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Effects of dilute substitutional solutes on interstitial carbon in α-Fe:
Interactions and associated carbon diffusion from first-principles calculations
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By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have
systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our
results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon
are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor
carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive
interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding
energy of −0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration
distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon
chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute
concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the
carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain
implication for better understanding the experimental observations related with the carbon solubility limit, carbon
microsegregation, and carbide precipitations in the ferritic steels.
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I. INTRODUCTION

Carbon is one of the most common interstitial atoms in
Fe-based alloys. Its addition can significantly improve the
strength and hardness of steels by the solution strengthening
and carbide precipitation strengthening [1]. Carbon is also
incorporated into the surface layers by carburizing to enhance
the mechanical properties of steels. Besides carbon, many
other alloying elements (i.e., 3d, 4d, and 5d transition metals)
are also added to improve the performance of the steels.
Undoubtedly, the alloying elements would inevitably interact
with carbon. Their addition would not only result in the lattice
distortion and the local strain field due to the size factor of
solutes, but also induce chemical or electronic effects on the
soluble carbon atoms. They would trap or repel carbon, thereby
affecting the behaviors of carbon in steels, such as the carbon
solubility limit [2,3], microsegregation [4,5], diffusion [6–9],
and carbide precipitations [10–12].

In comparison with other alloying elements in steels,
carbon is lighter in mass, smaller in size, and lower in the
electronic valence number. Therefore, it is highly difficult to
experimentally identify carbon’s behaviors in steels within the
atomic scale. In particular, since in α-Fe the carbon solubility
is very limited and its kinetics are very slow, it would require
a long time to yield a true equilibrium. Although many studies
have been performed to analyze the solute-carbon interactions,
most understandings were derived from the sophisticated
mechanical spectroscopic measurements. From the viewpoint
of atomistic interactions, many questions remain open. For
instance, through the internal friction measurements combined
with the infrared analysis of carbon, Saitoh et al. [3] reported
that in α-Fe Mn and Cr hardly altered the carbon solubility
limit, whereas P and Si enhance it. The reasons for these
behaviors still remain unclear. It is also well known that the
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carbon microsegregation is more serious in high-Mn steels, as
observed by both Suzuki et al. [4] and Lu et al. [5]. However,
the in-depth mechanism has not been resolved. Therefore, it
would be highly desirable to elucidate the atomistic interac-
tions between solutes and carbon in α-Fe, which could provide
better understanding for the phase equilibria, phase diagrams
and mechanical as well as physical properties [13].

To date, ab initio calculation based on the density functional
theory (DFT) has been demonstrated to be a powerful tool
to accurately evaluate the atomic interactions and understand
the basic atomic phenomena involved. For instance, Jiang
and Carter [14,15] investigated the carbon dissolution and
diffusion in the ferrite and austenite, as well as the carbon
adsorption and diffusion into Fe (110) and Fe (100) surfaces
from first-principles calculations. Domain et al. [16] discussed
the interactions of one C atom with an Fe vacancy, another C
atom, and the self-interstitial atoms in α-Fe. They concluded
that an Fe vacancy could bind two carbon atoms at most and
the carbon-carbon interactions were revealed to be mostly
repulsive. Afterwards, the interactions of an Fe vacancy with
multiple C atoms in α-Fe were investigated in detail by
Ohnuma et al. [17], who claimed that an Fe vacancy would
bind four carbon atoms at most, but the system with a vacancy
binding three C atoms was the most energetically stable. Yan
et al. [18] even studied the interactions of C-N and C-N
vacancy in α-Fe. They found that both C and N atoms would
separate away from each other as far as possible in steels.
Furthermore, utilizing the derived ab initio binding energies,
Becquart et al. [19] constructed the so-called Fe-C potential
within the framework of embedded atom method (EAM),
determining the interaction of the carbon atoms with a screw
dislocation. By combining first-principles calculations with
the kinetic Monte Carlo (kMC) method, the Si impacts on the
carbon diffusivity in α-Fe have been investigated by Simonovic
et al. [20]. Very recently, Bakaev et al. [21] explored the
interactions of some minor alloying elements in ferritic steels
with interstitial carbon atom using ab initio calculations. They
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found that Mn exhibits peculiar behavior. Contrary to other
elements, Mn shows attractive interactions with carbon in the
first- and second-nearest-neighbor sites [21].

Although some interactions [i.e., vacancy-carbon (or
transition-metal solutes), carbon-carbon (or nitrogen), and
solute-solute ones] have already been investigated, theoret-
ically, the systematic studies on the interactions between
substitutional solutes and carbon in α-Fe are rare, not to
mention a unified understanding. The work we present here
is intended to contribute to such an understanding from
the perspective of state-of-the-art ab initio calculations by
systematically elucidating the solute-C interactions, solute-
vacancy-C interactions, and the impacts of the substitutional
solutes on the carbon’s distribution, chemical potential, and
diffusion. These results would be definitely useful for the
in-depth understanding of the carbon solubility limit, carbide
precipitations, and the occurrence of carbon microsegregation.

II. METHODOLOGY

A. First-principles calculations and binding energies

Our calculations were based on the framework of
DFT [22,23] as implemented in the Vienna Ab initio Simula-
tion Package (VASP) [24,25]. All calculations were performed
using the projector augmented wave (PAW) [26] potentials
and the generalized-gradient approximation (GGA) within
the Perdew-Burke-Ernzerhof (PBE) [27] exchange-correlation
function, which has been proved to provide an accurate
description of the magnetic and energetic properties of Fe bulk
phases [28]. We used a Fermi smearing of electronic occu-
pancy with a width of 0.05 eV, and a plane-wave cutoff energy
of 500 eV, which has been found to be sufficient for precise
energetics for all the elements considered in present work.
Spin-polarized calculations were performed by considering
the ferromagnetic ordering of Fe. The ion relaxations were
performed at constant volume rather than at constant pressure,
since the former one was found more suitable for the bcc-type
cells in the impurities calculations [29]. The quasi-Newton
algorithm was used to capture the minimum energy. The
local magnetic moments and local density of states were
calculated through the evaluation of the spin density within
the Wigner-Seitz spheres around nuclei, the values of which
adopted here were the recommended ones for the VASP code.

