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Ising model on a random network with annealed or quenched disorder
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We study the equilibrium properties of an Ising model on a disordered random network where the disorder
can be quenched or annealed. The network consists of fourfold coordinated sites connected via variable length
one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature
and other equilibrium thermodynamic properties, including those associated with one-dimensional fluctuations
arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the
quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad
random distribution of interaction parameters. The former represents a situation where the time scale associated
with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the
annealed case models the situation where this is not so. We find that the transition temperature and the entropy
associated with one-dimensional fluctuations are always higher for quenched disorder than in the annealed case.
These differences increase with the strength of the disorder up to a saturating value. We discuss our results in
connection to physical systems where a broad distribution of interaction strengths is present.
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I. INTRODUCTION

Spin models on random networks are relevant to many
physical phenomena and therefore have been studied in a
variety of contexts. Early studies of phase transitions in
spin models on random networks were concerned with the
critical behavior of randomly diluted magnetic systems [1,2].
The system-spanning percolation cluster [3] just above the
percolation threshold has a ramified network structure with
fractal dimension less than the physical dimension of the
system; hence it is necessary to work out the critical behavior
of spin models defined on a random network to develop
an understanding of phase transitions in dilute magnets
near the percolation point. The well-known “node-link-blob”
descriptions of percolation clusters [4,5] were developed to
address this problem. Spin models on artificially constructed
regular fractal networks were also studied [6,7]: an advantage
of these models is that their equilibrium thermodynamic
properties could be calculated exactly for some of the relevant
networks. In addition, such studies were expected to provide
some insight into the behavior of spin systems on real fractal
networks.

More recently, there has been an explosion of research
activity on random networks that are believed to describe
various systems of interest in physics, biology, engineer-
ing, and social sciences [8–12]. Some of these studies
have concentrated on structural aspects of random networks
[13–15], while others have investigated the collective behavior
of interacting objects residing on different kinds of random
networks of interest. Models in which spin variables defined on
random networks interact with one another provide examples
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of systems that exhibit nontrivial collective behavior, such
as phase transitions [16]. For this reason, a variety of models
with Ising [17–21], Potts [22,23], and[24,25] XY spins, defined
on different kinds of random networks, have been studied in
recent years using both analytic and numerical methods. These
studies have revealed many interesting features [26] in the
equilibrium and dynamic behavior of spin systems on random
networks.

Disorder is an essential aspect of spin models defined on
random networks. Depending on the network being consid-
ered, disorder may appear in different aspects of the spin
model, such as in the number of spins interacting with a
particular one (the degree of connectivity may be different
[27,28] for different nodes at which the spins are located)
and the strength of the interaction between pairs of spins
(the interaction strength may be different for spin pairs in the
network that are separated by different distances). The disorder
in such systems, arising from the randomness in the structure
of the network, is generally assumed to be quenched in the
sense that for any realization of the model the thermodynamic
degrees of freedom associated with the network structure are
fixed, and therefore the network does not evolve in time. In
theoretical treatments of the equilibrium behavior of such spin
systems, the free energy is therefore averaged over different
realizations of the disorder [1]. However, the validity of the
assumption of the disorder being quenched depends crucially
on the comparison of relative time scales—real networks do
evolve in time and the assumption of quenched disorder would
not be valid unless the time scale over which the network
changes is orders of magnitude larger than the time scale of
the spin fluctuations. If these two time scales are comparable to
each other, or at least not too different, then the disorder should
be considered to be annealed and the partition function of the
spin system (not the free energy) should be thermodynamically
averaged over different realizations of the disorder in the
network, to obtain a correct theoretical description of the
equilibrium behavior. Thus, the disorder in the spin system
would change from quenched to annealed if the time scale for
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the evolution of the network structure decreases from being
much longer than that for spin fluctuations to values roughly
comparable to, or shorter, than the typical relaxation time of
the spin variables. In this paper, we address, within the context
of a simple specific model, the question of how the equilibrium
behavior of a disordered spin system (specifically, its behavior
near a phase transition) would be affected by such a change in
the dynamics of the network on which the spins reside, so that
the fluctuations associated with the disorder would have to be
properly included in the thermodynamics calculations.

The question of how disorder affects the critical behavior
near a phase transition has been extensively studied. Here, we
consider spin systems in which the disorder does not introduce
frustration as it might arise, for example, from the presence
of both ferromagnetic and antiferromagnetic interactions. In
such systems, the presence of quenched disorder changes the
universality class of the phase transition if the specific heat
exponent for the transition in the system without disorder is
positive (the Harris criterion [29]). The presence of annealed
disorder usually does not change the universality class of
the phase transition because one recovers an effective model
without disorder after averaging the expression for the partition
function over the disorder variables (in some cases, the pres-
ence of annealed disorder leads to a “Fisher renormalization”
[30] of the critical exponents).

