of crystalline metallic elements follows an empiric trend as
a function of the interstitial electron density [15] similar to
that of the compressibility of the noninteracting homogeneous
electron gas [16]. This empiric observation is almost equivalent
at stating that the compressibility of solid metals is dominated

by the compressibility of the interstitial electrons treated as
noninteracting.

However, one has to notice that real systems are stable
even at rather low interstitial electron density like that of
Cs, where the interstitial electron density is smaller than the
critical density nc where the compressibility of the interacting
electron gas becomes negative. This observation, as expected,
shows that the shape of the ion potential plays an important
role in determining the compressibility of solid metals. More
recently, it has been shown that the density of interstitial
electrons is relevant in determining various properties of a
metal [17,18] in the crystalline phase. These observations are
of interest in crystalline systems in order to understand also
on a semiquantitative ground the origin of the trends observed
in the solid state, once the electron gas and the ionic potential
are treated with the appropriate approximation. On the other
hand, thanks to the lattice periodicity, in a crystalline system,
one can efficiently apply the density functional theory (DFT)
based approximations, used for first-principles derivations of
various properties, including fine details like lattice dynamics
[19]. Therefore the interstitial electron density is no more
of major practical importance in crystalline solids. On the
contrary, in disordered systems, the direct application of the
DFT approach is difficult and limited by the size of the system
that can be efficiently treated. In addition, the identification of
general trends is not straightforward and even the behavior of
simple quantities is not well understood.

At present, ground to a two-component approach is given
by the experimental evidence that an almost uniform electron
gas affects the ion-ion interaction in various liquid metals
[8–10], which are prototypes of simple disordered systems.
Accordingly, these liquid metals can be approximated by a
strongly interacting ion plasma embedded into an interacting
electron gas that acts as a linear screening medium for the bare
ion-ion interaction [20]. As is well known, this point of view
is an old one and it has been the basis of several studies of
the phonon dispersion relations in crystals [5,19,21], while in
disordered systems, it has been used in the seminal work of
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Bardeen and Pines [3] and several other investigations [6,7,22],
including the standard textbooks by Pines and March [1,2].

With reference to the two-component approximation for
the liquid metal, the two components interact with each
other through an appropriate ion-electron potential. When this
two-component system is treated in the weak ion-electron
interaction limit, it is found that it sustains collective ion
density fluctuation modes that propagate with a velocity
given by the well-known Bohm-Staver formula [2], cBS =
(m/M)1/2vF , m and M being the electron and ion masses,
respectively, and vF the Fermi velocity. This approach has
some validity in the long-wavelength limit but at high enough
frequency as compared to the characteristic relaxation time of
the system.

In this paper, we develop a method appropriate to calculate
the proper electron density and ion charge to be used to apply
the Bhom-Staver formula, properly extended according to the
discussion reported in Refs. [2,9,12], to calculate the collective
mode velocity of different liquid metals. We introduce a
procedure that can be applied in systems having any electron
configuration compatible to the use of the two-component
approximation. In general, such an approximation can be
expected to be correct in many metals apart from those where
d-like states are occupied.

In the following, we present a calculation that is performed
starting from the known mass density of the system, the
total number of electrons per atom, and the experimentally
determined microscopic structure, that is, the static structure
factor. No other input information is required and the procedure
is successfully applied to the case of liquid alkali metals
and polyvalent metals. We discuss the ion contribution to
the velocity of the collective modes, using an appropriate
approximation scheme for the strongly interacting ion plasma
[23] and an accurate approach for the response of the electron
fluid [24]. By comparing the present description with the
experimental findings, we can extract some general view on
the collective mode propagation in liquid metals and some
validation of both electron gas and ion plasma theoretical
knowledge.

II. CALCULATION OF THE ELECTRON GAS DENSITY

In this section, we present the protocol we propose to
determine the electron gas density from the experimental
structure of the liquid metals as described by the static structure
factor S(Q), which is the Fourier transform of the ion-ion
pair correlation function. We recall that the two-component
model is based on the uniform electron gas with no ions and
positive rigid background plus the ion plasma with a rigid
negative background used to make the system neutral. Then
the screened ion-electron interaction is introduced to describe
the ion density fluctuations [2,3]. In this way, the electron
density fluctuations due to the ions are introduced by the ion
potential screened by the electron gas.

To determine the proper electron gas density, we assume
that the effective electron density is equal to the average
electron density found in the interstitial region. The ion
charge is then derived from the system neutrality. Therefore
it is necessary to determine the configurationally averaged
electron density in the liquid system. In principle, in a liquid

elemental system, the electron density can be determined
by means of x-ray diffraction, however, in practical cases,
this approach is never used because an accurate experiment
implies a measurement extending up to very high momentum
transfer beyond any reasonable value. Moreover, this sort of
experiment is normally used to derive some information on
the local atomic arrangement. When x-ray diffraction is used,
the scattering factor deduced from atomic calculations [25]
is employed to derive an accurate static ion-ion structure
factor S(Q) from the diffracted intensity. Notice that this
approach is known to be correct as the static structure factor
S(Q) determined by means of x-ray diffraction is in general
agreement with that obtained by neutron scattering where the
ion-ion structure factor is directly determined. Therefore it is
reasonable to state that the actual electron density distribution
is well described from the static structure factor and the atomic
scattering factor.

The use of the calculated atomic scattering factor is rather
appropriate since the difference between the actual scattering
factor and that of the corresponding free atom is small as it is
well supported by the experiments performed in some crystals
where the scattering factor can be accurately measured. It is
seen that the crystal scattering factor differs from that of the
free atom by a small amount confined in the small momentum
region [25] only, so that the difference between the actual
electron density and that derived from the simple superposition
of free-atom electron density is spread out through the unit cell.