All the binding-energy calculations were based on a
3 × 3 × 3 bcc unit cell, which contains 54 Fe atoms in
the defect-free state. A 5 × 5 × 5 �k-mesh grid generated
by the Monkhorst-Pack scheme was used to sample the
Brillouin zone, which has been revealed to be large enough
to calculate the formation and binding energies for carbon
with point defects [14,15]. Certainly, we have doubly checked
the supercell convergence by computing the carbon solution
enthalpy and the Fe vacancy formation energy using a larger
4 × 4 × 4 supercell with 3 × 3 × 3 �k-mesh grid. It is found
that the energy differences between these two supercells are
both less than 0.01 eV. To aid the computational efficiency, the
projections operators were evaluated in real space because of
the larger number of atoms in a supercell [30]. In agreement
with the published results [14,15], carbon was found to
occupy the most stable octahedral interstitial site (o site). Our

calculations also revealed that the transition-metal elements,
Al and Si, would substitute Fe site due to their comparatively
large atomic size. For the α-Fe, the calculated lattice parameter
and magnetic movement are 2.83 Å and 2.2 μB/atom,
respectively, in good agreement with the experimental data
of 2.86 Å and 2.2 μB/atom [31].

The binding energies are used to evaluate the interactions.
In cases where the defect cluster contains two point defects,
the binding energies are defined as

E
i,j

b = 1

m
[ED−(i+j ) − ED−i − ED−j + Eref], (1)

where ED−i and ED−j are the total energy of the supercell with
the point defects i and j, respectively, ED−(i+j ) the energy of
the supercell containing both point defects i and j, and Eref the
energy of the defect-free supercell, which is used to balance
the number of the Fe atoms. m is the multiplicity considering
the finite size and the periodicity of the cell [20]. For instance,
if the substitutional atom is placed at [000] site and carbon is
at [3/2 00] site, the substitutional atom would interact with
carbon twice, and thus m equals to 2.

If the defect cluster contains three point defects, two
different binding energies: The total binding energy and the
incremental binding energy would be defined [30]. The total
binding energy [30], representing the stability of the system
with respect to the isolated defect, is defined as the energy
difference between the supercell with the triple defects and the
three supercells with individual point defects,

E
i,j,k

b = ETriple−(i+j+k) − ED−i − ED−j − ED−k + 2Eref,

(2)

where ETriple−(i+j+k) is the energy of the supercell containing
all three point defects. The incremental binding energy [30]
is defined as the energy difference between the supercell with
the triple defects and the supercells with a single point defect
and a defect pair,

E
i,j+k

b = ETriple−(i+j+k) − ED−i − EPair−(j+k) + Eref, (3)

where EPair−(j+k) is the energy of the supercell containing a pair
of defects. It should be noted that since the considered interac-
tion distance within the defect cluster is short, the multiplicity
m mentioned in Eq. (1) is 1 in Eqs. (2) and (3). According to the
definition in Eqs. (1)–(3), a negative binding energy indicates
a favorable and attractive interaction between defects, while a
positive binding energy refers to an unfavorable and repulsive
interaction. This convention will be used to explore and
explain all the interactions in various configurations discussed
below.

B. Computations of the influences of dilute solutes on carbon’s
distribution and chemical potential

At the dilute concentration, the substitutional solutes would
randomly distribute in the α-Fe matrix where the individual
solute atoms are far apart from each other. The carbon atoms,
which diffuse much faster than the substitutional solutes, will
arrange themselves around the solutes [20]. In the limit of low
solute and carbon concentration and under the condition of
thermodynamical equilibrium, the carbon-carbon (C-C) and
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solute-solute (M-M) interactions can thus be neglected. In
terms of the model proposed by Simonovic et al. [20], the
probability fRs that a carbon atom is present at a certain
distance Rs from solute M can be expressed as

fRs = f∞exp

[−E
M,C
b (Rs)

kBT

]
, (4)

where E
M,C
b (Rs) is the solute-C binding energy at the distance

Rs. kB and T represent the Boltzmann constant and the
absolute temperature, respectively. As the distance approaches
Rsmax, where the solute-C interactions vanish, the fraction of
octahedral sites filled with carbon atoms can be assumed to
be a constant value of f∞. The carbon concentration CC with
respect to the bcc lattice is then given as [20],

CC = CM

max∑
s=1

nsfRs +
(

3 − CM

max∑
s=1

ns

)
f∞, (5)

where the first sum concerns all the carbon atoms within the
interaction range smax of the solute atom, and the value “3” in
the second term denotes three octahedral positions per atom
in the bcc lattice. CM is the concentration of the solute M on
the bcc lattice sites, and ns is the number of the octahedral
sites on shell s of the solute. Practically, the carbon concen-
tration CC is fixed. Combining Eqs. (4) and (5), the carbon
fraction beyond the interaction range [20] can be derived as
follows:

f∞ = CC

CM

∑max
s=1 nsexp

[−E
M,C
b (Rs)
kBT

] + (
3 − CM

∑max
s=1 ns

) .

(6)

According to the theory of the ideal solution, the chemical
potential of carbon far away from the solute atom can be
approximated as [20]

μC = dF

dCC
= dF

df ∞

df ∞
dCC

≈ μ0
C + 3kBT ln

(
f∞

1 − f∞

)
1

3
= μ0

C + kBT ln(f∞), (7)

where F is the free energy and μ0
C is the reference chemical

potential. It can be inferred from Eq. (7) that the chemical
potential of carbon μC will reduce when f∞ decreases.

C. Computations of kMC simulations

To evaluate the migration energy barrier of carbon in α-Fe in
the presence of vacancy, solute M , or solute-vacancy pair, the
climbing-image nudged elastic band (CI-NEB) [32,33] method
was employed. This method provides a way to find a minimum
energy pathway (MEP) given the initial and final states of
a process. During the NEB calculations, the images were
kept separated using a spring force constant of 5 eV/Å and
then relaxed using a conjugate gradient algorithm until the
maximum force acting on each atom was less than 0.01 eV/Å.
Note that in the cases where the carbon migrates in the presence
of the solutes, we have computed the migration energy barriers
of the carbon for all the possible diffusion pathways (see
Table III), as the direction in which carbon will choose to

jump depends significantly on its surrounding environment.
These barriers can be further used as inputs for the following
kMC simulations.

Carbon diffusivity in the presence of the dilute solutes has
been further derived by the kMC method, which can be used
to simulate the dynamic properties within a larger time scale
because the time step is updated during the simulations [34]. In
the kMC simulations, we have employed a very large simulated
box (a 30 × 30 × 30 bcc unit cell with the periodical boundary
condition). The bcc lattice positions were all occupied either by
Fe or solute M atoms. The solutes were randomly distributed
according to their atomic concentration. The solute-solute
distance was kept far beyond their interactions to form an
approximate dilute environment. It needs to be emphasized
that the diffusions of solutes and Fe are neglected here as their
diffusions are extremely lower than that of carbon in α-Fe [20].
For a carbon atom in pure α-Fe, the diffusion prefactor D0

and the corresponding diffusion migration energy �E were
measured to be D0 = 6.61 × 10−7 m2/s and �E = 0.83 eV,
respectively [35]. However, the experimental self-diffusion
data of Fe were D0 = 6.8–27.7 × 10−4 m2/s and �E =
2.95–3.10 eV [36]. Even at 1000 K, the carbon diffusivity
is three orders of magnitude greater than the self-diffusivity
of Fe. This fact is also similar for most other substitutional
solutes [37]. Within this context, it is safe to assume that the
dilute substitutional solutes and Fe atoms do not diffuse as
compared to the carbon atoms.

