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We study the one-dimensional Dyson hierarchical model in the presence of a random field. This is a long range
model where the interaction scales with the distance in a power-law-like form, J(r) ~ r~*, and we can explore
mean-field and non-mean-field behavior by changing p. We analyze the model at 7 = 0 and we numerically
compute the non-mean-field critical exponents for Gaussian disorder. We also compute an analytic expression
for the critical exponent §, and give an interesting relation between the critical exponents of the disordered model
and the ones of the pure model, which seems to break down in the non-mean-field region. We finally compare
our results for the critical exponents with the expected ones in D-dimensional short range models and with the
ones of the straightforward one-dimensional long range model.
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I. INTRODUCTION

The critical behavior of models in the presence of a
quenched random field has aroused a lot of interest since
the pioneering work of Imry and Ma [1] because of its very
interesting nature. In fact, while in a short range system with
Ising spins a simple domain-wall argument suggests that a low
temperature ordered phase can survive justif D > 2, the exact
value of the lower critical dimension has been a debated issue
for a long time. In particular, it was unclear whether or not
a phase transition occurred in three dimensions until Imbrie
demonstrated it does, and D} = 2 [2,3].

This work solved a problem but left open other questions. In
fact, it was not clear why other approaches such as perturbation
theory [4,5] and the Parisi-Sourlas supersymmetric (SUSY)
argument [6] predicted the wrong result, Dj = 3. In order to
discuss this point, it is convenient to consider the modified
hyperscaling relations that hold in the presence of a random
field (RF), which are different from the usual ones. Let us
first consider a system without random fields with volume
V. While, at T = oo, the entropy density is proportional to
In2 (since spins are of the Ising type, s = £1), a nonanalytic
term, proportional to £ P, appears as T decreases to the
critical temperature 7,. This term comes from the V/£P
flipping clusters, where £ is the correlation length, and gives
the most relevant contribution to the nonanalytic part of the
free energy density. Thus, given the critical exponents v and
o, which may be defined from & ~ = and aff ~ 7% the
usual hyperscaling relation 2 — o = Dv follows from the
critical behavior of the free energy density f ~ ¢V, where
t ~(T —T,)/T.. Now let us go back to random field models,
where the above hyperscaling law has to be generalized
including a third critical exponent, 6 [7,8]:

2—a=v(D —0). (D

In fact, the energy density of correlated clusters at the critical
point is much more important than the entropy density in the
presence of a random field [9] leading to a nonzero exponent
6. Moreover, thermal fluctuations turn out to be less important
than the sample-to-sample ones [6].

The exponent 6 is equal to 2 according to perturbation
theory and the SUSY approach [4-6], while it is known to
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decrease to one in the limit D — 2% [9]. While its behavior
with D is still unknown, a simple result can be obtained
if we approximate the magnetization m by xh, where h is
the effective field acting on a correlated cluster and x is the
susceptibility. In fact, let us consider the average energy of such
a cluster u ~ mh. We can notice that 42 is proportional to £
because the largest contribution to the effective field comes
from the average of £” independent and identically distributed
(i.i.d.) random fields. This leads to u ~ yh2 ~ t~7+PV since
x ~t77. Thus 8 = y/v =2 —n, where n is defined form
the connected correlation function as Coopn(r) ~ #~P=240,
This relation was proposed by Schwartz [10-12] and other
authors [13-15]. In any event, another relation may be found
with a scaling theory at 7 =0 [9], that is, 6 =24+ n —7,
where 77 is defined from the disconnected correlation function
as Cgise ~ r~P~4D_This relation is based on the usual scaling
assumptions and does not require approximations such as
the former one, which is consistent with the latter if and
only if 77 = 2n. This relation has been tested in D =2 + ¢
dimensions at the first order in € [9], and numerically all
simulations give a small value for 2n — 7. The most impressive
and recent one in the three-dimensional random field Ising
model (RFIM) [16] states that 2n —7 ~ 1073, In D = 4,
numerical studies [17,18] lead to 2n —7n ~ —0.01 &+ 0.05
while in D =5, from the critical exponents computed in
Ref. [19], it is difficult to obtain an estimation of 21 — 7. Thus,
summing up, it is unclear whether or not 6 is an independent
exponent. A nonperturbative functional renormalization group
approach [20-22] suggests that the relation 7 = 27 is not true,
in general. In particular, this approach leads to the result that
for dimensions greater than D ~ 5.1, § =2 and i = n [23],
as can be found in Refs. [4-6].