A question that has not received much attention in the
recent literature, although touched upon in some older work
[31–33], is how the transition temperature itself, and other
thermodynamic quantities, are affected as the nature of the
disorder is changed from quenched to annealed, reflecting
a difference in the network dynamics. This is one of the
main issues addressed in the present study. The answer to this
question is not universal—it depends on the specifics of the
system being considered. Earlier studies [31,33] considered
disordered spin models in which the distribution of the
interaction parameter is narrow, such as magnetic systems
with bond dilution in which the interaction parameter can
have two values, J and 0, and models in which it has
a Gaussian distribution with width much smaller than the
average. These studies show that the thermodynamic behavior
and the transition temperatures of quenched and annealed
systems are similar. In contrast, in the model we consider
here the distribution of the interaction parameter is very broad
(log-normal; see below). In such cases the differences between
quenched and annealed properties with this kind of disorder
have not been previously analyzed in any detail. We give below
examples of systems for which this question is relevant—our
work was partly motivated by these problems, although it is
quite independent of them.

The possibility of supersolid behavior [34] in 4He arising
from superfluidity along a random network of dislocation lines
has been considered [35–40] recently. Quantum Monte Carlo
simulations [35,36] have shown that superfluidity can occur
near the core of a dislocation line in solid 4He or along grain
boundaries [40]. The transition in a model in which super-
fluidity occurs near dislocation lines has been investigated
[37–39] theoretically, assuming a frozen dislocation network
(quenched disorder). However, dislocation line segments do
fluctuate in time and it has been suggested [41] that this motion
may suppress the local temperature of superfluid ordering.

Since the dislocation motion changes the nature of the disorder
in the superfluid problem (described by a ferromagnetic XY
model) from quenched to annealed, a relevant question is how
the nature of the disorder affects the transition temperature.
Although the initial experiments [42] on supersolidity are
now believed [43] to reflect an elastic anomaly, the question
of how the motion of dislocation line segments affects
superfluid ordering is important because of the occurrence of
supersolid behavior arising from superfluidity along a network
of defects has been established in numerical studies [35,36,40].
The effective ferromagnetic interaction between superfluid
variables located at nearest-neighbor nodes of a disordered
dislocation network falls off exponentially [37] with the length
of the network segment that connects the nodes. If the nodes are
distributed randomly in space, then this effective interaction
would be a random variable with a very broad distribution.

More generally, there are other systems of interest [44–47]
where the effective interaction between neighboring spins is
a random variable with a broad distribution. A system of
this kind that has received a lot of attention in recent years
is dilute magnetic semiconductors [44,45] in which spins
of localized holes interact ferromagnetically via the spins
of magnetic impurities present in the system. The quenched
disorder here arises from the random locations of the holes,
with the interaction strength falling off exponentially with the
distance between two holes. This results in a broad distribution
of interaction strength—an essential feature of the model we
study here. There is no reliable analytic method for calculating
the transition temperature and thermodynamic properties of
such quenched systems. A comparison of the properties of
quenched and annealed versions of such models would be very
useful: Analytic calculations of the properties with annealed
disorder are possible because they can be mapped exactly [31]
to models without disorder. If the properties of quenched and
annealed versions of models with a very broad distribution of
the interaction strength were similar, (as in [31,33] the case of a
narrow distribution of the interaction strength), then an analytic
calculation of the properties of the annealed model would
be broadly valid for the physically relevant quenched model.
The spin model we study here provides a simple example of
disordered systems with a broad distribution of the interaction
strength.

