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Sparse representation for a potential energy surface
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We propose a simple scheme to estimate the potential energy surface (PES) for which the accuracy can be
easily controlled and improved. It is based on model selection within the framework of linear regression using
the least absolute shrinkage and selection operator (LASSO) technique. Basis functions are selected from a
systematic large set of candidate functions. The sparsity of the PES significantly reduces the computational cost
of evaluating the energy and force in molecular dynamics simulations without losing accuracy. The usefulness
of the scheme for describing the elemental metals Na and Mg is clearly demonstrated.
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I. INTRODUCTION

About 60 years ago, molecular dynamics (MD) was
proposed as a tool to model a collection of interacting atoms
within classical mechanics [1]. The accuracy of the potential
energy surface (PES) in terms of the atomic positions is
crucial in performing MD simulations. The PES determines the
forces acting on atoms that originate from atomic interactions
and thereby the motion of atoms. A reliable PES can be
obtained by directly computing the energy and forces acting
on atoms for an atomic configuration at each time step by
density functional theory (DFT) calculation [2,3], known as
first-principles MD calculation [4]. Owing to advances in
computational power and algorithms, the first-principles MD
calculation can be carried out for large systems composed of
thousands of atoms [5]. Also, computational approaches for
efficiently performing the first-principles MD simulation have
been proposed (e.g., Ref. [6]). However, because the first-
principles MD calculation is still computationally demanding,
many different interatomic potentials have often been used
instead, particularly for considerably large systems, including
the Lennard-Jones, Morse, embedded-atom method (EAM),
and Tersoff potentials [7–12]. Parameters in the potential
functions are optimized by fitting to a set of experimental
data. First-principles results have also been used to derive
more accurate interatomic potentials (e.g., Refs. [13,14]).

Recently, an alternative approach to estimating the PES
from a large set of DFT energies was demonstrated [15,16]. In
this approach, the information of atomic positions in a structure
is transformed into various descriptors [17–19], although it
is not clear which descriptors should be used for the target
material. Then, nonlinear regression techniques such as neural
networks [15] and the Gaussian process [16] have been used to
bridge the energy and descriptors because a complex function
of the PES in terms of the descriptors must be estimated
without a priori knowledge of the target material. Using these
techniques, the accuracy of the PES is generally much better
than that obtained using conventional interatomic potentials.
Another advantage is their applicability to a wide range of
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materials, including metallic [20,21], covalent [15,16,22], and
ionic materials [23].

In this study, we show another simple procedure for
estimating the PES from a large set of DFT calculations.
We here propose to use the framework of linear regression
even though the PES is a complex function in terms of
the atomic positions. Compared with nonlinear regression
techniques, linear regression has a number of advantages:
(1) Accuracy can be controlled in a transparent manner.
(2) Regression coefficients are generally determined quickly
using a standard least-squares technique. (3) The number
of regression coefficients does not explicitly depend on the
size of the input data set. As descriptors for expressing
atomic positions, a systematic set of simple basis functions
is adopted. By using a combination of linear regression and
systematic basis functions, the accuracy of the PES can be
easily controlled and improved.

We use two methods for the estimation of the PES for the
elemental metals Na and Mg. One is the linear ridge regression
technique [24] using all the basis functions in the given set of
basis functions. The other uses the least absolute shrinkage
and selection operator (LASSO) technique [25] to perform the
automatic selection of basis functions. The LASSO enables us
to obtain a well-optimized sparse expression for the PES with
a small number of nonzero coefficients.