In this paper we compute the critical exponents of the
Dyson hierarchical version of the random field problem.
The hierarchical model (HM) is a one-dimensional model
with a long range interaction invented by Dyson [24] where
the coupling between spins mimics a power-law interaction
strength of the form J(r) = r~”. In a general one-dimensional
long range model p controls the distance from the mean-field
behavior: Increasing p, the system becomes less and less
mean field. This is qualitatively similar to exploring different
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dimensions in a D-dimensional short range system, where the
critical behavior may or may not be of the mean-field type,
and this feature has motivated many studies on disordered
versions of the long range model [25-32]. It must be noted
that in these models the integer parameter D is replaced by a
continuous parameter p, and a mapping between them has been
proposed in Ref. [27] and recently revisited in Refs. [30,31].
This mapping is believed to hold in the whole mean-field
region and near the upper critical dimension, but seems to
break down near the lower critical dimension [33]. We will
call this model RFHM.

We decided to study the hierarchical model instead of
the long range counterpart because the two models are very
similar, even if they are not thought to be in the same
universality class for values of p near the lower critical
dimensions [33], that is, p = 2 in the pure model and p = 3/2
in the random field case (the hierarchical model does not have
a phase transition when p > 2 [24], while the long range
model has a Kosterlitz-Thouless transition for p = 2 [34-36]).
Moreover, the equilibrium distribution of the magnetization
P(M) of the hierarchical model can be exactly computed at
every temperature in a polynomial time. This iteration equation
is not spoiled by the disorder induced by a random field. The
time complexity of this algorithm is O(N?), where N is the
size of the system, even at T = 0. Moreover, the model can be
studied at 7 = 0 using a recently developed algorithm [37]
whose time complexity is O(N log N) and that computes
the ground state magnetization and energy of a disordered
sample. Thus, it allows one to analyze big systems and provide
accurate statistics in a reasonable computation time. We used
this algorithm to compute the critical exponents at 7 = 0.

This paper is organized as follows. In the first section we
introduce the main features of the hierarchical model, both in
its pure version and its random field version. In the second
section we explain how we computed the critical exponent v
and plot the curve 1/v(p). In the third section we compute other
critical exponents and note an interesting relation between
critical exponents of the RFHM and the ones of the pure
hierarchical model, which is somehow reminiscent of the
phenomenology of the D-dimensional short range models.
In the last section we draw the conclusions: We compare our
critical exponents with the ones of the RFIM in three and four
dimensions, using the results obtained in Refs. [16,17], and
with the critical exponents of the one-dimensional long range
model studied in Refs. [31,32].

II. THE HIERARCHICAL MODEL
The hierarchical model is a one-dimensional model defined
by [24]

n on=p

Hy(s1.....5n) = —ZG)FZS]%,, @
r=1

p=l1

where c is a coupling constant, N = 2" is the total number of
spins, and S, is the sum of all the spins contained in the rth
p-level block:

r2r

Spr = Z Si,

i=(r—1)27+1

2P 3

r=1,..
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Spins are organized in a hierarchy of levels, indexed by
p, whose physical meaning is that spins at the same level
interact with each other through the same coupling. This
model resembles a one-dimensional chain where the coupling
between spins is given by a power-law interaction strength
decreasing with the intersite distance J(r) = r~*, where ¢ =
22=7 It was invented by Dyson [24] to study phase transitions
in one-dimensional models with long range interactions and
has been studied since then [38—42]. Later on, it was realized
[43,44] that it could be very useful in the study of the
renormalization group (RG) theory developed by Wilson [45].
More recently it has been studied in the field of quenched
disordered models [37,46-51], as well as for the Anderson
localization problem [52,53].