Technically, only one single carbon atom is considered in
our kMC simulations. It is randomly located at the octahedral
site at the initial status and then is allowed to jump to the
neighboring o sites according to the probability rates which are
computed within the framework of the transition state theory
(TST) [38]. The energy barrier of each jump is calculated
through CI-NEB method [32,33]. The transition time between
two consecutive jumps is determined by the probability rates.
The detailed steps of our kMC simulations are further compiled
as follows [34].

(i) For each jump of the carbon atom, the probability rate

γi is calculated by γi = ν0exp(−Ei
b

kBT
) (i = 1,2,3,4), where Ei

b

is the energy barrier for the jump direction i and ν0 is the jump
attempt frequency, which was calculated to be ν0 = 6.476 ×
1013 s−1 based on the Einstein approximation [20]. Note that
the maximum number of i is 4 for each jump because only
four jump directions can be chosen from the current o site to
the nearest-neighboring o site in the bcc lattice.

(ii) The total probability rate F = ∑4
i=1 γi and the relative

probability of each event Fi = ∑i
j=1 γj/F are computed.

(iii) The jump event i is selected by obeying
∑i−1

k=1 Fk <

μ �
∑i

k=1 Fk , where μ is a uniform random number μ ∈
[0, 1].

(iv) Meanwhile, the time elapsed for the current time step
is calculated by �t = −ln(ξ )/F based on the residence-time
algorithm [39], where ξ is another random number distributed
uniformly in [0,1]. Then the physical time increases t = t +
�t .

The steps (i) to (iv) are repeated until the physical time
reaches the specified time (about 20 000 jump steps) after
the carbon atom has moved a certain distance R away from
the original position. Finally, the carbon diffusivity D can be
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derived from the Einstein relation [40],

〈R2〉 = 6Dt, (8)

where 〈R2〉 denotes the mean square displacement of carbon
obtained by averaging over long time and repeated simulations.
The prefactor D0 and the migration energy �E for the carbon
diffusion can then be extracted by the empirical Arrhenius
form of the diffusion equation [40],

D = D0exp

(−�E

kBT

)
. (9)

III. RESULTS AND DISCUSSIONS

A. Solute-carbon (M-C) interactions

In order to calculate the solute-C binding energies, we have
constructed a model (Fig. 1) where the solute M substitutes an
Fe atom and the carbon is inserted in different neighboring o
sites with respect to the solute M. Figure 2 shows the binding
energies between all the transition-metal elements from the
groups 4 to 11 on the periodic table and the carbon at the 1nn

(first-nearest-neighbor) to the 4nn (fourth-nearest-neighbor)
site. It can be seen that the solute-C interactions for all the 4d

and 5d row elements almost exhibit a similar tendency: The
1nn site is the least stable one at which carbon can stay due
to the largest repulsive interactions. As the distance increases,
the repulsive interactions decrease sharply. Carbon seems to
prefer to stay at the 3nn site since this position is energetically
lowest. However, their solute-C (at 3nn) binding energies are
still positive except for Zr, Hf, and Ag, which have a very weak
attractive interaction with carbon. With increasing the distance
to the 4nn site, the binding energies become positive again.

The repulsion between all the 4d and 5d transition-metal
elements and carbon is no surprise. Since these elements are
larger in size than Fe, their insertions would definitely result
in a large local strain. The weak attraction for Zr, Hf, and Ag
binding with C at the 3nn site can also be explained by the
elastic effects because the 3nn octahedral interstices impacted
by these elements are less flattened than those in the pure α-Fe
crystal structure. Interestingly, it has been found that those
4d or 5d solute-C binding energies on the 1nn shell can be
nearly linearly correlated with the size factor (as defined in
Ref. [41]) of those solutes, as illustrated in Fig. 3. With the
increasing solute size factor, the repulsive interaction becomes
more obvious. Hence, it can be inferred that the individual 4d

FIG. 1. (Color online) Solute M-C configurations. The C atom’s
site labeled i represents the first- to the fourth-nearest-neighbor (1nn

to 4nn) octahedral site relative to the solute M in the bcc lattice.

FIG. 2. (Color online) Solute M-C binding energies for the 3d

(top panel), 4d (middle panel), and 5d (bottom panel) elements with
C in the 1nn to 4nn octahedral site relative to the solute M .

and 5d row elements interact with the carbon atom mainly
through the strain relief.

However, the binding energies for the 3d row elements
exhibit a much more complicated behavior (see Fig. 2),
because their M-C interactions depend not only on the solute
size factors but also on the stronger magnetic couplings around
Fe. Ti and V experience the antiferromagnetic coupling with
their 1nn Fe atoms, whereas Cu has a weak ferromagnetic
coupling with the 1nn Fe atoms (Table I). However, it needs to
be emphasized that, although the magnetic coupling exists for
them, their solute-C interactions are mainly dominated by the
strain relief because of their relatively large solute size factors
(Fig. 3). Therefore, these elements show behavior similar to
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FIG. 3. (Color online) Solute M-C binding energies for the 1nn

configuration as a function of the solute size factor. (The size factor
of solute M in the Fe matrix is defined as �M

sf = �M−�Fe
�Fe

, where �M

and �Fe are the volume of supercell with the solute M and defect-free
supercell, respectively. See more details in Ref. [41].)
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TABLE I. Local magnetic moments (μB/atom) for the 1nn configuration of Fe53M1C1 and for the cfg5 of Fe52M1C1 (M = 3d transitional
metal elements). The inn represents the ith-nearest-neighbor site of Fe relative to C.