II. LINEAR MODEL FOR POTENTIAL ENERGY SURFACE

A linear model for describing the energy of a structure is
shown in Fig. 1. This model is invariant to the translation
and exchange of atoms and is based on the widely accepted
idea that the total energy of a structure is equal to the sum
of its atomic energies [15,16]. The total energy of structure
i is expressed as E(i) = ∑

j E(i,j ), where E(i,j ) denotes the
contribution of atom j to the total energy of structure i. Then,
a linear relationship between the atomic energy and M basis
functions is introduced as

E(i,j ) = w�b(i,j ), (1)

where w = [w1, . . . ,wM ]� and b(i,j ) = [b(i,j )
1 , . . . ,b

(i,j )
M ]� de-

note the regression coefficients and basis functions for atom j

of structure i, respectively. By applying the same regression
coefficients to identical atomic species, the total energy is
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FIG. 1. (Color online) Relationship between atomic positions
and total energy in the linear model for the PES of structure i. It
is assumed that the energy of atom j , E(i,j ), and the set of basis
functions for atom j , {b(i,j )

n,a }, have a linear relationship. The set
of basis functions is here calculated from the set of pair distances
{R(i)

jk } smaller than the cutoff radius Rc, which are obtained from the
positions of all atoms.

derived as

E(i) = w�c(i), (2)

where the M vector c(i) satisfies the equation c(i) = ∑
j b(i,j ).

Here, functions with a simple form are implemented as
basis functions. The basis function which is the ath power of
the nth element, b

(i,j )
n,a , is written as

b(i,j )
n,a =

[∑
k

fn

(
R

(i)
jk

)
fc

(
R

(i)
jk

)]a

, (3)

where a is a positive integer and R
(i)
jk denotes the distance

between atoms j and k of structure i. The sum is taken over
all atoms within a cutoff radius Rc. For fn(R(i)

jk ), we adopted
various types of systematic and analytical pairwise functions,
which are Gaussian, cosine, Bessel, Neumann, polynomial,
and Gaussian-type orbital (GTO) functions. fc(R(i)

jk ) is a
smooth pairwise cutoff function which is exactly zero at
a distance greater than the cutoff radius Rc. We use a
cosine-based cutoff function as used in Ref. [15]. Since the
product of fn(R(i)

jk ) and fc(R(i)
jk ) is pairwise, an exponential

form of the sum of the pairwise functions is introduced to
take many-body effects into account. Note that the use of a
pairwise potential causes well-known serious problems for
the description of the PES [11,12]. For instance, pairwise
interatomic potentials satisfy the Cauchy relationship for the
elastic constants of C12 = C44 in fcc crystals; this is an artifact.
The cohesive energy is forced to exhibit a linear dependence
on the coordination number.

III. ESTIMATION OF POTENTIAL ENERGY SURFACE

A. DFT calculations

The PESs for the elemental metals Na and Mg described
by the linear model were estimated from a large set of DFT
calculations using the linear regression techniques. As training
data for the regressions, 1600 configurations were prepared on
the basis of fcc, bcc, hcp, and simple-cubic (sc) structures for
both Na and Mg. They were generated by random distortions
of the ideal fcc, bcc, hcp, and sc structures, in which the

atomic positions and lattice constants were fully optimized.
In addition to the training data, 400 configurations were
prepared by the same procedure as training data to examine the
predictive power for structures that were not included in the
training data. DFT calculations were performed for a total of
2000 configurations for both Na and Mg using the plane-wave
basis projector augmented wave (PAW) method [26,27] within
the Perdew-Burke-Ernzerhof exchange-correlation functional
[28] as implemented in the VASP code [29,30]. The total ener-
gies converged to less than 10−2 meV/supercell. For the ideal
structures, the atomic positions and lattice constants were op-
timized until the residual forces became less than 10−3 eV/Å.

B. Linear ridge regression

Subsequently, we constructed PESs for Na and Mg from the
training data using linear ridge regression [24]. Linear ridge
regression is one of the shrinkage methods and shrinks the
regression coefficients by imposing a penalty. When matrix
X = [c(1), . . . ,c(N)]� is composed of basis functions of the
training data, the ridge coefficients minimize a penalized
residual sum of squares expressed as

||Xw − y||22 + λ||w||22, (4)

where y denotes the DFT energies of the training data and
|| · ||2 is the L2 norm. This is referred to as L2 regularization.
The regularization coefficient λ controls the magnitude of
the penalty. The solution is given only in terms of matrix
operations as w = (X� X + λI)−1 X� y, where I denotes
the unit matrix. When the regression coefficients of many
correlated variables in a linear regression model are determined
without including the penalty term, they can be poorly
determined and exhibit a large variance. The penalty on the
coefficients alleviates this problem.