A. Pure model

In a model without random fields, we will consider
the interval p € [1,2]. In fact, for p < 1, the free energy
corresponding to Eq. (2) is not defined in the thermodynamic
limit; the limit p — 17 corresponds to the limit D — oo
in short range models. On the other hand, for p > 2, there
is no phase transition [24]. One of the ways to verify this
statement is to see that the singular part of the cost of a
bubble in a magnetized phase is of order L>~ and so bubbles
have O(1) cost for p > 2. The nontrivial critical region,
where critical exponents differ from their mean-field values, is
p € (3/2,2) [39—41]. This may be seen from the hierarchical
structure of the Hamiltonian in Eq. (2), which allows an exact
realization of the block spin transformation [54,55].

Let us write the partition function,

”
Zy = /dsl -+ dsy exp {—ﬂHnm, BRENEDD f(si)} :
i=1

where P(s) = exp{f(s)} is a weight function on each spin s,
for example, the Ising weight §(s> — 1). After the renormal-
ization transformation,

5 4+ s §i —

% = VS(it1)20 lTlH = i1/ 4)
Zy may be rewritten in terms of the new effective spins
{s}i=1,.. 1 through the integration over the other 2n—l
variables {/};; . o»-1. The number of degrees of freedom has
been halved, and the price that has been paid is the introduction
of a new weight function P’(s’), given in terms of the old
one by

P'(s") =e‘w”zf'z/dt/P(J/S’—H')P(J/S/ —t), )

where J = ¢/4 = 27°. It is worth noticing that this equation
has the same form of the approximate recursion formula
derived by Wilson [43-45,56]. In this sense, the hierarchical
model is a model for which Wilson’s formula is exact. Let
us also mention that a part form the new weight function in
Eq. (5), the new Hamiltonian, has the hierarchical structure of
the old one and a new coupling constant: If K = 8J, K’ is
given by

K' =4Jy*K, (6)
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and it depends on y. This coefficient can be determined as
follows: At the critical point, where the interaction between
clusters of spins does not change with the scale at which we
observe the system, we impose

y =2°/271 (7

We can use this result to evaluate the n index, defined as
Ceonn(r) = (8iSizr) — (8:)(Sigr) ~ r~ P72 1In fact, suppose
that the above transformation is iterated n times,

le Si n (n)
S =

where sf") is the renormalized spin after n transformations. y
absorbs the diverging part of the right-hand side of the last
equation, making sfm a finite quantity. Thus we obtain

2”
C S
m = <Z, > o NP/21, ®)
2n
and since Coonn(r) ~ m? near 7., the connected susceptibility
scales as
Xconn = Z Ceonn(r) N)/zn o NP1, )

In a one-dimensional finite size system it may also be
expressed as

dr -
Xeom (T =To) = | = o« L™, D=1, (10)
Lr !

where L = N is the size of the system, and thus comparing
Egs. (9) and (10) we obtain n(p) = 3 — p . This relation holds
both in the mean-field and in the non-mean-field regions, the
reason being that we performed an exact RG transformation
and computed an exact value for y at 7.

From Eqgs. (5) and (7) we can also calculate v. Therefore,
in this case, we must make an ansatz on the form of P(s) and
then we must study its stability. If P(s) is a normal distribution
N(0,1), the new weight function is still a normal distribution
whose variance (X')? is given by

! ! =1 11

2T X2 p. o (i
The only unstable fixed point of the recursion equation (11) is
found by imposing ¥’ = 1, i.e., when the system is invariant
under RG transformations. This leads to an evaluation of the
critical temperature 8, = 22;60 for this particular choice of the
weight function and to the fixed point value O* = 1/2 for the
operator O = 1/(2%). The exponent v can be extracted from
the evolution of a small perturbation from this fixed point
value, that is, starting with O = 1/2 4+ § and calculating §’.
From Eq. (11) we have

Sl ER) i
2 N 2 2¢

and thus 8’ = 271§, leading to v(p) = 1/(p — 1). While the
expression for n that we computed before holds whatever p,
this expression for v is valid when the Gaussian ansatz is stable.
Many perturbative analyses have been done [39—41] and it has
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been found that the mean-field region is p € (1,3/2). An easy
way to grab the upper critical value of p is to use hyperscaling
relations, for example, 2 — o = vD, with D = 1, since they
are valid just in the non-mean-field region [57,58] up until the
upper critical dimension, where they are satisfied by classical
indices,

3

2_ )
2

-1

where we used that the mean-field value of « is zero.