Accordingly, we study the electron density in a liquid
metal assuming that it can be approximated by a superposition
of free-atom electron densities using the atomic distribution
experimentally determined from the pair distribution function
g(r), which is proportional to the Fourier transform of the static
structure factor S(Q). Notice that this approach is formally
exact in the case of x-ray scattering and contains a small
approximation in the case of neutron scattering. Therefore the
configurationally averaged electron density 〈ρ(r)〉 centered
about a central atom is determined by making use of the pair
correlation functions determined from the experimental static
structure factor. We have

〈ρ(r)〉 = ρat(r) + n(i)
∫

g(|r − r′|) ρat(r
′) dr′, (1)

where n(i) is the ion density and ρat(r) is the (spherical)
free-atom electron density. Considering that 4πr2g(r) is the
probability density of finding an atom at distance r from an
atom located at the origin, after some algebra one obtains
the following equation that might be suitable for the actual
calculation:

〈ρ(r)〉 = ρat(r) + Zn(i) + 1

2π2r

∫
[S(Q) − 1]

× f (Q) Q sin(Qr) dQ, (2)

where Z is the atomic number. Equation (2) provides the aver-
age electron density at r , however, for a correct determination
of the proper electron gas density, we assume to use 〈ρ(r)〉
averaged over the interstitial region. To this purpose, starting
from Eq. (2), we determine the number of electrons ZR inside
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a sphere of radius R centered about the central atom. We have

ZR = �(R) Z n(i) + 2R

π

∫ ∞

0
dQf (Q) [S(Q) − 1] J (QR)

+ 2R

π

∫ ∞

0
dQf (Q) J (QR), (3)

where �(R) is the volume of the sphere of radius R and
the function J (x) is given by J (x) = [sin(x) − x cos(x)]/x.
Starting from Eq. (3), the average interstitial electron density
is determined from the following relationship:

〈ρgas〉 = Z − ZR̄

�i − �(R̄)
, (4)

where �i = 1/n(i) is the average ion volume and R̄ is the
average ion touching radius, which can be approximated by
the distance where 〈ρ(r)〉 is minimum.

In practical situations, Eqs. (2), (3), and (5) are not very
useful since the integral implies the knowledge of S(Q) in an
extremely wide range of Q, f (Q) being appreciably different
from zero up to very high momentum values, well beyond the
possibility of any realistic experiment. In addition, S(Q) − 1
is an oscillating function of Q and it is not possible to assume
that it is equal to zero when Q exceeds some maximum
value because such a procedure introduces relevant termination
errors. In order to avoid this problem, we make use of the fact
that in all atoms the electron density can be reasonably split
as the sum of two contributions: a core electron contribution,
which is sharply peaked around the atomic nucleus, and a
valence electron contribution, which is much more spread
out. This separation has not a solid formal ground but it is
empirically correct. It should be mentioned that the distinction
between core and valence states is used also to develop the
pseudopotential approximation [19,26], which is quite efficient
in many solid state calculations. Starting from this observation,
we can write the atomic scattering factor as the sum of the
two contributions belonging to the core states and the valence
states, respectively:

f (Q) = fc(Q) + fval(Q).

Inserting this relation into Eq. (2), we can derive the
following form for the central atom electron density in the
interstitial region where we assume the presence of a negligible
contribution coming from the core electrons of the central atom
and of all nearby atoms:

〈ρ(r)〉 = ρat(r) + Zn(i) + 1

2π2r

∫
[S(Q) − 1]

× fval(Q) Q sin(Qr) dQ. (5)

The last term does not contain the total scattering factor since
one can make use of the fact that no core electron can contribute
to the electron density at such large distance r from the central
atom, since this position has a distance that is similar or larger
than r from all the other atoms. This result follows from the
following formal relationship based on such an approximation:∫ ∞

0
[S(Q) − 1] fc(Q) sin(Qr) QdQ = −2π2 r Zcn

(i), (6)

where Zc is the number of core electrons and r is in the
interstitial region between the central atom and those being

nearest neighbors. Using Eqs. (5) and (6), one can write
the following equation, which is more useful for practical
applications since fval(Q) decays much faster than f (Q) on
increasing Q:

Z − ZR = Zval −
{
n(i)Zval�(R) + 2R

π

∫ ∞

0
dQ

× fval(Q) [S(Q) − 1] J (QR)

+ 2R

π

∫ ∞

0
dQfval(Q) J (QR)

}
. (7)

In order to evaluate the electron gas density using the above
equations, we have to determine first an appropriate valence
scattering factor. In principle, one could derive the valence
contribution from the one-electron wave functions. However,
we prefer an alternative and simpler procedure based on the
fact that it is possible to derive a good estimate of fval(Q) by
subtracting from f (Q) an approximate core electron scattering
factor. This choice is related to the fact that the best calculation
of the atomic scattering factor is that of Hubbell and Øverboø
[25,27], and it is not obvious how to deduce the corresponding
core contribution. We observe that the exact shape of the
core electron contribution is not relevant to the purpose of
determining the interstitial electron density, provided that the
corresponding charge is Zc. In other words, any sharply peaked
electron density function with total charge equal to Zc verifies
Eq. (6) so that Eq. (5) is also valid. Of course, it is important
also to use an approximation f a

c (Q) such that |f a
c (Q) − fc(Q)|

is negligible in the high-Q region where the static structure
factor is unknown. We found that an approximate core electron
scattering factor, having the correct behavior, can be obtained
from a properly rescaled electron density of the first noble gas
located in the periodic table before the atom we are consider-
ing. Therefore, in order to perform the calculation, we used a
valence electron scattering factor fval(Q) = f (Q) − fN (KQ),
fN (KQ) being the rescaled scattering factor of noble gas. The
scaling constant K can be derived by minimizing the average
value of |f (Q) − fN (KQ)| at high Q. We find that it is better
to use the present approximation instead of using the scattering
factor of some ionic state of the atom because the shape of the
electron distribution in the ion is deformed as compared to that
of the neutral atom. This is due to the absence of the valence
electron screening effects in the free ion. In addition, ions with
fractional charge are difficult to be considered.