For each PES constructed using a set of basis functions,
we calculated the root-mean-square error (RMSE) between
energies for the test data predicted by the DFT calculation
and those predicted using the PES; this can be regarded as
the predictive power of the PES. Table I shows the RMSEs
of the PESs for Na and Mg constructed from 240 systematic
cosine basis functions, where the RMSE converges with an
increasing number of basis functions. PESs constructed from
basis functions with a = 1, in which only pairwise interactions
are considered, have low predictive powers for both Na and
Mg. On the other hand, increasing the maximum value of
a, amax, improves the predictive power of PESs substantially.
Using 240 cosine basis functions with amax = 3 and Rc =
7.0 Å, the RMSEs for Na and Mg are 1.4 and 1.6 meV/atom,

TABLE I. RMSEs for the test data of PESs obtained by linear
ridge regression using 240 cosine basis functions, fn(R) = cos(βR),
with Rc = 7.0 and λ = 0.001. The interval and minimum value of
β are fixed to 0.05, and the maximum values of β and a control the
number of basis functions.

Na (meV/atom) Mg (meV/atom)

Cosine (amax = 1) 7.3 11.8
Cosine (amax = 2) 1.6 2.6
Cosine (amax = 3) 1.4 1.6
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FIG. 2. (Color online) RMSEs for the test data of the PESs
constructed by linear ridge regression using various types of basis
functions with amax = 3, Rc = 7.0, and λ = 0.001 (a) for Na and
(b) for Mg. RMSEs optimized by the LASSO are also shown (c) for
Na and (d) for Mg. For the Bessel and Neumann basis sets, the number
of basis functions is controlled by the maximum order of the basis
functions. For the Gaussian basis set, the number of basis functions
is controlled by the maximum values of the internal parameters of the
Gaussian.

respectively. By increasing the cutoff radius to Rc = 9.0 Å,
the RMSE reaches a very small value of 0.4 meV/atom for
Na, whereas it remains almost unchanged for Mg.

Then, we employed other types of single systematic
basis functions with amax = 3, i.e., Gaussian, Bessel, and
Neumann basis functions, in addition to cosine basis functions.
Figures 2(a) and 2(b) show the dependence of the RMSE on the
number of basis functions for Na and Mg, respectively. When a
small number of basis functions (<20) are used, the Neumann
basis set is the best among the four basis sets for both Na and
Mg, although the RMSE is rather large. On the other hand,
when the number of basis functions is increased, the cosine
basis set is satisfactory for increasing the accuracy for both Na
and Mg, although a sufficient number of basis functions are
needed for the convergence of the RMSE for Mg.

After applying the single basis functions to the estimation
of the PES, we considered all combinations (=24 − 1 = 15)
of the four basis sets with amax = 3. The Gaussian and cosine
basis sets were composed of 120 basis functions. The Bessel
and Neumann basis sets were composed of 60 and 30 basis
functions, respectively. It was found that no combinations
improve the RMSE for Na, whereas the combination of
Gaussian, cosine, and Bessel basis sets gives the best prediction
for Mg with an RMSE of 0.9 meV/atom.

C. LASSO

The results of linear ridge regression indicate that the energy
can be expressed by a linear relationship with simple basis
functions depending only on the distances between atoms.
However, it appears that this method leads to the use of a large
number of unnecessary basis functions to describe the PES. To
avoid this problem, the LASSO technique [24,25] is applied,
which enables us not only to provide a solution for linear

regression but also to obtain a sparse representation with a
small number of nonzero regression coefficients. The LASSO
is another shrinkage method, similar to ridge regression.
Using a large set of candidates composed of various types
of systematic basis functions for the LASSO, three types of
unknown features can be simultaneously optimized, i.e., the
type of basis functions, the internal parameters of the basis
functions, and the number of basis functions.