= ! = (12)

B. Random field model

We now consider the case in which there are uncorrelated
random fields whose variance is #2. The effect of the random
fields is to weaken the ordered phase and thus it is natural
to expect that it survives just in regions where 7 and h are
small. We will consider the interval p € (1,3/2). In fact,
a simple domain wall argument suggests that the singular
part of the cost of a bubble is of order L>* — h?L'/?
and thus a low temperature—low disorder magnetized phase
cannot survive when p > 3/2. The nontrivial critical region,
where critical exponents differ from their mean-field values,
is p € (4/3,3/2) [51], as we will discuss below.

In order to deal with the disorder we replicate the partition
function

on

o /nndsgexp{gﬂs?)

a =l

—BH, (s, ....s%) +,BZhiZSf‘},

where « runs over the m replicas and h;h; = h?8;;. The next
step is to average over the disorder, assuming it is Gaussian,

on

2 = [ [T[Tast exp{ S £62)

o i=1 ia

- ,BHn(sf‘, ..

oy BN w
.,SN)-i- > ;S[Si ,

and make the same RG transformation as before, Eq. (4).
Again, the partition function may be written in terms of the
new effective spins {s/};_; -1, if we introduce a new weight
function,

P/((sL]) = "7 Tl / [T T1

X P(ys,, + ) P(ys, — t)eP " X eli - (13)

.....

The new coupling constant K’ and the new variance (h')* are
given by

K' =4Jy*K, (W) =2y*h*. (14)

At the ferromagnetic critical point 7/J is invariant under
RG transformations, leading to Eq. (7), and this gives (h')* =
2°='h2, It means that this fixed point is always unstable
with respect to the addition of a random field. The local
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FIG. 1. (Color online) Schematic plot of the phase diagram of
a ferromagnetic model in the presence of a random field. In the
case of the D =1 hierarchical model, this phase diagram holds
for p € (1,3/2). At h =0, the ratio 7/J is invariant at the critical
point. Incidentally, B is just a parameter, and thus at the critical
point J is invariant by itself. This leads to Eq. (7). For & > 0, the
renormalization group flow departs from this fixed point toward a
second fixed point on the vertical axis. At this fixed point neither J
nor A is invariant, as they both get renormalized [see Eq. (14)]. In
any event, their ratio /4 /J is invariant, and this leads to Eq. (15). The
red line is the critical line, separating a ferromagnetic phase from a
paramagnetic phase. Blue arrows are sketches of the renormalization
group flow near the critical line.

renormalization group flow departs from there versus regions
of higher disorder and thus at the relevant RF-fixed point one
expects that 4/J is invariant, even if neither J nor 4 are. This
may only happen if 7 = 0. Moreover, the RG invariance of
h/J implies that the value y at this fixed point is given by

y =272 (15)

A detailed description of the renormalization group flow
in this model can be found in Ref. [59], while a pictorial
representation of this flow is given in Fig. 1. This relation

leads to
1 [{]& ’
m? = 2Tn(<z si>> x N?73, (16)

i
which can be used to evaluate n and 7. This last critical

exponent is defined from the disconnected correlation function
Caise(r) = (5i){si1r) a8 Caisc(r) ~ r= (D=4 for r > 1. Thus

Xaise = Y Caise(r) o« Nm® oc N2, (17

p
In a one-dimensional system it can also be expressed as

dr -
Xdisc,L(h = hc) = A m ~ L4 TI’ (]8)

and thus comparing Eqgs. (17) and (18) we get n(p) = 6 — 2p.
In random field models 7 is still defined from the connected
correlation function as Ceonn(r) = (8iSi4r) — (Si)(Si+-) and

PHYSICAL REVIEW B 90, 024203 (2014)

thus at the critical point xcom,z scales with N as in Eq. (10).
This equation may be now compared to the other definition of
the connected susceptibility xconn = Tdm/dH, where H is a
uniform field that gets renormalized according to H' = 2y H
and T ~ J inthe region 7 /J < 1. Equation (15) implies that
J' =2°"17J at the zero temperature fixed point and after n
steps of the renormalization procedure, we get H ~ (2y)™" ~
N'/2=r _while the coupling constant scales as J ~ N'~”. This
leads to
_ d_mN i @\1/2  arp—1

Xeom =T 7 JdH(m ) NP 19
From Eq. (10) we get n(p) = 3 — p, in the same way as in the
pure model. Therefore n = 7/2 [51], leading to 8(p) = p — 1
for every p. The same result for 6 can be obtained by looking at
the RG exponent associated with J. In fact, the scaling theory
at T = 0, developed by Bray and Moore [9], assumes that J
gets renormalized even at the critical point, but that the ratio
h/J is invariant, and 6 appears in this calculation as the RG
exponent associated with J: J' = b? J, where b is the rescaling
factor.