M-C M C Fe1nn Fe2nn Fe3nn M-Vac-C M C Fe1nn Fe2nn Fe3nn

Ti −0.52 −0.09 1.46 2.10 2.38 Ti −0.74 −0.13 2.15 2.51 2.52
V −0.71 −0.08 1.53 2.14 2.39 V −1.34 −0.15 1.71 2.03 2.04
Cr −0.66 −0.07 1.56 2.15 2.39 Cr −2.11 −0.12 0.93 2.09 2.11
Mn 0.68 −0.11 1.68 2.21 2.39 Mn −2.67 −0.15 1.72 2.02 2.03
Fe 1.67 −0.14 1.67 2.20 2.38 Fe 2.42 −0.15 1.70 2.03 2.02
Co 1.22 −0.13 1.67 2.21 2.38 Co 1.70 −0.15 1.73 2.03 2.03
Ni 0.57 −0.12 1.60 2.17 2.36 Ni 0.92 −0.15 1.73 2.02 2.03
Cu 0.08 −0.12 1.47 2.10 2.35 Cu 0.18 −0.15 1.73 2.03 2.03

that of the the 4d or 5d elements of comparable sizes. In
contrast, for the intermediate 3d elements the solute-C inter-
actions are largely affected by the magnetic coupling effects.
For instance, the metal Cr displays a repulsive interaction
with C for all four configurations, consistent well with the
theoretical data published by Sandberg et al. [42] (see Fig. 2).
A similar situation has been observed for Co and Ni. The most
striking case is Mn, which is the only element that shows an
unusual character of the binding interaction with C. The 1nn

Mn-C interaction is weakly attractive (Fig. 2) and is accom-
panied with the appearance of a ferromagnetic coupling with
its 1nn Fe atoms.

The attractive Mn-C interactions were not only studied
theoretically in Refs. [21,43,44], but also derived from ex-
periments [45–48]. Numakura et al. [44] derived the Mn-C
interaction energies using the molecular statics technique
based on the empirical pairwise potentials. Similarly, they
also reported the attractive Mn-C interaction on the 1nn shell
but with a somewhat larger binding energy. This discrepancy
might be attributed to their less accurate empirical pairwise
potentials and their bad choice for the energy reference. In
their calculations [44], they used the 5nn Mn-C interaction
configuration as the reference energy because they believed
that beyond the 5nn shell the Mn and carbon atoms should not
interact with each other. However, according to our calcula-
tions, the Mn-C interaction energy at the 5nn configuration is
not negligible (see Fig. 10). Medvedeva et al. [43] performed
similar first-principles calculations and they also obtained an
attractive Mn-C binding energy (−0.10 eV) for the 1nn config-
uration, which is quite accordant with our result (−0.08 eV).
Besides, our results also agree well with the calculated data
recently reported by Bakaev et al. [21] (see Fig. 2). Although
all the calculated Mn-C binding energies are much lower
than the experimentally estimated values (0.14–0.46 eV)
[45–48], the theoretical results could better match the experi-
mental ones if the actual Mn concentration and the formation
of MnxC clusters were taken into account [43].

In order to elucidate the attractive Mn-C interaction on
the 1nn shell, we analyzed the electronic structures including
the charge density differences and local density of states
compared with the opposite Ti-C binding case. As shown in
Fig. 4(a), in the low-energy region from −7 to −5 eV of
the density of states, a strong hybridization can be visualized
between Mn and C 2p-like states, whereas in the Ti-C case
the hybridization between Ti and C 2p-like states is relatively
much weaker [Fig. 4(b)]. This fact can be further supported by

their electronic density deformation maps which give a direct
real-space visualization of local electronic rearrangements. It
can be seen from Fig. 4(c) that the charge accumulation clearly
occurs along the bond between Mn and C in the 1nn configu-
ration, whereas less charges are accumulated between Ti and
C [Fig. 4(d)]. In contrast, more charges accumulate between
Ti and its 1nn Fe atoms in the Ti-C case. These results suggest
that Mn atom binds strongly with the C atom rather than the
Fe matrix, whereas the Ti atom shows contrary behavior.

In agreement with the analysis of electronic structures, it has
been found that the magnetic couplings indeed significantly
affect the Mn-C interactions. On the one hand, the magnetic
interactions decrease the Mn-C binding energy from a positive
non-spin-polarized value of 0.13 eV to a negative spin-
polarized value of −0.08 eV, whereas they almost do not
impact the Ti-C binding energy (spin-polarized, 0.79 eV, and
non-spin-polarized, 0.77 eV). On the other hand, we found
that the magnetic moment of Mn atom changes greatly from
an antiferromagnetic spin moment of −0.39μB in Fe53Mn
supercell to a ferromagnetic spin moment of 0.72μB in

(c) (d)

(a) (b)

FIG. 4. (Color online) (a),(b) Local density of states calculated
in the Fe53MC [M = Mn (a) and Ti (b)] supercell. (c),(d) Charge
density difference map for a single C with (c) Mn and (d) Ti in the
1nn configuration. The blue balls and purple ball represent the Fe
atoms and the C atom, respectively. The Mn and Ti atoms are both
labeled.
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FIG. 5. (Color online) The local magnetic moment of the solute
M (M = Mn and Ti) versus the M-C distance in the most energeti-
cally stable Fe53MC supercell.

Fe53MnC supercell. This indicates that the Mn atom is so
flexible in the magnetic moment that it can easily change its
sign of the magnetic moment, which has been confirmed by the
work of Bakaev’s et al. [21]. However, the addition of carbon
changes a little on the antiferromagnetic coupled magnetic
moment of Ti. Besides, we further derived the magnetic
moments of the solutes Mn and Ti as a function of the solute-C
distance, as shown in Fig. 5. When the Mn-C distance is short,
the ferromagnetic coupling between Mn and its nearby Fe
atoms is more energetically favorable. However, as the Mn-C
distance increases, Mn prefers the antiferromagnetic coupling
with the neighboring Fe atoms. This fact reveals that carbon
can stabilize the local ferromagnetic coupling between Mn and
the neighboring Fe atoms, in agreement with the conclusion
of Medvedeva et al. [43]. However, no obvious change is
observed for the Ti-C case with the increasing Ti-C distance.
It thus can be concluded that the magnetic couplings indeed
play an important role for the abnormal Mn-C interactions.

In fact, there have been numerous efforts to elucidate the
influence of the substitutional atoms on the Snoek peaks
measured by the internal friction experiments [2,49–51].
Interestingly, it has been observed that the dilute addition (less
than 1 mass%) of solutes M (Mn, P, Si, Al, Cr, and Co) in
bcc Fe-C-M alloys reduces the normal Snoek peak height, but
does not result in the appearance of any abnormal peaks [2].
Although the experimental conditions were far different from
our current DFT considerations, within a qualitative level
these experimental facts are still in agreement with our above
analysis of the solute-C binding energies. Specifically, from
our current calculations, almost all of M solutes exhibit large
repulsive interactions with carbon in their 1nn and 2nn shells.
This fact naturally reveals that the normal regions, where
carbon would reside, should be reduced due to the M addition,
leading to the reduction of the normal Snoek peak height. In
contrast, it also needs to be noted that the attractive interactions
between M and C are so weak that they cannot dramatically
increase the number of C atoms in the influenced regions of the

solutes. This fact interprets well the reason why no abnormal
peak appears.