In this paper, we have studied the thermodynamics of
a disordered ferromagnetic spin model defined on a two-
dimensional (2D) random network, with emphasis on how
the thermodynamics, including the transition temperature, is
affected by a change in the nature (quenched or annealed) of
the disorder. For simplicity, we consider Ising spins (instead
of XY spins which would be appropriate for describing
superfluid ordering). The network is assumed to have the
same connectivity as the square lattice, i.e., every node is
connected to four other nodes. Ising spins are defined both at
these fourfold coordinated nodes and on the links that connect
them. Spins on these one-dimensional (1D) links are placed
uniformly so that the number of spins on a link is equal to
its length measured in units of the spacing between nearest-
neighbor sites. Each Ising spin (whatever its coordination
number) interacts ferromagnetically with its nearest neighbors.
The disorder arises from a distribution of the lengths of
the one-dimensional links, i.e., the number of spins in these
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links. In the dislocation network problem, this distribution
may arise from the roughening of dislocation line segments
[48]. We assume a Gaussian distribution for the number of
spins in each link, and study the thermodynamic behavior
for different values of the average and standard deviation
of this distribution. Since the effective interaction between
two spins at nearest-neighbor nodes falls off exponentially
with the number of spins in the link that joins these nodes
(see below), a Gaussian distribution of the number of spins
in a link implies a very broad, log-normal distribution for
the effective interaction. The thermodynamic behavior is
studied analytically for annealed randomness and via Monte
Carlo simulations for quenched randomness. We find that
the transition temperature with quenched disorder is always
higher than that in the case of annealed disorder with the
same distribution. This difference initially increases with the
strength of the disorder, and eventually saturates for larger
values of a parameter that characterizes the disorder. For both
cases, the specific heat as a function of temperature exhibits
two peaks: a sharp one at the phase transition and a rounded
peak at a higher temperature, reflecting the one-dimensional
fluctuations along the links. The qualitative behavior of the
specific heat (and the associated entropy) in both cases is very
similar, but there are quantitative differences that become more
pronounced as the strength of the disorder increases.

The rest of the paper is organized as follows. In Sec. II, we
describe in more detail the model under study and describe
the methods we follow both for analytic calculations and
simulations. The results obtained from the study of this
model and its relevance to the problems mentioned above are
described in detail in Sec. III. Section IV contains a summary
of the main results and concluding remarks.

II. MODEL AND METHODS

To study the situations described in the Introduction, we
consider a system of two coupled Ising models. It consists of a
system of fourfold coordinated Ising spins (a two-dimensional
system) connected by one-dimensional chains of twofold
coordinated Ising spins. In the chains, each spin interacts
with its two nearest neighbors, while spins at the nodal sites
(crossing points of the chains) interact with their four nearest
neighbors. The scheme is illustrated in Fig. 1. In this figure,
the nodal spins, indicated by red color, interact with their
four nearest neighbors, which belong to four different chains,
while the spins along the one-dimensional chains, indicated by
blue color, interact with their two nearest neighbors. In this
simple network model, a distribution in the number of 1D spins
in the chains leads to randomness in the effective interaction
between 2D spins.

We will denote the two-dimensional spins as Si where i is a
two-dimensional index running from 1 to N2 where N is a very
large number. The number, nij , of spins in the chain connecting
sites i and j dictates the effective “distance” between nodal
spins. Selecting the set nij randomly according to some
probability distribution (see below) leads to the realization of
a random network of coupled spins. The model Hamiltonian

FIG. 1. (Color online) Sketch of part of the coupled Ising system
under study. The (red) arrows at the nodes are fourfold coordinated
Ising spins. They are connected by chains of Ising spins (blue). The
chains have variable lengths.

can then be written as

H = −J

N2∑
i=1

4∑
α=1

Siσα − J
∑
〈ij〉

nij −1∑
α=1

σασα+1, (1)

where Si = ±1 and σα = ±1 are the 2D and 1D spins,
respectively. The σα in the first term on the right are those
connected directly to Si , and the first summation in the last
term denotes the sum over all chains, connecting neighboring
sites i and j . The quantity J is the exchange energy, which we
will set to unity in most of the calculations below. The above
formula assumes all nij > 1. When one of the nij = 0 the
corresponding Si and Sj are connected directly. If all nij = 0
we recover the standard 2D Ising model result with a transition
temperature of Tc/J = 2.26 (we set kB = 1 throughout the
paper). When one of the nij = 1 Eq. (1) must be modified so
that the term corresponding to the chain connecting Si and Sj

is omitted.
The limit in which all chains are of equal length, nij ≡ n,

can easily be considered analytically. To do so, we first
calculate the partition function for a finite 1D chain. Starting
with the Hamiltonian,

H1D = −J

n−1∑
α=1

σασα+1, (2)

it is easily shown from elementary transfer matrix methods
that the entire system can be mapped onto an ordinary square
lattice Ising model, with an effective interaction, J (n), between
two fourfold coordinated spins, separated by a “distance” of n

spins, given by

tanh

(
J (n)

T

)
= tanhn+1

(
J

T

)
. (3)