If we make a Gaussian ansatz for the weight function,
Eq. (13) implies that the mean-field value of v is given by
1/(p — 1) [37,51], as in the pure case. The non-mean-field
region is given by p € (4/3,3/2) and again hyperscaling
relations, e.g., Eq. (1), may be used to compute the upper
critical value of p. In fact, they are valid only in non-mean-field
regions and are satisfied at the upper critical dimension by
classical indices,

_2-p
-1

2

= o, =z (20)

where again we used that here D = 1 and that the mean-field
value of « is zero.

III. CALCULATION OF v

The hierarchical structure of the Hamiltonian implies that

L
Hy(s1, ... o50) = H" (51, . oson1)

+ HE (41 s0) + A g (21

where N = 2" is the number of spins,

o 2
A?Rz—h(§2&> (22)
i=1
is the interaction term, and J, = (c¢/4)" = (1/2°)". This
relation is not spoiled by a random field; the only dif-
ference with respect to the pure case is in the starting
condition. In fact, in the pure case, Py(s) = P}"(s) =
1/2[6(s — 1) + (s 4+ 1)] while in the presence of disorder
Py(s) = P(fure(s) exp[Bhs]/2 cosh(Bh), where h is the random
field acting on s. This equation may be used to find a recursion
equation for the probability P;(M) that a system of 2/ sites has
magnetization given by M. P;(M) is defined by

P(M)~

2!
S M= s | et (23)
{sidicy i
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where the symbol ~ means that a normalization factor
is understood, and the recursion equation obeyed by the
probabilities reads

21—]
P(M) ~ "M N P(S)P(M =), (24)
S§=—2I-1

The sum is done over all the possible magnetizations of the
smaller systems, that is, § = {=2/7!, —2/-1 42 —2/-1 4
4,...,2'=1}. This equation may be used to calculate the
moments of the distribution P;(M) up until the last level of
the interaction; it holds whatever 7 and h, and thus it is
suitable to study the transition at 7 > 0 both by fixing the
temperature and tuning the variance of the random field and
vice versa. So, the critical exponents of the RFHM can be
already obtained at 7 = 0, and thus we decided to study the
phase transition at 7 = 0 using the algorithm that Monthus
and Garel have recently developed [37]. This algorithm finds
the ground state of a RFHM sample in a linear time, a
part from logarithmic corrections, and it is faster than the
T = 0 limit of Eq. (24), whose time complexity is quadratic.
It is based on the observation that in the presence of an
external uniform field H, the energy of a configuration C
is linear in H, E(C) = —M¢H + ac, and that as H grows,
the ground state magnetization also grows. This property is
called the ‘“no-passing rule” [60,61] and, in other words,
the collection of ground states for different values of H is
ordered in magnetization: The magnetization of the ground
state is a nondecreasing function of H. The magnetic field at
which there is a change in the ground state corresponds to a
collective rearrangement of spins. This phenomenon is called
equilibrium avalanche. Given a configuration made by 2’ sites,
we can divide it in its left and right part, each one containing
2'=1 sites. The relation between ac,, dac,, and ac has been
computed in Ref. [37],

ac =ac, +ac, — Mg, Mc =My + Mg,  (25)

and thus, given the ground state list of the left and of the
right part, we can construct the ground state list of the
total system versus H. These lists contain no more than 2!
configurations [37] and thus this algorithm takes a O(N)
time. We checked for several samples that the ground state
magnetizations obtained by the 7 = 0 limit of Eqgs. (24)
and (25) are the same, and since we have to average over many
disordered samples, Eq. (25) is the best option to compute the
critical exponents.