B. Solute M-vacancy-C interactions

As mentioned above, the microsegregation of carbon easily
occurs in the bcc-type steels with the high Mn content [4,5].
Our above calculations for the Mn-C binding interactions seem
consistent with these experimental observations. However,
the attractive interaction between Mn and C at the 1nn

configuration is only −0.08 eV, which is rather weak. Thus, it
is hard to believe that the attractive 1nn Mn-C interaction is
the main reason for the occurrence of carbon microsegregation
in high-Mn steels [4,5].

Since the vacancy could be easily formed in the bulk,
dislocation core, interfaces, and grain boundaries of the steels,
we have attempted to introduce an Fe vacancy to form the
so-called solute-vacancy-C complex. Interestingly, according
to several previous studies [17,21,41], it has been noted that
the Fe vacancy can serve as a strong carbon trapping site
due to the large binding energy between the vacancy and C
(−0.59 eV) [17] and the Fe vacancy also shows an attractive
ability to bind the Mn atom with the largest binding energy at
the 1nn configuration [21,41]. Even at the 3nn configuration,
the Mn-vacancy interaction is still attractive [21,41]. The
systematical calculations further revealed that the vacancy
always exhibits the largest binding energy at the 1nn site
with other M solutes in bcc Fe [21,41]. Therefore, it can be
inferred that the M solutes and the vacancy can easily form the
solute-vacancy pair in α-Fe. Here, based on those most stable
configuration of the solute M-vacancy pair, we have further
incorporated a single carbon atom into the M-vacancy pair. As
shown in Fig. 6, there are six possible configurations by taking
into account the symmetry. Our calculations demonstrated
that the 5th configuration (called cgf 5), as illustrated in the
inset of Fig. 7(a), was the most favorable in energy among
the six configurations for all the 3d elements. Because of
the tremendous computing workload, we did not do the test
for the 4d and 5d rows elements. However, one can still
reasonably trust that the cgf 5 one is also the most stable one
for the 4d and 5d rows elements because in this configuration
both the solute M and carbon are most strongly bound to the

FIG. 6. (Color online) Solute M-vacancy-carbon configurations.
The value i represents the position of the carbon in the ith
configuration.
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(a)

(b)

5

M

FIG. 7. (Color online) (a) The total binding energies among the
solute M , carbon, and vacancy. (b) The incremental binding energies
between the M-vacancy pair and carbon. M = 3d (triangles), 4d
(squares), and 5d (circles).

vacancy [17,21,41] and the solute M-carbon interaction is less
repulsive.

Figure 7(a) shows the total M-vacancy-C binding energies.
The negative values indicate that when an Fe vacancy is
introduced, the solute-vacancy-C complex becomes more
energetically stable with respect to the isolated defects. It
can thus be inferred that the solute, vacancy, and carbon
would easily form a defect cluster in α-Fe. However, when
we consider the contribution of the solute M-vacancy pair to
the total binding energy (i.e., the incremental binding energy
between the solute M-vacancy pair and carbon), the results are
very unexpected. As elucidated in Fig. 7(b), with respect to the
single Fe vacancy all the solute M-vacancy pairs for the 4d and
5d rows elements exhibit weaker binding energies with carbon.
Surprisingly, the Mn-vacancy pair shows a significantly large
attractive binding energy with carbon (about −0.81 eV). This
value is nearly twice larger than those of other M-vacancy
pairs with carbon [Fig. 7(b)].

We further compare the local density of states of the
Mn-vacancy-C with those of the Fe-vacancy-C case in bcc
Fe in Figs. 8(a) and 8(b). It can be seen that there is no
obvious electronic hybridization between Mn [or Fe4 which
just substitutes the Mn site as marked in Fig. 8(d)] and C.
This is consistent with their charge difference maps where

Fe4

C Fe1
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FIG. 8. (Color online) Local density of states of the Mn-C inter-
action (a) and of the Fe4-C interaction with Fe substituting Mn site (b)
in the cfg5 model and their corresponding charge density difference
maps: Mn-vacancy-C (c) and Fe-vacancy-C (d). The Mn, Fe, and C
atoms are all labeled.

no charge accumulations are observed between Mn (or Fe4)
and carbon. In contrast, the interstitial carbon atom shows
the obvious electronic hybridizations with its 1nn Fe1 and
2nn Fe2 atoms, as visualized by the charge accumulations
in Figs. 8(c) and 8(d). These comparisons suggest that the
anomalous large binding energy between the Mn-vacancy pair
and C does not originate from the electronic hybridization
between Mn and C. Actually, the presence of the Fe vacancy
results in an enhanced spin exchange splitting for Mn. From
Fig. 8(a), the minority spin-down states are mostly located
in the energy range from −4 to −2 eV whereas the majority
spin-up states shift above the Fermi level, thereby causing the
antiferromagnetic coupling with its 1nn Fe3 atom with a large
magnetic moment of about 2.67μB (see Table I). These strong
magnetic couplings between Mn and Fe3, as illustrated by
the accumulated charges in Fig. 8(c), play a crucial role in
contributing to the anomalous large binding energy between
the Mn-vacancy pair and C.

Furthermore, the influences of the Mn-vacancy pair on the
carbon migration have also been analyzed, as compared with
a single Fe vacancy. In order to eliminate the influence of the
mirror images, the migration energy barriers were calculated
using a larger supercell (4 × 4 × 4 bcc unit cell). As shown in
Fig. 9, because of the large vacancy-C attraction on the 1nn

shell and repulsion on the 2nn shell [52], the energy barrier
of the carbon atom jumping back towards the vacancy is far
lower than that of the carbon atom escaping away. Hence, we
expect that carbon will return more frequently to the vacancy.
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FIG. 9. (Color online) Carbon diffusion energy curves in the
presence of a single vacancy or the Mn-vacancy pair in α-Fe.
The embedded figure shows the corresponding migration pathways.
The values near the curves represent the energy barrier.

A successful jump is found to occur when the C atom moves
directly from one 1nn o site to another 1nn o site around
the vacancy with the energy barrier of 0.83 eV, nearly the
same as that for an isolated C atom jumping in the defect-free
α-Fe. This fact suggests that the carbon motion is restricted
within the cell centered around the vacancy position of the
maximum bond with the C atom. When the Mn-vacancy pair
is introduced, carbon will be trapped more significantly due
to their stronger attractive interaction (−0.81 eV). Compared
with a single Fe vacancy, on the one hand, the energy of
Mn-vacancy-C system is much lower, indicating a more stable
state. On the other hand, once the carbon is trapped by the
Mn-vacancy pair, it will be more difficult for the carbon atom
to escape from this deeper trap. Even though the carbon jumped
to the second-nearest local minima by the thermal fluctuation,
it could easily jump back to the original site because the energy
barrier in the reverse direction is rather small (0.06–0.11 eV).
This fact reveals that the vacancy assisted by Mn could indeed
serve as a stronger trap to capture the carbon atoms.