To demonstrate the basic idea behind the above procedure,
in Fig. 1, we show the scattering factors of two metals, namely,
Zn and Bi, as compared to the scaled scattering factors of the
noble gases Ar and Xe, which compare very well to those of
the metals in the high-Q region where the fc(Q) = fN (KQ) is
very close to f (Q). Of course, the electron densities of Ar and
Xe do not extend over a wide range because they are closed
shell atoms and due to the scaling factors K = 0.580 for Ar
and K = 0.550 for Xe, the effective core density for Zn and Bi
is even more contracted thus spanning a small range in space.
Of course, the core electron density is more contracted in Zn
and Bi than in Ar and Xe as the atomic number is higher in the
metal so that the inner electrons states are more tight bound to
the nucleus.

As specified before, the scattering factors are those tabu-
lated in a very extended Q range by Hubbell and Øverboø
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FIG. 1. (Top) Atomic scattering factor of Zn and Bi as compared
to the scaled scattering factor of Ar and Xe, respectively, as a function
of the momentum transfer as measured by sin(θ )/λ = Q/4 π . The
logarithmic scale is used for Q to show the region where the scattering
factors become small. (Bottom) fval(Q) is plotted in the high-Q region
in order to show the good convergence of fN (KQ) to f (Q) as fval(Q)
is rapidly approaching zero.

[27] based on relativistic Hartree-Fock one-electron wave
functions, which have been proved to be quite accurate in the
high-momentum region in crystals [25]. The scaling factor K is
determined in a very high Q range from 100 to 200 Å−1, while
|f (Q) − fN (KQ)| is close to zero typically when Q is higher
than 10–20 Å−1, a range that is accessible to experiments
devoted to the measurement of the static structure factor S(Q).

In the numerical calculation, to determine the ion charge
Zi we observe that the average electron density at R located
in the interstitial region 〈ρ(R)〉 can be obtained by means of
the following equation:

〈ρ(R)〉 = − 1

4π R2

d(Z − ZR)

dR
. (8)

To numerically determine the derivative in Eq. (8), ZR was
fitted using an eighth degree polynomial, which allows for
a simple analytic derivation and reduces the effect of small
numerical errors, which are of the order of 0.01 % in all
cases. This procedure is numerically more efficient than the
direct calculation. Once 〈ρ(R)〉 is calculated, we determine
the position R̄ of the density minimum, which can be used to
evaluate the interstitial electron density according to Eq. (4).
Once the electron gas density is obtained from the charge
neutrality:

Zi = 〈ρgas〉�i. (9)

Considering that the procedure used to derive Eqs. (5)
and (8) contains some approximation to make the calculation
feasible, we first tested the validity of the approach by checking
the calculation in the case of a hypothetic liquid Bi having
the static structure factor S(Q) as determined by the analytic
Percus-Yevick approximation at the same density of the real
liquid metal and at the appropriate packing fraction to produce
a S(Q) as similar as possible to the experimental one. We
used an atomic size σ = 3.05 Å and the resulting S(Q) is

0 4 8 12
Q  (Å-1)

0

0.5

1

1.5

2

2.5

S(
Q

)

FIG. 2. Percus-Yevick approximation of the Bi structure factor
(full line) as compared to the experimental results [28] (dots).

reported in Fig. 2 in comparison with the experiment [28]. A
packing density parameter is η = 0.43, a value which is typical
for metals, like alkali metals. Of course, the Percus-Yevick
approximation cannot catch the details of liquid Bi as the real
metal shows a complex behavior in the region of the first peak
where there is a secondary bump. This bump can be related to
the 2kF singularity of the electron gas dielectric function [2],
which can account for the well known Friedel oscillations in
the atom-atom effective potential. This hypothetic system was
chosen to compare the calculation performed using both the
approximate method of Eq. (5) and the formally more accurate
approach of Eq. (2). Of course, such a hypothetic system is not
equal to the actual liquid Bi, but it can be employed as a test
to determine the size of the errors introduced by the limited
knowledge of S(Q) in the case of real systems where S(Q) is
determined using some experimental approach. Considering
that Bi has a very large number of electrons per atom, in this
test, one is maximizing the expected error introduced by the
approximate scheme of Eq. (5). We calculated the spherically
averaged electron density as deduced from Eq. (2) and from
the approximate Eq. (5) in the hypothetic liquid Bi. The so
determined electron densities are reported in Fig. 3, where we
see, as expected, a region with an almost constant electron
density and the same result from Eqs. (2) and (5). In the inset
of Fig. 3, we report also ZR as a function of R, according to
Eqs. (2) and (5). Using the approximate approach of Eq. (5),
all the contributions to the integral above QM = 20 Å−1 have
been neglected as it is the case for a real system where S(Q)
is known in a limited momentum range. From these results, an
electron gas density ρgas = 0.077 electrons/Å3 and hence an
ionic charge Zi = 2.67 are obtained.

According to this calculation, which is performed in the
case of a high atomic number atom, we can safely argue that
the scheme proposed in Eq. (5) is adequate for defining a
proper protocol to obtain a good estimate of the effective ion
charge or the interstitial electron density.

A different protocol within the same two-component model
for the liquid metal was employed in Ref. [14] to determine
the interstitial electron density. This protocol was based on the
assumption that the interstitial electron density of the liquid is
equal to that calculated in a compact crystal, e.g., either fcc
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FIG. 3. Electron density 〈ρ(r)〉 as a function of the distance from
the central atom in the hypothetic liquid Bi in the Percus-Yevick
approximation (see text). The full line refers to the calculation
performed using the full scattering factor as in Eq. (2). The dashed
line is the result obtained using Eq. (5), which includes the valence
electrons only. In the inset, the integrated charge difference Z − ZR

is shown using the charge density as determined using the two
approximations. In the all-electron calculation, Z is equal to the
nuclear charge (full dots), in the valence-electron calculation Z =
Zval (circles).