For each p we studied around N = 80000 samples at
different values of & (typically we studied 15 or more values of
h). For each sample made by N = 2" = 2%! sites we extracted
N = 2% ground state magnetizations of systems whose size
is N = 2X. We considered k € (6,21). In fact, the hierarchical
structure of the Hamiltonian makes it possible to divide a
sample in two subsamples and calculate their magnetizations
before considering the coupling between spins of the two
different parts. Each subsample can be further divided and
this procedure can be repeated until the single spins. So, at the
end, we have many more samples to average over for small
sizes than we have for bigger sizes. For each & and k we have
then randomly picked up n;/2 samples and averaged their
squared ground state magnetization, repeating this procedure

PHYSICAL REVIEW B 90, 024203 (2014)
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FIG. 2. (Color online) Plot of the curves Oy (h) vs h, where Oy (h)
is defined in Eq. (26). A, is given by the point where different curves
cross. Inset: We plotted Oy (h)/Oy(h) in order to show that as k
grows, this ratio goes to one as it should, being Oy (h), a size-invariant
quantity. In this plot p = 1.465.

M times. We found that M ~ 50 was already large enough.
We used these data each time to compute the observable

Ox(h) = L¥mP(h), y=3—p, (26)

where m® has been defined in Eq. (16). This quantity is
size invariant at the critical point [see Eq. (15)], and thus the
intersections of these curves, for different values of k, give the
critical value of & [62] (see Fig. 2). The derivative 0 Oy1/9 Ok
at the critical point leads to vy, the values of v at the level k, in
a way that will be exposed later [see Eqs. (29) and (28)]. The
errors over v have been calculated from the standard deviation
of the M instances of these quantities, and the asymptotic
behavior of the v has been studied to get v = limy_, o, V¢ (see
Fig. 3).

The asymptotic values of v may be computed from finite
size scaling [57,63-65] as follows. In a system of linear size
L, a size-invariant quantity at the critical point has the form

O(L,t)= fGL"",L=?)
= O+ fitL"" + fJL™° + fot LV 4 ...
(27)

where 7 is the rescaled difference from the critical temperature
t =B —B:)/Bec, L is the size of the system, w is the
correction-to-scaling exponent, v is defined from & ~ =, and
O, is the critical value of O. In the T = O transition of the
random field model, the only relevant variable is the rescaled
difference from the critical variance, so Eq. (27) is still valid
if we replace ¢ with t = (h — h.)/h.. In Eq. (27) nonlinear
terms in ¢ can be neglected since we assumed to be near the
critical point. A scale-invariant quantity has the property to
remain constant under RG transformations at the critical point
and thus, in different size systems, O, is a universal value that
does not scale with L. The value of & at which O(L,¢) and
O(L',t) crosses is defined by /] and goes to i, as L grows.
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FIG. 3. (Color online) Collapse of the curves Oy(h) vs L'/ (h —
h.) for p =1.465. Good collapse occurs just for large enough
systems, and thus here we have taken k from 13 to 21. Inset: Plot of
the curve v, vs k, computed as in Eq. (29), to get the asymptotic value
of v. The errors over v;’s have been computed with the bootstrap
method, as explained in the text. For this particular value of p we
found 1/v = 0.197(2) [see Eq. (28)]. The red line is just as a guide
for the eye.

Thus we have
00y 90y dh  fIL' + fLLN
30,  dh 90p  fILYV + fLVv-e

and taking logs on both sides we obtain

a0 1 o
logb(30L>hz_U+AL , (28)
where b is defined as L' = bL and is equal to 2, and A a
constant. The left-hand side of this equation gives vy,

1 < 0 Ox+1 >

— = log,

Vi 0 Ok
where we recall that k& = log,(N,). We used these equations
to compute v, with the scale-invariant quantity Oy (¢) defined
by Eq. (26), where k =6, ...,17. We studied even bigger
samples, until k = 21, but the error bars for k > 17 are usually
too big to be significative. In each of the M extractions
of data, we computed the asymptotic value of the quantity
in Eq. (29), let us call it vS, where S=1,...,M, and we
computed v and its error as the mean and standard deviation
of the histogram of the v5. The procedure here illustrated is
called bootstrap [57,64].