Based on the above analysis, it is easily reminiscent of the
occurrence of carbon microsegregation in high-Mn steels [4,5].
Although the interactions in practice are not the same as
those in our case where the Mn and carbon are dilute, we
can still draw some information from our current calculations
for the first step to understand the nucleation of the carbon
microsegregation around Mn. Specifically, Mn and vacancy
can easily form a Mn-vacancy pair, not only in the bulk bcc
Fe because of their attractive interactions [41], but also at the
interfaces due to the attractive interactions [21] between Mn
and the interfaces where there exists large free volume that
might mimic the presence of the vacancies. Once Mn and
vacancy form the pair, the carbon atoms would be strongly

trapped by those Mn-vacancy pairs due to their large binding
energies [see Fig. 7(b)]. In addition, this C-trap is so strong
that carbon cannot easily escape from the vacancy because a
large migration energy barrier is required (see Fig. 9). Both
facts make the Mn-vacancy-C complex stable. Furthermore,
it needs to be emphasized that here we only gave a tentative
explanation on the nucleation of the microsegregation around
Mn. In order to simulate the practical process, accurate and
reasonable Fe-Mn-C potentials should be developed for larger
scale simulations.

C. Influences of the dilute solutes on carbon’s distribution and
chemical potential

It is well accepted that substitutional solutes and carbon will
redistribute in the solid solution during the heat treatment and
thermal aging process. To investigate the effects of the solutes
on the carbon’s distribution, we further extend the solute-C
interaction range to a farther one since the strain-induced M-C
interactions are long range [7,53]. As illustrated in Table II,
the solute M substitutes an Fe atom at the [000] position
and the carbon atom varies at 12 positions up to the 12nn

shell with respect to the solute M . It needs to be mentioned
that there exist two inequivalent 5nn sites and no 11nn sites
in our current supercell. Here we only take into account
the solutes Si, Mn, Cr, and Al, because these elements are
highly common in ferrite steels and numerous experimental
studies [6,9,45,54,55] are available. As shown in Fig. 10,
Cr displays repulsive interactions with C at all interacting
distances, which is also the case for Mn, except for the 1nn

configuration, where Mn presents a weak attractive interaction.
However, Si and Al show the different behaviors. They display
the repulsive interactions with C within a range of one lattice
constant but weak attractive interactions beyond this distance.
These computed solute-C interactions are quite consistent with
the experimental observations concerning the influence of the
alloying elements on the carbon solubility limit: Both Mn
and Cr hardly change the carbon solubility limit, whereas Si
increases it [3].

In general, within a short distance both the chemical
interaction and strain-induced interaction contribute to the
M-C binding energy. The chemical (or attractive) interaction
is mostly due to the electronic structure effect. However, the
chemical interaction’s contribution is small here since only
a few solutes show weak attractions with C. In contrast, the
strain-induced interactions between the solutes and C are long
range [7,53]. It is strong within short distances and decreases
with the increasing distance. Therefore, it can be inferred that
Mn has relatively large chemical interactions with C since it
shows attractions with C in the 1nn site where the strain should
be large. As the distance rises to a greater one, the chemical
interactions become much weaker and hardly contribute to
the M-C binding energy. Then the strain-induced interactions
dominate. Thus, one can expect that the weak attractions

TABLE II. Relative positions of carbon at the different neighboring shells (nn) in the 3 × 3 × 3 bcc unit cell. The solute M substitutes Fe
at the [000] site in all the configurations. The positions here are given in units of the α-Fe lattice constant (αbcc).

Shell (nn) 1 2 3 4 5a 5b 6 7 8 9 10 12
C position [ 1

2 00] [ 1
2

1
2 0] [1 1

2 0] [1 1
2

1
2 ] [11 1

2 ] [ 3
2 00] [ 3

2
1
2 0] [ 3

2 10] [ 3
2 1 1

2 ] [ 3
2 11] [ 3

2
3
2 0] [ 3

2
3
2 1]
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FIG. 10. Solute M-C binding energy versus the M-C distance in units of the bcc lattice constant. M = Mn (a), Cr (b), Si (c), and Al (d).

between Si (or Al) and C beyond the distance of one lattice
constant are mainly caused by the strain relief. As the distance
further increases beyond the cutoff radius, the M-C binding
energy approaches zero.

Based on the thermodynamic considerations, Simonovic
et al. [20] proposed a model to analyze how Si affects the
interstitial carbon’s distribution and chemical potential in
α-Fe. Utilizing the obtained solute-C binding energies, we
further extend the application of this model to other three
elements (Cr, Mn, and Al). Figure 11 shows the carbon
probability distribution in various neighbor shells around the
solute atoms, and our results reproduce well the results of the
carbon interacting with Si [20] [Fig. 11(a)]. One can see that
there exist significant differences in the carbon distribution for
different solutes. For instance, the carbon atoms can hardly
be found in the 1nn and 2nn shells around Si atom due to
their low fractions which are caused by the large repulsive
interactions. Nevertheless, they would prefer to occupy the
interstices between the 3nn and 6nn shells due to the weak
attractions there. Al acts in a similar fashion. Strikingly, Mn is
a unique element that displays the high carbon fraction in the
1nn site. As for Cr, within all the shells considered the carbon
fractions are lower than that far beyond Cr.

Figure 12 shows the carbon fraction f∞ in the octahedral
interstitial sites beyond the solute-C interaction distance
as a function of temperature for a given composition of
Fe0.99M0.01C0.001. According to Eq. (6), without the solute
addition the f∞ of the carbon in the Fe matrix for this
composition should be a constant, giving f∞ = CC/3 =
3.33 × 10−4. It can be seen that the carbon fraction f∞ for Mn,
Si, and Al in the solid solution increase with the increasing
temperature, which is different for Cr. At all temperatures

considered, the carbon fraction f∞ for the Si and Al addition
are lower than that of Fe, whereas it is larger for the Cr
addition. Only when the temperature is above 400 K will the
carbon fraction f∞ for the Mn addition exceed that in the pure
Fe. Based on the theory of ideal solutions and in the dilute
concentration limit, the chemical potential of the carbon can
be approximated as Eq. (7). Accordingly, the carbons chemical
potential is positively correlated with the carbon fraction far
away from the solute. From Fig. 12 one can see that Si and Al
additions would decrease the f∞, whereas Cr and Mn increase
it, compared with the original one in the matrix without any
solute addition. As a result, it can be inferred that Si and
Al have the potential ability to reduce the carbon’s chemical
potential, whereas Mn and Cr increase it.