or bcc, having the same density as the liquid. To perform this
calculation again, it is assumed that the electron density of the
crystal used to mimic the liquid is given by the superposition of
free-atom electron densities located at the lattice sites and the
interstitial electron density is derived by taking the average
density within the interstitial volume defined as the volume
of the unit cell left out by touching atomic spheres. This
approximation neglects completely the actual structure of the
liquid but it has the advantage of computational simplicity. In
this approximation, the interstitial electron density is derived
from the number of the interstitial electrons determined by
the difference between the atomic number and the number
of electrons inside an atomic sphere. The final result is quite
simple as, given the number of interstitial electrons Zint, the
interstitial electron density is given by

〈ρgas〉 = Zint

�int
= Z − n(i) ∑

G f (G)J (GRa)Ra/G2

�int
, (10)

where the sum runs of the reciprocal lattice vectors, Ra is the
radius of the atomic sphere, and �int = �i − 4π/3R3

a is the
interstitial volume. The radius of the atomic sphere is easily
derived from the density of the crystal, which is assumed to be
that of the liquid. Within this approximation, the system struc-
ture is exactly known because it is defined by the crystalline
phase one is using. Interestingly, in the case of simple systems
like alkali metals or alkali earth metals, this approximation
provides an ion charge very close to one and two, respectively
[14]. However, in more complex systems where the actual
structure is not very compact, this simple approximation is
expected to be less adequate than the approach that takes into
account the actual structure of the liquid.

III. PROPAGATION OF ION DENSITY FLUCTUATIONS

The description of a liquid metal as a two-component
system, where the ions are embedded into a uniform electron
gas, is an approach which has been first applied long time
ago. In this approximation, one assumes that the ions have
an average number density n(i) and a charge Zie and, since
the system is neutral, the electron number density is simply
obtained as n = Zin

(i). Here, we just report the basic results
concerning the collective dynamics of the two-component
system as it has been developed before [1–3,6,7,29]. Once
a liquid metal is described as a uniform interacting electron
gas where ions are uniformly distributed, one can study the ion
density fluctuations within the linear response theory [2,29],
that is, by determining the screened ion-electron potential. In
a phononlike approach, the longitudinal density fluctuations
having a wave vector q have eigenfrequencies given by

ω2
c (q) = �(q)2 − �2

p F (q)

[
1 − 1

ε(q)

]
, (11)

where �(q) is the frequency of the longitudinal density fluctua-
tions of the interacting ion plasma and �2

p = 4π (Zie)2n(i)/M

is the ion plasma frequency, F (q) is the form factor of the
bare ion-electron interaction potential, and ε(q) is the (static,
i.e., low frequency) dielectric function of the uniform electron
gas at the appropriate density. This equation, which is valid
only at high enough frequency, was reported long time ago
in the standard textbook of Pines [1] and it has been used
in other investigations [10,12,13]. The effect of the finite ion
size and the momentum dependence of the eigenfrequencies
of the bare ion plasma �(q) are explicitly indicated even if this
is a low-momentum approximation. When pointlike ions are
considered, the usual Bohm-Staver relationship is obtained
because F (q) � 1, �(q)2 � �2

p and ε(q) � 1 + k2
s /q

2, ks

being the screening wave vector of the electron gas. To deduce
the original Bohm-Staver approximation, one has to use the
random phase approximation (RPA) approximation, namely,
k2
s � k2

TF = 6πne2/k2
F , as the Thomas-Fermi wave vector kTF

is the screening wave vector in this limit.
Notice that still in the pointlike ions limit and with the

approximation �(q)2 � �2
p, the velocity of collective modes

is modified with respect to the Bohm-Staver equation by the
presence of the electron-electron interaction [10,14], which
changes the screening wave vector, thus obtaining an electron
only exact result cex beyond the RPA, that is,

cex = lim
q→0

ωc

q
= �p

ks

, (12)

where the electron gas screening wave vector ks can be exactly
derived from the compressibility sum rule. One has

k2
s = k2

TF

1 − λk2
TF

, (13)

where the q2 coefficient λ of the small q expansion of the zero-
frequency local field is given by the following exact equation
[24]:

λ = 1

4k2
F

(
1 + π

3
αgr

2
s

∂εc

∂rs

− π

6
αgr

3
s

∂2εc

∂r2
s

)
, (14)
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where αg = (4/9π )1/3 and a0rs = (3/4πn)1/3 is the electron
gas density parameter, a0 being the Bohr radius. Here, it is
necessary to know the energy per particle of the electron gas
or the correlation energy per particle εc, which is available
from quantum Monte Carlo calculations [30,31].

It is quite important to observe that k2
s is not a positive

defined quantity as a function of electron gas density as at the
critical density nc the electron gas compressibility becomes
negative. Such a critical electron density is higher than that
of liquid Cs and rather close to that of Rb, therefore at least
in these systems the ion-electron interaction must give quite
a relevant contribution, which determines the stability and the
velocity of the density fluctuations. Therefore one has also
to consider the effect of the form factor of the ion-electron
potential even in the small-momentum limit.

As is well known, the collective mode velocity can be
probed experimentally by means of inelastic scattering of
neutron or x ray, so that a proper comparison between theory
and experiment can be readily performed. In the q → 0 limit,
the following approximations can be safely applied:

�(q) = �p[1 + δp(q/qd )2 + O(q4)],

F (q) = 1 − (〈R2〉/6)q2 + O(q4), (15)

where q2
d = 4πn(i)(Zie)2/kBT is the Debye wave vector, δp

is a parameter describing the ion plasma dispersion relation
at small wave vector [23], and 〈R2〉 is the mean square radius
of the ion-electron interaction potential. The collective mode
velocity c is readily obtained using these approximations [14]:

c2 = lim
q→0

ω2
c (q)

q2
= c2

ex + �2
p

(
2δp

q2
d

+ 〈R2〉
6

)
. (16)

We see that the calculation of c requires only the knowledge of
the ion charge Zie, of δp and 〈R2〉. For the sake of simplicity,
we will use

α = 2δp

q2
d

, β = 〈R2〉
6

. (17)

Equation (16) is already reported in Refs. [2,4], here we have
just presented the relevant contributions, which will be used
in the systematic comparison with a set of experimental data.
We note also that the electron gas screening, which determines
the effective ion-ion potential, is described by the screening
wave vector ks used to calculate cex. In the present q → 0
limit, no details of the ion-ion interaction such as the Friedel
oscillations, which have a frequency equal to 2kF , have a
strong weight. Some subtle effect, possibly related to the 2kF

singularity, or to the exact shape of the ion-electron interaction,
has been observed at finite momentum [11–13].