In Fig. 4 we show the values of 1/v computed at various
p’s. We also plotted the results we obtained for the pure model,
which can be compared with the ones computed in Ref. [40].
The pure model can be studied using Egs. (24) and (29). In
the pure case, as well as for the disordered case, we studied
systems up to 2!7 spins, and the asymptotic critical exponents
have been computed using Eq. (29) (see also the inset of
Fig. 3). The pure model has been studied using Eq. (24) and
we see that Eq. (29) works quite well in the non-mean-field
region, apart from the limits p — 3/2 and p — 2, where we
have seen that logarithmic corrections have to be taken into

’

) (29)

hi
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FIG. 4. (Color online) Inverse of the critical exponent v as a
function of p in the RFHM. The red points stand for the values
of 1/v computed in this work, while the green lines are the known
mean-field values. In the disordered case the non-mean-field region
(p > 4/3) was unexplored, and here 1/v has been computed using
the algorithm developed in Ref. [37]. Inset: Inverse of the critical
exponent v as a function of p in the pure hierarchical model. Blue
points have been computed by Kim and Thompson [40]. Here we
confront these values with the ones we computed using Egs. (24)
and (29) to show that our method works well almost in the whole
non-mean-field region, apart from the extremes.

account. Thus, apart from the regions where p — 4/3 and
p — 3/2, we expect that the values we obtained are very
accurate.

IV. RELATIONS BETWEEN CRITICAL EXPONENTS

In this section we discuss all the other critical exponents of
the RFHM. The exponent §, defined from the vanishing of the
magnetization in presence of a magnetic field H, m ~ H'/%,
has an analytical expression, shown in Eq. (35). All the other
critical exponents depend only on v. We first review the critical
exponents of the pure hierarchical model. The hyperscaling
relation @ = 2 — Dv can be used to compute the non-mean-
field value of o, where « is defined as 8,2f ~ ¢t % Since D =1,
we have

a(p) =2 —v(p). (30)

While this relation gives only the non-mean-field value of
o, which is zero otherwise, the other scaling relation y =
v(2 — n) is more general and it is also valid in the mean-field
region. Thus, the exponent y, defined from the divergence of
susceptibility at the critical temperature y ~ ¢77, is given by

y(p) =v(p)(p = D), €1V}

whatever p and leads to y =1 in the mean-field re-
gion. In general, § can be computed from 7 using the
relation § =(D+2—1n)/(D —2+n) (see, for example,
Refs. [57,63,64]) and thus we have the following analytical
expression:

_ P
3P =5 (32)
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We can also estimate 8 from the relation y = S(§ — 1), defined
from m ~ t#, which turns out to be equal to

Ao =(1- g) v(p). (33)

These critical exponents have been computed by Kim and
Thompson [40], who tabulated very accurate estimations of
the values of v(p) (see the inset of Fig. 4) in the non-mean-
field region and also gave the analytic expression for §(p) in
Eq. (32).

In the RFHM the hyperscaling law is modified ac-
cording to o =2 — (D — 0)v, where 6 has been defined
in Eq. (1) and we have 6(p) =2+ n(p) —n(p)=p —
1. Thus, while the non-mean-field critical exponent « is
given by

a(p) =2 = (2= p)v(p), (34)

Eq. (31), which governs the behavior of y, is still valid. In the
presence of a random field § can be expressed in terms of n
and 6 using the relation § = (D — 2n +7)/(D — 4 +7) (see,
for example, Refs. [57,63,64]), and thus we get

8(p) =

3-2p G

in the non-mean-field region. At last, using again the scaling
relation y = B(§ — 1), we obtain

B(o) = (3 — p) v(p). (36)

This equation is consistent with Eq. (16) because in a finite
size system m® (L) ~ L™2#/V at the critical point [see also
Eq. (26) and the inset of Fig. 3].