The free energy for the coupled Ising model at fixed n can
then be calculated based on the standard Onsager result, plus
an additional contribution from the chains of 1D spins linking
the nodal 2D spins. Setting henceforth J = 1, the contribution
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to the free energy from the chains can easily be shown to be
(for one chain)

F1D = −T n log(2) − T (n + 1) log
(

cosh

(
1

T

))

+ T log
(

cosh

(
J (n)

T

))
, (4)

and the contribution from the 2D spins is

F2D = −T log
(

2 cosh

(
2J (n)

T

))

− T

2π

∫ π

0
log

(
1

2
(1 +

√
1 − P 2 sin2 φ)

)
dφ, (5)

where P is defined as

P ≡ 2 sinh
(

2J (n)

T

)
cosh2

(
2J (n)

T

) . (6)

All thermodynamic quantities can then be calculated from
the free energy. We will be interested in the behavior of
thermodynamic quantities such as the specific heat and the
entropy (S) since they are important in understanding how the
behavior of the system near a phase transition is affected by
changes in the dynamics of the network. Other thermodynamic
quantities such as the spontaneous magnetization and the
magnetic susceptibility can also be studied, but we will focus
in this work on the entropy and its derivatives.

In general, we are interested in the case where the nij

vary from chain to chain. Accordingly, we generate a random
Ising network by choosing nij for each chain from a Gaussian
probability distribution:

P (nij ) = e
−(nij −ñ)2

2δ2

√
(2π )δ

, (7)

where ñ is the average of nij (average number of 1D spins
in a chain) and δ the standard deviation of the Gaussian
distribution.

Using this probability distribution, we will investigate,
as explained in the Introduction, how the thermodynamic
behavior is affected by quenched and annealed disorder in
the network. In the quenched case, the value of nij in each
individual 1D chain is fixed but it varies from one chain
to the next according to the Gaussian random distribution.
This serves as a proxy for a disordered network in which the
characteristic time scale for changes in the network is much
longer than the characteristic time scale for spin fluctuations.
For the annealed case, the values of nij are allowed to thermally
fluctuate and this scenario serves as a proxy for a dynamic
network whereby the two characteristic time scales mentioned
above are comparable to each other. In studying the differences
between quenched and annealed disorder, we will focus on
features of the heat capacity such as how the temperatures at
which Cv has peaks (corresponding to 2D and 1D behavior;
see below) change between the two scenarios. Changes in the
peak temperatures depending on the type of disorder will allow
us to address the question of the role that the dynamics of the
network plays in the ordering of the spins.

When one treats the disorder as annealed, the free energy
of our system is

Fa = −T log〈Z〉, (8)

where the angular brackets denote an average over the
Gaussian probability distribution, Eq. (7). Therefore, 〈Z(nij )〉
needs to be calculated. For a Gaussian distribution, this
calculation can be done analytically. By tracing over the 1D
spins in the chains, the model becomes one in which the 2D
spins occupying the nodes interact according to J (n) given in
Eq. (3). Evaluating then the average of the partition function
over the Gaussian distribution, the annealed Ising model is
mapped onto an effective ferromagnetic square lattice Ising
model with equal interactions J (̃n,δ)

a , given by

tanh

(
J (̃n,δ)

a

T

)
=

〈
sinh

(
J (n)

T

)〉
〈
cosh

(
J (n)

T

)〉 , (9)

where the average over the discrete Gaussian probability
distribution indicated by the angular brackets can be easily
performed. Thus, the effective interaction for the annealed
model is simply a function of ñ and δ. The annealed free
energy can then be calculated based on a procedure similar to
the case where n is fixed in each link (no disorder) as presented
in Eqs. (4) and (5).

For a system with quenched disorder, the randomness
is frozen in each realization of the network. We generate
realizations of the network whereby the couplings J (nij ),
satisfying Eq. (3), vary from node to node according to the
probability distribution in Eq. (7) for nij . This corresponds
to a model on a regular lattice with a random distribution of
couplings J (nij ). The free energy in the quenched case takes
the form:

Fq = −T 〈log Z〉, (10)

where the angular brackets still represent an average over
the distribution of chain lengths. Since such a calculation
is analytically intractable, we use Monte Carlo (MC) simu-
lations to study the thermodynamic behavior of the model
with quenched disorder. A standard MC procedure with the
Metropolis algorithm is used in our study. In each run in the
simulation, the heat capacity of the spin system can be obtained
either from the fluctuations of the internal energy or by taking
the derivative of Ē (the overbar denotes MC averaging), the
average energy per spin, with respect to the temperature. By
subsequently averaging the heat capacity over a sufficiently
large number of realizations of the chain length configurations
(over 12 realizations in this study) of nij , we obtain the heat
capacity for the random Ising model with frozen disorder. Each
of the 12 realizations is characterized by a unique random set
of the effective interaction (J (n)) between 2D spins.