All the above equations contain two relevant parameters,
namely, the electron density parameter rs of the interstitial
electrons and the ion density parameter a0Ri = (3/4πn(i))1/3,
which are the basic input quantities defining the two systems,
namely, the electron gas and the ion plasma. The two
parameters Ri and rs are related to each other through the
ion charge in the following way:

Ri = Z
1/3
i rs,

so that the relevant quantity to be determined is either rs or Zi ,
while Ri is obtained from the experimental density.

IV. CALCULATION OF THE ELECTRON GAS DENSITY
PARAMETER IN REAL METALS

According to the procedure, we outlined in Sec. II, we
made the calculation of the interstitial electron density in a
series of sixteen liquid metals chosen as representative of
the different elements of the periodic table and such that
experimental values of the collective mode velocity are also
available [8–10,32,33]. We employed the procedure based on
Eq. (8) and all the calculations have been performed using the
atomic scattering factors of Ref. [27], while the experimental
static structure factors S(Q) [28,34] have been used. We first
calculated the ion charge Zi and the electron gas density
parameter rs according to Eq. (4).

The results of the described procedure are reported in
Table I where we report also other relevant parameters. We see
that the electron density parameter derived from the liquid is
generally in fair agreement with that obtained in the crystalline
solid in Ref. [35] or by determining the number of s + p

electrons from the band structure calculations [36]. In the case
of simple systems, the results are also in agreement with those
derived by means of the crystalline approximation used in
Ref. [14].

In the case of a simple metal like Al, we calculate Zi =
2.82 against 3 (s + p)-like electrons according to the free-
atom configuration, in the shell model. The same result is
obtained with the crystal calculation [14] and band calculation
[36]. The explanation for the small difference between Zi and
the atom valence could be related to either the use of the
free-atom scattering factor or to a real difference between the
free-atom and the liquid metal. Of course, we cannot avoid
the use of the free-atom scattering factor in the calculation
and the comparison with the number of electrons in the free
atom should be taken with some care since the electron states
in the liquid metals are probably more spread out. We remark

TABLE I. Ion density parameter Ri , ion charge Zi , and electron
density parameter rs derived in the liquid from the present calculation.
For comparison purposes the results reported in Refs. [14,35,36] are
also shown. The results obtained from Ref. [36] are calculated using
both the solid and liquid densities.

Element Ri Zi rs rs [14] rs [35] rs [36] solid rs [36] liquid

Li 3.30 1.05 3.249 3.250 3.61 3.270 3.325
Na 4.01 1.01 4.000 4.014 4.01 4.006 4.028
K 5.01 1.07 4.903 4.889 4.67 4.924 5.062
Rb 5.39 0.95 5.478 5.204 4.68 5.309 5.481
Cs 5.78 0.94 5.904 5.586 5.10 5.783 5.953

Ca 4.27 1.95 3.416 3.230 3.42 3.661 3.789
Ba 4.79 1.72 3.997 3.532 3.69 4.539 4.650

Al 3.11 2.82 2.204 2.191 2.51 2.076 2.175
Si 3.10 3.38 2.064 – – – –
Ge 3.28 3.19 2.230 2.550 – – –
Ga 3.16 2.78 2.248 2.426 2.63 2.161 2.232
Sn 3.57 3.08 2.454 2.637 – – –
Cd 3.35 2.02 2.650 2.552 2.74 2.578 2.694
Hg 3.40 2.66 2.451 2.835 3.02 – –
Pb 3.74 3.13 2.557 2.962 2.78 2.305 2.358
Bi 3.82 3.30 2.565 3.124 – – –
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again that when the static structure factor derived from an
x-ray diffraction measurement is used, the present approach is
expected to be much more accurate. Indeed, S(Q) is derived by
normalizing the scattered intensity to the free-atom scattering
factor in the case of the x-ray diffraction. Therefore apart
from other approximations intrinsic to the experiment and the
calculation, no error is introduced by the use of the free-atom
data. It is important to note also that the scattering factor used
in the most part of the x-ray experimental investigations is
that of Ref. [27] so that there is no additional approximation
connected to the use of different theoretical results.

To check the order of magnitude of the error introduced
by using the free-atom scattering factor when S(Q) from
neutron scattering is used, we consider again the case of Al,
which can be expected to be a difficult one because it has
about three valence electrons having a scattering factor that
extends in a rather wide Q range. We made a simple test
by performing the calculation using a corrected scattering
factor fcor(Q) = f (Q) + �(Q), where �(Q) was deduced
from the comparison of the experimental data in the crystal
[37] to f (Q). Of course, we assume that the difference �(Q)
is similar in the liquid and solid states, an approximation which
we consider acceptable. Using this procedure, which suggests
�(Q) � −0.07Q2 exp(−0.19Q2) with Q in angstrom units,
we got Zi = 2.62 against Zi = 2.82 previously obtained.
This result has a minor dependence on the exact form used to
evaluate �(Q) and on the detailed form of S(Q). We mention
also that the expected difference between the free atom electron
density and that of a condensed system like a liquid metal
cannot be very large because this difference is related to the
cohesive energy [25]. As a consequence, we can safely state
that the value of Zi has a maximum error of the order of one
or two tenth of electron. It is interesting to observe that this
corrected result is even more different from the simple estimate
Zi = 3 than that derived using the free-atom scattering factor.