At this point, we may notice that Eq. (35) reduces to Eq. (32)
if we replace its argument p by 2 — 1/p, i.e.,

Re(2 —1/p) = 5pure(,o)- 37

We can ask if a similar replacement also works for the
other critical exponents. This would lead to the dimensional-
reduction rule

1
2 — prv

PRF —> (38)
Thus, we can compare the respective exponents y(p)’s
obtained through Eq. (31). First of all, it is easy to see that
Ypure(3/2) = yrr(4/3) =1, as follows from Eq. (31). As we
move from the respective mean-field thresholds, our data are
not very good (see Fig. 4). Anyway, we can use perturbative
results obtained in Refs. [40,51], which give

Vpure (/0 = % + E) =2- %6 + 0(62),

39

vRF(ng—i-e):S—i—O(ez). ©9
These expansions may be used to compare yrp(2 — 1/p) and
Ypure(p) in p = 3/2 4 €. It turns out that they are both equal to
1 4 (4/3)e. Thus Eq. (38) also works for y’s in perturbation
theory, at least at the first order in €. In the non-mean-field
regions, our data suggest that this relation breaks down.

PHYSICAL REVIEW B 90, 024203 (2014)

For example, at prp = 1.45, which would correspond to
Ppure ~ 1.818, a spline interpolation of the data obtained
in Ref. [40] gives ypure(1.818) = 0.548(1) while according
to Eq. (38) we should get ygrp(1.45) = 0.507(3). Similar
discrepancies are also found for other prg’s in the non-mean-
field region, where we expect that our results are very accurate
(see Fig. 4): The mapping between the random field model
and the pure model described above seems to break down
somewhere below the mean-field threshold. As our data are not
accurate in this limit, we are not able to detect the point where
this breaking occurs. Moreover, the relation noted here, given
in Eq. (38), corresponds to the famous one, Dgrg — Dgp — 2,
which is found for short range D-dimensional models. This
may be seen using the usual mapping between these models
and long range one-dimensional models [27], [30]. Thus,
the breakdown of this relation is similar to the dimensional-
reduction breaking of the D-dimensional short range
models [4-6].

V. SUMMARY AND CONCLUSIONS

In this paper we computed the critical exponent v of
the RFHM for many non-mean-field values of p. Then, we
found an analytic expression for the critical exponent §(p),
Eq. (35). This expression and Eq. (32) lead to the relations (37)
and (38) between the critical exponents of the RFHM and of
the pure hierarchical model. This relation turns out to hold
for § whatever p, while it is not exactly satisfied by the other
critical exponents in the non-mean-field region. While this
result suggests that some features of the dimensional-reduction
breaking can be found also in the problem we studied, a
comparison between a short range model in D dimensions
and a one-dimensional long range models is not always
possible. In fact, as was accurately studied in Ref. [30] and
discussed in Ref. [31], it is very difficult to compare these
two models when D is much smaller than the upper critical
dimension, that is, 6 for the RFIM. Thus we do not expect
to have a satisfying agreement between the RFIM results
in D =3 and the corresponding ones in the RFHM if we
use the usual relation [27,30] between p and D. In fact,
we do not. In Ref. [16] Martin-Mayor and Fytas computed
7 =1.0268(1) and v = 1.34(11) for the RFIM in D = 3.
The p corresponding to D =3 is p = (2 — g /2)/D + 1 =
1.49550(2) [31], where SR stands for short range. What we
should compare is vir[p = 1.49550(2)] = 14(3), where LR
stands for long range, and Dvsgr(D) = 4.0(3) for D = 3, and
it is clear that they do not agree. The situation improves in
D = 4, where it is possible to estimate v = 0.82(6), leading
to Dvsr(D) = 3.3(2), from the results given in Ref. [18], and
7 = 0.45(17). The p corresponding to D = 4is p = 1.444(21)
at which we get v r[p = 1.444(21)] = 4.2(8).

Another interesting comparison can be done with the
critical exponents of the long range model evaluated in
Refs. [31,32]. In p = 1.25 our result 1/v = 0.260(6) has to
be compared with the long range value 1/v = 0.262 £ 0.035
obtained in Ref. [32]. Thus they are found to be in good
agreement as expected because p = 1.25 belongs to the
mean-field region, where we expect 1/v =0.25. In p =
1.4 we found 1/v = 0.288(4), which we can compare with
the estimations given in Ref. [31] [1/v = 0.316(9)] and in
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Ref. [32] [1/v = 0.29(3)]. Even if our result seems to be
compatible with the one given in Ref. [32], it is not with
the one found in Ref. [31]. However, we did not expect to
find agreement between the critical exponents of the RFHM
and of the long range model in the non-mean-field region,
since they are not thought to be in the same universality
class [33].
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