For the study of any random network, it is important to be
able to tune the level of disorder. For the current model, the
randomness of the network can be controlled by adjusting the
values of ñ and δ, with the limit δ → 0 recovering the fixed
n coupled Ising model discussed above. Since the number of
1D spins in the chains cannot be negative, we use values of
δ and ñ such that δ/̃n � 0.5. With this choice, there is only a
very small probability of obtaining negative values for nij . In
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such rare cases, in the MC simulation, we set the number of
1D spins in those chains to be two.

The quantity δ/̃n can be used as a measure of the amount
of disorder present in the network. A convenient and more
physical alternative way to characterize the disorder in this
random coupled field model, is via the standard deviation of
J (n). Thus, we define a parameter,

kδ =
√

〈[J (n)]2〉 − 〈J (n)〉2

〈J (n)〉 . (11)

The quantity kδ (which depends also on ñ) quantifies the level
of disorder in the random Ising model in terms of the spread
in the effective interaction between 2D spins. The differences
between the properties of quenched and annealed networks
can be analyzed in terms of either δ/̃n or kδ with a wide range
of values considered for both ñ and δ.

III. RESULTS

In this section we present the results of our study on
the random Ising model. We start by briefly discussing the
fixed n model (δ = 0, i.e., no disorder) and then proceed to
the random model with δ �= 0. For the random model, we
analyze differences between quenched and annealed disorder
for both components of the coupled field—1D and 2D—by
studying the behavior of the heat capacity and entropy. For the
numerical (quenched) results, we have simulated samples with
the number of 2D spins (N × N ) from 16 × 16 to 30 × 30,
with periodic boundary conditions. Even though the values of
N used in our simulation are relatively small, the total number
of spins, including the 1D ones is much larger: For, e.g., a
sample network with N = 20 and ñ = 19 the number of spins
is approximately N × N + 2 × N × N × ñ = 15 600. Finite
size effects in the numerical simulation are also analyzed in
order to estimate the error margin associated with our results.
These are indicated by error bars where warranted.

A. No disorder

For fixed n, the energy and heat capacity can be calculated
analytically starting from the free energy expressions in the
previous section, Eqs. (4) and (5). Typical results for the
temperature dependence of the energy and heat capacity
per spin are plotted in Fig. 2. Since, when considering the
disordered (δ > 0) case below we will have to take recourse,
in part, to numerical methods, we have also computed the same
quantities numerically, to test the same numerical procedures
that will be employed later. These results are also plotted
in Fig. 2. As mentioned above, the units of temperature
throughout this discussion are such that J = 1. The numerical
results shown there are based on obtaining the average Ē over a
sufficiently large number of MC steps per spin: Typically about
16 000 turn out to be needed, and then numerically taking the
derivative of this average with respect to temperature to obtain
the heat capacity. Despite the modest size of N chosen for this
display, it is clear that the numerical results agree sufficiently
well with the analytic results, thereby validating our numerical
procedures.

In the heat capacity, features associated with both 2D and
1D spin fields can be seen - the sharp peak in Cv at T ≈ 0.5
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FIG. 2. (Color online) Comparison of analytic and MC results.
(a) Plot of the average energy per spin Ē vs temperature, for fixed
chain length. The numerical results are for N = 16 and n = 19.
(b) Plot of the corresponding heat capacity per spin vs temperature.
The parameters are the same as in part (a).

is associated with the 2D spin field (and the peak position will
be henceforth referred to as T 2D

c ) while the broad feature in
the heat capacity above T ≈ 0.6 is associated with the 1D spin
field. The heat capacity eventually approaches zero at higher
temperatures.

For this δ = 0 case, we should recover the standard 2D
Ising model results with an effective interaction J (n) and this
provides an additional check. Thus, in Fig. 3, we plot T 2D

c

vs n based on both the analytic calculation (that is, on the
Onsager result for J (n)) and the numerical simulation. Again,
the numerical results agree with theory. At n = 0 we recover
the well-known 2D Ising model transition temperature value,
as expected. As n increases, T 2D

c decreases indicating that
ordering occurs at lower temperatures as the effective coupling
between 2D spins decreases or, viewing it in a different way,
as the 1D part of the coupled fields becomes more prominent.
The relation between T 2D

c and n can also be obtained (as
an alternative to the J (n) calculation) via a simple scaling
argument: the ratio of n + 1 (the number of 1D links between
the nodal spins in the network) to the 1D Ising correlation
length—exp( 2