D. Influences of the solutes on the carbon diffusion

The most likely and intuitive jumping mechanism for the
interstitial diffusion of the carbon in the α-Fe lattice is the
jump from an octahedral site (o site) to another nearest-
neighboring one via the tetragonal site (t site) [14]. We have
calculated the carbon diffusion migration energy barrier of
0.89 eV in the pure α-Fe, in good agreement with other
DFT results of 0.86 eV [14] and 0.92 eV [16,56] and the
experimentally measured data of 0.87 eV [57], 0.88 eV [58],
and 0.84 eV [10]. Moreover, the diffusion prefactor D0

has been further derived by DFT calculations according
to the formula of D0 = 1

6α2(
∏3N

j=1 υ ini
j /

∏3N−1
j=1 υsad

j ) [14],
where α is the lattice constant and υ ini

j and υsad
j are the

normal-mode frequencies at the initial and saddle-point state,
respectively. Our result yields D0 = 1.56 × 10−7 m2/s. This
value also agrees well with the previously calculated data of
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FIG. 11. (Color online) Carbon fraction at octahedral interstices for the first 6nn shells with respect to the solute atom M [M = Si (a), Al
(b), Mn (c), and Cr (d)] and beyond (labeled with ∞) for a composition of Fe0.99M0.01C0.001 (here C0.001 denotes the fraction of carbon atoms
occupying interstitial octahedral sites).

1.44 × 10−7 m2/s [14] and 1.66 × 10−7 m2/s [20], and the
experimentally determined value of 1.67 × 10−7 m2/s below
350 K [59]. In addition, we also used the kMC simulations
to estimate D0 for the C diffusion, obtaining a value of
2.14 × 10−7 m2/s by fitting the computed C diffusivities to
the temperatures according to Eq. (9), in nice agreement with
above results.
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FIG. 12. (Color online) Carbon fraction f∞ in the octahedral
interstices beyond the solute M-C interaction distance as a function
of temperature for a composition of Fe0.99M0.01C0.001 (M = Mn, Cr,
Si, and Al).

Next we focus on the effects of the dilute substitutional
solutes M (M = Mn, Cr, Al, and Si) on the carbon’s diffusion
in α-Fe. We have considered all the possible diffusion path-
ways for the carbon jumping between two nearest-neighboring
o sites in the presence of solute M using the CI-NEB
method [32,33]. The calculated diffusion migration energy
barriers �E were compiled in Table III. As an example,
we further plotted the minimum-energy paths of the carbon
migrating from the 1nn site to the 5nn site with respect to the
solute Mn or Si in Fig. 13. Coupling these DFT energy barriers
with the kMC simulations, the carbon diffusivity and effective
migration energy barrier affected by the solute M have been
computed at various solute concentrations and temperatures,
as compiled in Table IV. The solute concentration-dependent
trends were further presented in Fig. 14.

At first, it needs to be emphasized that we have reproduced
well the results of the C diffusivity in the presence of Si
obtained by Simonovic et al. [20]. Our data show the same
order of magnitude and a similar tendency as theirs, but ours
are much smaller, in particular at the low temperature. The
discrepancy is likely due to the different migration energies
used for the C diffusion. In our calculations, we considered
the direction-dependent diffusion energy barriers. However,
in Ref. [20] the kinetically resolved migration barrier (KRA
approximation) proposed by Van der Ven et al. [60] has
been employed. It was defined as the average of the forward
and backward diffusion migration energies to overcome the
difficulties associated with the direction dependence of the
diffusion migration energy. It is really a good approximation
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TABLE III. Diffusion migration energy barriers �E (eV) for the C atom jumping between two nearest-neighbor o sites relative to the
solute M (M = Mn, Cr, Al, and Si). The positions for the solute M and carbon are shown in the Table II.

Mn Cr Al Si Mn Cr Al Si
Initial → Final �E �E �E �E Initial → Final �E �E �E �E

1 → 2 0.89 0.90 0.90 1.04 2 → 1 0.79 0.96 1.22 0.77
2 → 3 0.94 0.77 0.64 0.59 3 → 2 0.86 0.90 1.03 1.38
3 → 4 0.83 0.89 1.01 0.99 4 → 3 0.89 0.93 0.91 1.02
4 → 5 0.86 0.90 0.93 0.95 5 → 4 0.84 0.93 1.00 0.95
5 → 6 0.92 0.81 0.96 1.03 6 → 5 0.95 1.04 0.82 0.80
6 → 7 0.92 0.90 0.95 0.93 7 → 6 0.95 0.95 0.97 1.00
7 → 8 0.93 0.93 0.94 0.95 8 → 7 0.94 0.94 0.95 0.94
8 → 9 0.91 0.91 0.95 0.92 9 → 8 0.93 0.93 0.91 0.95
3 → 6 0.92 0.88 0.98 0.97 6 → 3 0.94 0.92 0.90 0.92
5 → 8 0.93 0.94 0.93 0.95 8 → 5 0.94 0.93 0.95 0.95
7 → 10 0.93 0.92 0.95 0.94 10 → 7 0.98 0.93 0.96 0.96
9 → 12 0.95 0.94 0.93 0.95 12 → 9 0.95 0.93 0.98 0.95

only when the thermodynamic energy difference before and
after the C jump is much smaller than the corresponding kinetic
parts [60]. This kinetic part was assumed to be equal to the

FIG. 13. (Color online) The minimum-energy paths of the car-
bon migrating from the 1nn to the 5nn o sites with respect to the
solute Mn (a) or Si (b) in α-Fe. The values with and without square
brackets represent the carbon’s positions (see Table II) and the energy
barriers, respectively.

migration energy for the C diffusion at the infinite distance
away from the solute atom. However, from our calculations it
was found that for the Si addition case the thermodynamic part
has the same order of magnitude with the kinetic part within
the 3nn shells, disobeying this KRA approximation [60].
Therefore, it would be more reasonable to fully take into
account the direction-dependent diffusion energy barriers for
each jump in computing the carbon diffusivity.