Looking at Table I it is also interesting to consider the trend
of the ion charge along the periodic table. Indeed, as expected,
the alkali metals show a charge very close to unity, according
to the idea that only one electron is available for the electron
gas. The alkali-earth metals, Ca and Ba, also show a charge of
about 2, while Si, Ge, and Sn seem to have a lower ion charge
than the nominal valence, i.e., Zi = 4, with the tendency of
decreasing Zi from 3.38 in the case of Si to 3.08 in the case
of Sn. It should be mentioned that Zi = 4 is a value related
to the diamond structure where there is an s-p hybridization,
while the liquids show a quite different behavior due to their
metallic character. Finally, a rather complex trend is seen in
the case of polyvalent metals Cd, Sn, Hg, Pb, and Bi, where
the ion charge is higher than the number of nominal valence
electrons in Hg, while it is smaller in Sn, Pb, and Bi.

Considering the results of Table I, we believe that the
proposed procedure provides an adequate determination of the
interstitial electron density in a liquid metal, useful to make a
meaningful comparison of different systems.

V. CALCULATION OF THE COLLECTIVE
MODE VELOCITY

According to the previous sections, we use the so deter-
mined ion charges to estimate the collective mode velocity

and to compare the results to the experimental findings. In
order to have a uniform and meaningful comparison, all the
experimental data of inelastic neutron and x-ray scattering
have been analyzed in terms of a standard empiric model,
which includes a quasielastic peak and an inelastic contribution
approximated by a damped harmonic oscillator response. The
most part of the experimental results is the same as in Ref. [14],
however, the results for Al have been corrected because of
a misprint and for Cd because of a better analysis of the
experimental data in the case of this system [8,32].

According to the discussion of the previous section and
Ref. [10], the screening wave vector ks can be derived from an
accurate determination of the electron gas correlation energy
[30,31]. On the other hand, if one neglects the two parameters
α and β, that is, the last two terms in the right-hand side
of Eq. (16), one obtains a collective mode velocity which is
determined by the electron gas properties only. This estimate
is expected to be meaningful when there is a high electron
density, however, as already discussed, the velocity as deduced
from the electron gas only becomes imaginary when the
density is low, i.e., when rs > 5.45. Therefore the low-density
systems are stable, i.e., a real velocity of the collective modes
is deduced, because of the sizable contribution from the ion
interactions. We mention that already at rs = 2, the size of
the local field effect on the collective mode velocity is of the
order of 20 % as it is seen in Table II. Therefore the simple
Bohm-Staver approximation cannot be applied to real systems
and as we will see all the terms are important because the
various contributions compete each other.

Considering that the collective mode velocity depends
only on the sum α + β, our strategy was to first derive
some information by comparing Eq. (16) to the available
experimental data. We calculate an experimental α + β, by
assuming that the electron gas contribution can be calculated
according to the above prescriptions. This is the same
strategy used in previous investigations [10,14] where a simple
approach was used to determine the electron gas density.
The results obtained using this procedure are reported in
Table II where the elements are grouped in such a way that
some simple trend is visible within a given class of systems.
In addition, these results are presented in Fig. 4, where it
is seen that the experimental estimate of α + β shows a
trend as a function of Ri . This trend suggests that the ion
dependent quantities α and β are mainly related to the ion
density.

To obtain a theoretical determination of the collective mode
velocity without additional experimental information, one has
to calculate the two parameters α and β that represent the
contribution of the ion plasma dispersion and the ion finite
size. There is no simple general way to determine these
two parameters. The calculation of δp is rather complex, as
it is known only in the homogeneous plasma in the weak
interaction limit, that is, when the coupling constant [23]
� = (Zie)2/akBT � 1. In this limit, the RPA [23] applies,
so that δp = 3/2. However, the ion plasma in liquid metals
is always in the strong coupling limit, that is, � 	 1. An
exact calculation of δp in the strong coupling limit is not
yet available, but various approximations have been proposed
for δp in the past either from analytic approximations or
from molecular dynamics simulations [23]. A simple useful
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TABLE II. Collective mode velocity obtained using different approximations and ion parameters α and β (see text). The velocity cRPA is
the RPA estimate of the collective mode velocity, that is, when ks = kTF, cex is the estimate deduced considering the correct expression for ks

(see text), and cexp is the experimental value. Notice the imaginary value of cex in Rb and Cs, which have an electron density smaller than the
critical value. The value of (α + β)exp is evaluated experimentally, comparing the theoretical value for cex to the corresponding experimental
value (see text).

cRPA cex cexp (α + β)exp (α + β)calc α β

Element (meV Å) (meV Å) (meV Å) (Å2) (Å2) (Å2) (Å2)

Li 44.58 29.00 36.5 ± 3.0 0.09 ± 0.04 −0.026 −0.447 0.4213
Na 19.51 10.35 18.5 ± 1.0 0.28 ± 0.04 0.212 −0.604 0.8163
K 12.56 4.13 15.5 ± 1.0 0.79 ± 0.11 0.741 −0.884 1.6247
Rb 7.17 0.45i 9.2 ± 0.5 1.03 ± 0.11 0.985 −1.087 2.0721
Cs 5.30 1.57i 7.5 ± 0.4 1.28 ± 0.14 1.362 −1.199 2.5619

Ca 24.05 15.06 28.5 ± 2.0 0.40 ± 0.08 0.516 −0.714 1.2295
Ba 10.43 5.54 18.8 ± 2.0 1.36 ± 0.16 1.187 −0.809 1.9957

Al 54.62 42.88 40.0 ± 4.0 −0.02 ± 0.03 0.254 −0.419 0.6730
Si 62.56 50.10 30.3 ± 3.0 −0.10 ± 0.01 0.277 −0.301 0.5785
Ge 35.01 27.37 20.5 ± 2.0 −0.07 ± 0.02 0.181 −0.406 0.5877
Ga 33.07 25.79 20.3 ± 2.0 −0.06 ± 0.02 0.045 −0.524 0.5690
Sn 24.44 18.46 19.0 ± 2.0 0.01 ± 0.04 0.221 −0.467 0.6877
Cd 18.84 13.77 14.2 ± 2.0 0.11 ± 0.06 0.109 −0.485 0.5939
Hg 17.49 13.22 13.8 ± 1.5 0.01 ± 0.04 −0.196 −0.467 0.2709
Pb 17.90 13.29 11.4 ± 1.0 −0.04 ± 0.02 0.068 −0.586 0.6543
Bi 18.24 13.53 13.1 ± 0.8 −0.01 ± 0.02 0.013 −0.672 0.6850

approximation is as follows [23]:

δp = 3

2
+ 2

15

Uex

NkBT
, (18)

where N is the number of ions in the system and Uex is
the excess internal energy due to the ion-ion interaction. For
pointlike ions, Uex/N is given by

Uex

N
= (Zie)2

π

∫ ∞

0
dq [S(q) − 1]. (19)
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FIG. 4. Parameter α + β as a function of the ion density parame-
ter Ri (dots) in logarithm scale to expand the low-value region. Black
dots are the data derived from the experiments (see text), while the
lozenges are the present theoretical predictions. The thin lines are
used to connect the element symbol to the corresponding dot when
necessary. The full line is a guide to the eye plotted in order to make
visible the dependence of α + β on Ri .