T
) (at T 	 1)—should remain a constant for all

n at the 2D critical temperature. From this scaling argument,
we obtain the following relation:

T 2D
c (n) = T 2D

c (n = 0)

1 + 0.5T 2D
c (n = 0) log(n + 1)

, (12)
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FIG. 3. (Color online) Plot of T 2D
c vs number of spins (n) for the

fixed n model (δ = 0). The symbols represent, as indicated, analytic
results from Onsager’s formula and numerical results. Numerical
results are for N × N = 20 × 20. The continuous curve is the scaling
result from Eq. (12).

where T 2D
c (n = 0) is the 2D transition temperature at n = 0.

This result is plotted as the continuous curve in Fig. 3.
While comparing the analytic results (which are in the

thermodynamic limit) to the numerical ones, for T 2D
c , as in

Fig. 3, finite size corrections are inevitably present. It is shown
in Ref. [49] that for a 2D Ising model, the difference in Tc

between a finite size system (Tc for a finite system is defined
to be the temperature at which the heat capacity peaks) and
one in the thermodynamic limit is always positive and given
by

Tc(N ) − Tc(∞)

Tc(∞)
= a

N
, (13)

where a = 0.3603, and Tc(N ) and Tc(∞) are the critical
temperatures for an N × N 2D Ising model and in the
thermodynamic limit, respectively. For the random coupled
field model, the result above is modified due to the presence
of n 1D spins. The modification to Eq. (13) due to n can be
calculated by rewriting the equation above in terms of the
network model with effective interaction given in Eq. (3):

J (n)(∞)/T − J (n)(N )/T

J (n)(N )/T
= a

N
, (14)

where J (n)(N ) denotes J (n)(Tc(N,n)), with Tc(N,n) being the
2D transition temperature for an N × N system with n spins
in each link. It then follows that

Tc(N,n) − Tc(n)

Tc(n)

= a[1 − tanh2 (J (n)/Tc(n))]J (n) tanh (1/Tc(n))

Nn tanh (J (n)/Tc(n))[1 − tanh2 (1/Tc(n))]
, (15)

where Tc(n) ≡ Tc(∞,n) and J (n) ≡ J (n)(∞) are the 2D tran-
sition temperature and effective interaction in the thermody-
namic limit. The n dependence in the equation above also
enters through the effective interaction J (n). The finite size
corrections to T 2D

c obtained for our numerical model agree
well with the prediction in Eq. (15) above.
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FIG. 4. (Color online) Plot of kδ [see Eq. (11)] vs δ/̃n for three
different values of ñ.

B. Disorder

After having validated our procedures through the fixed n

version of our model, we now turn to the random coupled
field case. We tune the level of disorder in the random
network by adjusting the values ñ and δ of the Gaussian
distribution, Eq. (7). Larger values of δ imply a broader
Gaussian distribution. As mentioned above, a useful approach
to characterize the level of disorder in terms of the effective
interaction between 2D spins is the parameter kδ as defined
in Eq. (11). Since the effective interaction between the 2D
spins depends on nij , randomness in nij is reflected on J (n) as
well. In Fig. 4, we present a plot of kδ vs δ/̃n. The parameter
kδ which is simply the standard deviation of the effective
interaction between 2D spins, increases with δ/̃n as would
be expected, and it is roughly proportional to it. Note that kδ

is also temperature dependent. This dependence is weak: In
Fig. 4 we have set the temperature to the average annealed
value of T 2D

c for each ñ.

1. Results for 1D fluctuations

In quantifying differences between quenched and annealed
disorder we first look at the 1D field. In each case, we calculate
the entropy associated with the 1D fluctuations (S1D) from

S1D =
∫ T2

T1

Cv

T
dT , (16)

where the temperature limits T1 and T2 are set, in order to take
into account the 1D contribution to the total heat capacity, as
follows: The lower limit T1 is that of the minimum occurring
between the sharp 2D peak and the broad 1D peak (see Fig. 5),
while the upper limit T2 is taken to be sufficiently high so
that there is no longer any difference between the quenched
and annealed specific heats (one may therefore think of T2

as being infinite). In Fig. 6, we plot this difference in the
entropies for the quenched and annealed systems, associated
with 1D fluctuations, for several values of N , ñ, and δ. The
weak dependence on N is due to finite size effects in the
numerical calculation for quenched disorder. The variation
with δ/̃n illustrates the actual dependence of this difference
on the disorder. We observe that the quenched entropy S1D

q is
always greater than S1D

a , the annealed entropy. As the level of

024202-6



ISING MODEL ON A RANDOM NETWORK WITH ANNEALED . . . PHYSICAL REVIEW B 90, 024202 (2014)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.4  0.6  0.8 1  1.2