Furthermore, it can be found from Fig. 14 that, in the range
of dilute solute concentration Mn exhibits little influence on
the carbon diffusivity (because it does not significantly alter
the carbon diffusion energy barriers), whereas Cr, Al, and
Si all remarkably reduce the carbon diffusivity, particularly
at low temperature (i.e., 500 K). Taking, Si for instance, the
0.78 at.% content of Si significantly reduces the C diffusivity
with 73% at 500 K and 32% at 1000 K than those without the
Si addition. This is due to the fact that Si greatly affects the
migration energy barriers of the carbon diffusion, as shown in
Fig. 13. Specifically, the 1nn and 2nn o sites around Si are
so high in energy that it is more difficult for carbon to stay,
thereby significantly reducing the positions where the carbon
can diffuse. At the longer distance beyond the 3nn shells, the
carbon atom is trapped by Si with a weak attraction, which
increases the residence time of carbon to stay at these sites.
Both of the above situations would contribute to the significant
reduction of the carbon diffusion. A similar behavior is
also observed for the Al addition. As for Cr, its reduction
on the C diffusivity is less apparent since only a labyrinth
mechanism [20] works due to its repulsive interactions with C
in all the 12 nearest-neighboring shells.

Our simulated results also demonstrate that, with increasing
the solute concentration of Cr (Al or Si), the C diffusivity
decreases significantly (see Fig. 14). Interestingly, at low
temperature the Si (or Al) addition makes carbon atoms
most likely sit at the attractive-interaction region around the
solute, remarkably decreasing carbon diffusivity (i.e., 500 K
in Fig. 14). It indicates that the carbon diffusion is indeed
dominated by the so-called trapping mechanism [61] at the
low temperature. However, the high-temperature kMC simu-
lations reveal that the carbon atom would randomly occupy
any interstitial o sites. In this situation, both the labyrinth
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TABLE IV. kMC simulated carbon diffusivity D (in m2/s) and effective migration energy �E (in eV) in α-Fe as a function of the solute
concentration CM (in at.%) (M = Mn, Cr, Al, and Si) at temperatures of 500 K and 1000 K.

Mn Cr Al Si

CM 500 K 1000 K �E 500 K 1000 K �E 500 K 1000 K �E 500 K 1000 K �E

(at.%) (10−16) (10−12) (eV) (10−16) (10−12) (eV) (10−16) (10−12) (eV) (10−16) (10−12) (eV)

0.00 2.55 7.38 0.89 2.55 7.38 0.89 2.55 7.38 0.89 2.55 7.38 0.89
0.15 2.59 7.30 0.88 2.43 7.15 0.89 2.27 7.00 0.89 1.83 6.90 0.91
0.40 2.58 7.13 0.88 2.15 6.75 0.89 1.81 6.35 0.90 1.09 6.08 0.94
0.78 2.61 6.83 0.88 1.76 6.03 0.90 1.29 5.35 0.92 0.68 5.03 0.94
1.39 2.68 6.83 0.86 1.33 5.35 0.91 0.87 4.25 0.93 0.49 3.83 0.97
1.85 2.83 7.10 0.87 1.04 4.88 0.93 0.54 3.45 0.95 0.37 3.15 0.98

mechanism [20] and the trapping mechanism [61] work well.
As evidenced in our simulations, at high temperature (i.e.,
1000 K in Fig. 14) the alloying addition results in a smaller
impact on the carbon diffusivity.

The influences of the Al concentration on the carbon
diffusion in Fe-Al-C alloys have also been investigated
experimentally by Strahl and Golovin et al. [6]. They observed
that with increasing the Al content the Snoek peak became
broader and its corresponding position shifted upward the
higher temperature. Similar phenomenon was also observed
in the Fe-Cr-C alloys [62]. It is known that the Snoek peak
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FIG. 14. (Color online) Carbon diffusivities in the presence of
the solute M (M = Mn, Cr, Al, and Si) relative to that without M

versus the solute concentrations at temperatures of 500 K and 1000 K.

is a typical relaxational internal friction peak due to the
migration of the interstitial atoms induced by the stress. In
the bcc Fe-C alloys without any solutes, where all the o

sites are equivalent for the carbon, the individual migration
energy barrier and effective migration energy barrier �E

are the same for each jump of carbon. Thus, the relaxation
time τ [τ = τ0exp(�E/kBT )] should be nearly constant; i.e.,
the resonance condition is almost strictly satisfied, leading to
the appearance of the narrow Snoek peak. However, when Al is
added, it would greatly affect the potential energy surface and
the distribution of the interstitial carbon atoms, which makes
the resonance condition in the internal friction measurements
less strict to meet. That is the reason why the Snoek peak
broadens when Al is added. The center of the wide peak
corresponds to the effective migration energy barrier of the
carbon. Within our kMC simulations it was also found that
with increasing the Al content, the effective migration energy
barrier of the carbon diffusion increases (see Table IV). This
fact indicates that a much higher temperature is required to
activate the migration of the carbon, coinciding well with the
experimentally observed upper shift of the Snoek peak to the
higher temperature [6].

IV. CONCLUSIONS

In the present paper, we have systematically investigated
the dilute solute-C and solute-vacancy-C interactions and the
influences of dilute solutes on the carbon’s distribution and
diffusion in α-Fe through first-principles calculations. The
main conclusions are as follows.

(i) In terms of the 4d and 5d elements, the solute-C
interactions are mostly governed by the strain relief, whereas
for the 3d elements, magnetic coupling and electronic structure
also play important roles, which may override the strain relief.
Mn is the only element that shows attractive interactions with
C in the 1nn shell.

(ii) When an Fe vacancy is introduced, the solute-vacancy-
carbon total binding energies become negative, indicating
the easy formation of the defects complex. In particular,
the Mn-vacancy pair exhibits an exceptionally large binding
energy with C (−0.81 eV), which is due to the stronger antifer-
romagnetic coupling between Mn and its nearest-neighboring
Fe atoms assisted by the Fe vacancy. Moreover, our results
also suggest that the vacancy assisted by Mn could serve as a
stronger trap site to the carbon.
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(iii) The longer-range interactions between the dilute
solutes (Mn, Cr, Al, and Si) and C have been investigated in
detail. Through the model proposed by Simonovic et al. [20]
coupled with the thermodynamic considerations, it has been
found that the solutes’ addition would greatly affect the carbon
distribution and chemical potential. Among the four solutes,
Mn and Cr tend to increase the carbon chemical potential,
whereas Al and Si reduce it.

(iv) The carbon diffusion affected by the dilute solutes
has been modeled in depth through the kMC simulations
coupled with the DFT energy barrier calculations. The results
demonstrate that in the range of the dilute concentration, Mn
hardly changes the carbon diffusivity, whereas Cr, Al, and Si
significantly decrease it as the concentration increases.

Finally, we would like to emphasize that our current first-
principles calculations only fit to the cases where the alloying
solutes and carbon are dilute in α-Fe. When compared with the
available experimental results, one should be always cautious
about complicated experimental factors, such as temperature,
pressure, concentration, and defects, and so on.
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