It is worthwhile to mention that Uex is almost always a negative
quantity, the absolute value of which is much larger than
the thermal energy NkBT when T is close to the melting
point of all metals we analyzed. To calculate Uex, we made
use of the experimental static structure factors, which have
been measured in all the systems here considered [28,34].
In principle, also in calculating Uex one has to include an
appropriate ion-ion interaction, however, we limit ourselves to
the use of the above formulas because the extension to a real
case is not straightforward.

To complete the calculation, one has to provide a reasonable
estimate of 〈R2〉, which defines the shape of the ion-electron
interaction as compared to that of pointlike ions. As a simple
proposal, we derived 〈R2〉 from the local pseudopotential
as obtained by Harrison [26]. We preferred to resort to this
old calculation which has the advantage of providing a local
pseudopotential for all the systems of the present analysis.
The quantity 〈R2〉 is then calculated from the low q trend
of the ion form factor F (q) tabulated in Ref. [26], since
F (q) � F (0)[1 − q2〈R2〉/6]. All these results are presented
in Table II.

The general comparison between the theoretical estimates
and the experimental result for 2δp/q2

d + 〈R2〉/6 is remarkably
good considering the need for many approximations. The result
is a quite convincing experimental evidence that δp is negative
in the strong coupling limit, since 〈R2〉 is always a positive
quantity and the small values for the sum 2δp/q2

d + 〈R2〉/6
cannot be obtained using a positively defined value for δp.
A negative value for δp was expected from simulations
[38], analytic approaches [23], and also in the homogeneous
Bose gas [39]. It is very satisfactory that Fig. 4 provides
an experimental support for the simulation and theoretical
results for what concerns the negative value of δp. We mention
also that the results of Fig. 4 indicates that the experimental
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determination of 2δp/q2
d + 〈R2〉/6 shows a general trend as

a function of the ion density with the specific characteristics
of each ion giving only a minor contribution. A systematic
trend of different elements as a function of rs or Zi was also
considered in Ref. [14], although the dependence on Ri was
not considered.

VI. CONCLUSION

The first observation we can draw from the results reported
in the previous section is that the proposed procedure provides
a good estimate for the electron density useful to calculate
the electron gas contribution to the collective mode velocity
in a liquid metal. To perform in the best way the calculation,
a proper procedure to determine the appropriate electron gas
density has been introduced, which makes use of experimen-
tally determined quantities, apart from the free-atom scattering
factors f (Q). In addition, we find that the two component
model for a liquid metal is not confined to alkali metals, but
it appears to be adequate also in liquid alkali-earth metals,
polyvalent metals, and liquid semiconductors Si and Ge, which
are metallic above the melting point. The model shows clearly
the need for introducing all important features of the two
components: the local field effects in the electron gas, which
are adequately determined from the electron gas correlation
energy, the q dependence of the plasma frequency �(q) and
the ion size effects in the ion-electron interaction potential.
Looking at the trends emerging in Table II and Fig. 4, we
notice that there is always a compensation between the two
contributions α and β and only in the case of alkali metals
and alkali-earth metals a sizable total (positive) contribution
is obtained. Interestingly, liquid Ba shows a rather large
(α + β) contribution as determined from the experimental
data, which is well reproduced by the present calculation. This
compensation effect makes the quantitative calculation of the
collective mode velocity more difficult because the relevant
quantity (α + β) is rather small as compared to the values of α

and β. In any case, there is no straightforward interpretation for
the compensation which is observed in the case of polyvalent
metals. One can also observe that some minor discrepancy is
present in the case of the metals having Ri � 4, an effect which
appears to be maximum in Al, Sn, and Hg, but without any
apparent trend.

It is also interesting to compare the present procedure to the
approach of Ref. [22], which is basically a different version
of the original two component model [2,3] extended to the
whole Q range. Such an approach can be used to determine the
collective mode velocity by taking the low-momentum limit
in order to compare to the present results. In the calculation of
Ref. [22], no special care has been devoted to the determination
of the electron density parameter because it was applied to Na,
Cu, Rb, and Au only and a rather straightforward choice was
used. Within the description used in Ref. [22] the collective
mode velocity is given by

cex = �2
p

k2
s

+ �2
p

1

4π2n(i)

×
∫ ∞

0
veff(Q)

(
− 1

15Q

dS

dQ
− 2

5

d2S

dQ2

)
dQ, (20)

where veff(Q) is an effective ion-electron potential, which is
determined using a simple empiric approach. The screening
wave vector was obtained using an interpolation scheme for
the local field [40], which allows for an approximate evaluation
of the dielectric function beyond the RPA. In the case of Na
and Rb, the calculated velocities using this approach are 16.70
and 8.72 meV Å, respectively, to be compared with the present
estimates 16.89 and 9.00 meV Å. These results show that there
is a good agreement between the two procedures, that is both
approximations contain the same relevant physics. We think
that the advantage of the procedure we propose is in the pos-
sibility of determining the electron gas density and hence the
ion charge without resorting to some assumption on the actual
electron states. It is interesting to mention that a recent neutron
scattering experiment on Au [41] provides a collective mode
velocity of 18.9 ± 1.0 meV Å = 2870 ± 150 m/s, to be com-
pared to 15.98 meV Å = 2430 m/s determined in Ref. [22].
We do not apply the present approach to Au because we do not
consider the experimental S(Q) accurate enough, because of
the oscillations that extend at high Q. There is no explanation
for the observed disagreement with the results of Ref. [22],
considering that the experiment is in good agreement with an
ab initio simulation [41]. Probably the electron configuration
used in the calculation is not adequate for this high-Z element.