C
v

T

Quenched
Annealed

FIG. 5. (Color online) Plot of heat capacity vs temperature for
ñ = 29 and δ = 7. Dashed lines indicate T1 and T2. T1 is the lower
temperature limit and T2 the upper temperature limit in Eq. (16).

disorder in the 1D chains in the network increases, the entropy
difference between the quenched and annealed cases increases
and then saturates at δ/̃n ≈ 0.25.

The heat capacity due to the 1D chains alone (in the
absence of any 2D spins) can be calculated analytically for
both quenched and annealed disorder from Eq. (4) and the rest
of the discussion in Sec. II. The temperature dependence of this
1D heat capacity, evaluated for both types of disorder, is shown
in Fig. 7. For the example plotted there we see that beginning
at T ≈ 0.6, the quenched disorder heat capacity takes on a
higher value than the annealed disorder heat capacity. This
mostly accounts for the difference in the 1D contribution to
the entropy of the coupled system, as evaluated above from
Eq. (16) and plotted in Fig. 6.

2. Results for 2D fluctuations

We concentrate here on the differences between quenched
and annealed heat capacity due to 2D fluctuations. Since
the chain contribution to the heat capacity can be calculated
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FIG. 6. (Color online) Plot of the difference between quenched
and annealed entropy associated with 1D fluctuations, as calculated
from Eq. (16), plotted vs δ/̃n.
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FIG. 7. (Color online) Plot of the contribution of the chains to
the heat capacity (see text) for quenched and annealed disorder vs
temperature. The average number of spins in the 1D chains, ñ, equals
19 and δ = 9.

analytically for both quenched and annealed disorder (see
discussion in connection with Fig. 7), we isolate the 2D
contribution to the specific heat by substracting the chain
contribution from the total heat capacity. The total Cv is
evaluated analytically in the annealed case and numerically for
quenched disorder. The heat capacity due to 2D fluctuations,
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FIG. 8. (Color online) The contribution to the heat capacity from
2D fluctuations (see text), plotted vs temperature for both annealed
and quenched disorder. The peak in the heat capacity occurs at T =
T 2D

c . In the top panel ñ = 35 and δ = 2 and in the bottom panel
ñ = 29 and δ = 2.
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as obtained in this manner, is shown in the two panels of
Fig. 8, which correspond to two different sets of values of ñ

and δ. We see that the results differ for quenched and annealed
disorder. An important feature of this difference is that the
2D transition temperature (T 2D

c ) for a frozen (quenched)
random network is always higher than that obtained for the
annealed network. In the context of our random network of
Ising spins, these results imply that magnetic ordering always
takes place at higher temperatures for frozen disorder than
if the disorder is allowed to anneal. In other words, as the
time scale associated with the dynamics of the network on
which Ising spins reside changes from being much larger
than the time scale of spin fluctuations (quenched disorder)
to a scenario whereby the two time scales are comparable
(annealed disorder), the phase transition of the spin system
is suppressed. In terms of the dislocation network problem
described in the Introduction, our results based on a simplified
Ising model suggest that as the dynamics of the dislocation
network become important (i.e., when motion of dislocation
line segments takes place over time scales comparable to
those of fluctuations in the superfluid field), the associated
phase transition (in this case superfluid ordering) would be
suppressed. Even though superfluid ordering is described by
the ferromagnetic XY model, the simplified Ising model we
have considered captures the underlying physical principle:
The additional fluctuations present in the annealed case will
lower the transition temperature.

In Fig. 9, we plot the difference in T 2D
c between networks

with quenched and annealed disorder. The error bars arise
solely from numerical uncertainties in the (quenched disorder)
numerical results: For each point in Fig. 9, the quenched
2D transition temperature T 2D

c,q was obtained by averaging
over 12 realizations of nij in the 1D chains in the network.
The error bar associated with each data point is the standard

-0.005
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 0.04
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FIG. 9. (Color online) Plot of the difference between the 2D
transition temperature (taken to be the temperature at the 2D peak of
the specific heat) for quenched disorder, T 2D

c,q , and the corresponding
value for annealed disorder, T 2D

c,a . This difference is plotted vs
the parameter kδ [see Eq. (11)]. The error bars denote numerical
uncertainty. The difference between the 2D peak temperatures was
studied for ñ = 19,29, and 35 with a range of values of δ setting the
range for kδ . Numerical results for the quenched case are labeled by
the size of the lattice (N) used in the simulation.