In liquid metals, it is also found that in the low momentum
region the mode damping as determined by fitting the exper-
imental dynamical structure factor with a damped harmonic
oscillator is proportional to the mode frequency [14]. We recall
also that in the case of Ga, it is found that on increasing the
temperature from 320 to 970 K, the damping factor �(Q)
does not increase [10]. A similar behavior is present also
in the case of lithium ammonia solutions [12,13] where, on
increasing the temperature from 220 to 250 K, again a small
decrease from 0.88 ± 0.07 to 0.67 ± 0.07 of �(Q) is found.
This observation indicates that the damping originates from
a quasistatic effect related to the disordered structure, so that
we can speculate that the local quasistatic density fluctuations
contribute to �(Q) as it could be expected if one considers that
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(Q
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Q
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Ca Ba
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FIG. 5. Ratio of the damping parameter as measured by the
nominal full width at half maximum and frequency of the collective
modes as described by a damped harmonic oscillator in the low-
momentum region (full dots) as a function of the atomic number. The
dashed lines show the magic numbers 0.25, 0.50, and 1.00, which
seem to correspond to the three groups of elements.
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the ion-ion and ion-electron interaction are strongly screened
by the electron gas. This view is similar to the structural
relaxation discussed, for instance, in Ref. [42] where the
collective modes are described in terms of an empiric memory
function. The calculation of the local density fluctuations is
not a simple task and it is beyond the primary concern of
the present paper. Here, we simply report a qualitative trend,
which is seen in Fig. 5, where the ratio of the damping factor
�(Q) to the mode frequency ωc(Q) as a function of the atomic
number is presented. The most striking result is the grouping
of the �(Q) to ωc(Q) ratios close to the three magic values
0.25, 0.50, and 1.00, but no evident systematic trend along the
periodic table or as a function of some specific characteristic
of the element is visible. This result was already observed in
Ref. [14]. Here we report some additional experimental results,
namely, Ti [43], Fe [44], Zn [45], and Au [41], while the result
for Bi is modified after taking the data at the lowest Q value
available [33]. It is seen that the �(Q) to ωc(Q) ratio is close to
0.5 in the case of the early transition metal Ti, in the transition
metal Fe, and in the nominally 5d filled shell Au, while it is
close to one in the case of Zn, which has a filled 3d shell.

Finally, we observe that, in principle, the present procedure
could be also tested in the case of metals having a more com-
plex electronic structure, e.g., transition metals. Of course,
in these last systems, the ion-electron potential has to be
considered with some care and the possibility of applying the
present approach is not straightforward because a nonlocal
ion-electron potential could be necessary. Nonetheless, we
used the present model also in this case, thanks to the avail-
able data [43,44] on the dynamics of liquid Ti and Fe, an
early 3d transition metal and a typical transition metal. We
calculated the ion charges from Eq. (5) to derive the electronic
contribution cex to the collective mode velocity.

Using the experimental structure factor [46,47] of liquid
Ti and Fe, we find an interstitial electron density parameter
rs = 2.242 for Ti and rs = 1.947 for Fe, corresponding to ion
charges equal to 2.65 and 2.87, respectively. Interestingly, the
ion charges as determined using the crystal approximation of
Eq. (10) are 2.65 and 2.75, respectively, for Ti and Fe and for

both fcc and bcc structures. The difference between the liquid
and the crystal approximation suggests that the actual liquid
structure is fairly complex as it has been suggested in the case
of iron [47]. In any case, the interstitial electron density in Ti
and Fe suggests that 3d electrons give a minor contribution
to the electronic density in the case of Ti and Fe. Using these
electron densities, we find cRPA = 39.07 meV Å and cex =
30.50 meV Å in the case of Ti and cRPA = 43.34 meV Å
and cex = 35.28 meV Å in the case of Fe. These results
should be compared with the experimental results [43,44]
cexp = 29.7 ± 3.0 meV Å and cexp = 28.4 ± 2.0 meV Å
for Ti and Fe, respectively. Therefore (α + β)exp = −0.01 ±
0.03 Å2 in Ti and (α + β)exp = −0.05 ± 0.01 Å2 in Fe. These
data suggest that meaningful results can be obtained also
in these transition metals and there is still an almost full
compensation of the two ionic contributions even in the case
of Ti and Fe, where more complex ion-ion and ion-electron
interactions are expected. In addition, we observe also that the
damping in Fe appears in the same group of the polyvalent
metals indicating that, contrary to the case of alkali metals,
the ion charge higher than one plays some role. It is also
interesting to mention that while the �(Q) to ωc(Q) ratio of
Fe is close to that of polyvalent metals Al, Ge, Hg, and Bi,
this ratio in the case of Ti is closer to that of the alkali metals.
On the other hand, �(Q)/ωc(Q) of Zn is close to that of
Ca and Ba, which have the same nominal valence. To show
that some correlation between the ion charge and the ratio
�(Q)/ωc(Q) exists, we observe that the average ion charge
of the alkali metals is equal to 1.00, that of the metals Al,
Fe, Ge, Hg, and Bi is 2.97 and that of Ca and Ba is 1.84,
while Zi of Zn is calculated to be 2.99, so that �(Q)/ωc(Q)
has some dependence on Zi but Ti and Zn do not follow
this behavior. Nonetheless, considering that �(Q)/ωc(Q)
probably depends on the electron density fluctuations, a
straightforward relationship with Zi is not expected as some
dependence on the actual structure is expected. Further work
is necessary to calculate the electron density fluctuations and
to identify a quantitative correlation between them and the
ratio �(Q)/ωc(Q).
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