deviation of the difference in T 2D
c . It turns out to be more

illuminating to plot the results for this difference in terms of
the parameter kδ [see Eq. (11)], which characterizes the width
of the distribution of effective couplings, rather than in terms
of the Gaussian width δ, and average ñ, of the distribution of
nij . At kδ → 0 we recover the ordered results: The difference
would be zero in the thermodynamic limit and the small
nonzero results arise from finite size effects in the numerical
calculation; they are described by Eq. (15). The uncertainties
due to finite size effects at higher values of kδ remain the
same as in the δ → 0 limit. Earlier studies [31–33] on the
difference between annealed and quenched disorder, consider
the case where the distribution of spin interaction strengths is
narrow, and speculate (without any explicit quenched results)
that the difference between transition temperatures is small in
that limit. Unlike these earlier studies, our model takes into
account a broad distribution of effective interaction strengths
and we obtain explicitly transition temperatures for both
quenched and annealed models. Our results, as seen in the
region where kδ → 0 (corresponding to a narrow distribution
of interaction strengths) of Fig. 9, show that the difference
in transition temperature is small in this limit. However, we
find that as the level of disorder increases, i.e., for higher
values of kδ , the difference in T 2D

c between the quenched
and annealed networks increases rapidly, until it saturates at
kδ ≈ 0.1. Beyond this value of kδ all the points, regardless
of the varying values of ñ and δ which were used in the
calculation, lie within a narrow band of values. Thus, it seems
indeed that kδ is sufficient to characterize the phenomena
associated with 2D fluctuations, rather than ñ and δ separately.
Interpreting this result in the physical context of a network
of dislocation lines, an increase in kδ reflects an increase
in the randomness of a network of dislocation lines due to
increasing fluctuation in dislocation line lengths making up
the network. Our results suggest that, as the randomness in
the network increases, the role of the difference in network
dynamics (quenched vs annealed) becomes more important.

IV. CONCLUSIONS

In this paper, we have studied the role that the type
of disorder—quenched or annealed—plays in the thermo-
dynamic behavior of an Ising model defined on a random
network. This network consists of fourfold coordinated Ising
spins connected by spin chains. The strength of the disorder
can be tuned by varying the average value of the chain
length and its standard deviation. We have emphasized both
the transition temperature and the specific heat in the region
dominated by one-dimensional fluctuations. We have shown
that the transition temperature for our Ising model on a random
network in which the disorder is quenched (frozen) is always
higher than the transition temperature for annealed disorder
with the same distribution. The magnitude of the difference
between the two transition temperatures is quantified by our
study. We also show that the entropy associated with the
one-dimensional fluctuations is larger for the quenched case.

Our study quantifies the difference between the properties
of quenched and annealed versions of disordered systems.
The quenched assumption applies when the time scale over
which the disorder changes is much longer than that for the
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spin fluctuations. In our model the strength of the effective
interaction between neighboring sites has a very broad dis-
tribution. Its general interest is that it relates to a variety of
experimentally studied systems in which the strength of the ef-
fective interaction between neighboring spins has a very broad
distribution. An example is dilute magnetic semiconductors.
Our results indicate that the transition temperature and other
thermodynamic properties of dilute magnetic semiconductors
might be approximated from an analytic calculation for the
annealed model with the same distribution of interaction
strengths. Our model may be relevant also to the renewed
interest on dislocation networks in solid 4He. It presents
a simplified version of how the dynamics of a dislocation
network may influence a superfluid field in its vicinity.
Our results indicate that in the annealed scenario, when
fluctuations of dislocation line segments within a network
become important, i.e., when the time scale for dislocation
line fluctuations becomes comparable to or smaller than the
time scale associated with fluctuations of the superfluid field,

the associated phase transition is suppressed. On the other
hand, superfluid ordering would be enhanced in the vicinity of
a dislocation if the dislocation network can be considered to be
frozen. While our results have been obtained for a simplified
Ising version of the superfluid transition, we expect that the
general conclusion about the transition being suppressed by
fluctuations in the dislocation network will remain valid when
the proper symmetry of the superfluid order parameter (XY
model) is taken into account. Quantum effects, considered in
Ref. [41], but not taken into account in our study, are expected
to enhance the suppression of the superfluid transition by the
motion of dislocation lines.
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