The LASSO minimization function is defined as

||Xw − y||22 + λ||w||1, (5)

where || · ||1 denotes the L1 norm. The L2 ridge penalty in
Eq. (4) is replaced by the L1 LASSO penalty. The parameter
λ controls the trade-off relationship between sparsity and
accuracy. The LASSO solution is computed using a general
quadratic programming technique, for which efficient algo-
rithms are available.

The candidate basis functions were composed of a large
number of Gaussian, cosine, Bessel, Neumann, polynomial,
and GTO basis functions, generated with fine intervals for the
internal parameters of the basis functions. The total number
of candidate basis functions was 8455, which was much
larger than the number of structures in the training data.
Sparse representations were then extracted from the set of
candidate basis functions by the LASSO. Figures 2(c) and
2(d) show the RMSEs of PESs obtained by the LASSO for
Na and Mg, respectively. The RMSE of the LASSO PES
decreases more rapidly than those of PESs constructed from
the single basis functions. In other words, the LASSO PES
requires a much smaller number of basis functions than linear
ridge regression. For Na, a sparse representation with an
RMSE of 1.3 meV/atom was obtained only using 107 basis
functions, which is almost the same accuracy as the PES
constructed from 240 cosine basis functions with an RMSE of
1.4 meV/atom. Moreover, the LASSO PES has about 18 times
fewer regression coefficients than a neural network potential
with 1901 coefficients [20], although the RMSE of the LASSO
PES is slightly larger than that of the neural network potential
of 0.91 meV/atom.
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FIG. 3. (Color online) (a) Energies predicted by the LASSO PES
and DFT for Mg, measured from the energy of the ideal hcp structure.
(b) Differences between energies predicted by the LASSO PES and
DFT.
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FIG. 4. (Color online) (a) Phonon dispersion and (b) specific heat
at a constant volume for hcp Mg obtained from the LASSO PES (solid
lines) compared with those obtained by the DFT calculation (dashed
lines). To evaluate the dynamical matrix, each atomic position is
displaced by 0.01 Å.

It is apparent that the LASSO is more advantageous for Mg
than for Na. The obtained sparse representation with 95 basis
functions for Mg has an RMSE of 0.9 meV/atom, which is
almost half of that for the PES constructed from 240 cosine
basis functions. Figure 3 shows a comparison of the energies
predicted by the LASSO PES and DFT for Mg. As can be seen
in Fig. 3, there is little difference between the prediction errors
for the training and test data. In addition, a dependence of the
prediction error on the energy is not clearly observed despite
the wide range of structures included in both the training and
test data.

Once the PES is constructed within the linear model, the
forces acting on atoms can be analytically computed using
Eqs. (2) and (3). Here the accuracy of the LASSO PES for
the force calculation can be examined by comparing phonon

dispersions computed by the LASSO PES and DFT. The
phonon dispersions and related thermodynamic properties
were calculated by the supercell approach [31]. The phonon
calculations were performed using the PHONOPY code [32].
Figures 4(a) and 4(b) show the phonon dispersion and specific
heat at a constant volume for hcp Mg, respectively, using
the LASSO PES and DFT calculation. Since the phonon
dispersion of the LASSO PES does not differ from that calcu-
lated by DFT, the specific heats are in good agreement. This
demonstrates that the LASSO PES is sufficiently accurate to
perform atomistic simulations of solids with similar accuracy
to the DFT calculation.

IV. CONCLUSION

We have introduced a simple scheme to estimate the PES
for which the accuracy can be easily controlled and improved.
We have applied it to describe the elemental metals Na and
Mg. We found that the energy can be expressed by a linear
relationship with simple basis functions depending only on
distances between atoms. Using the LASSO, a sparse set of
meaningful basis functions for expressing the PES can be
easily extracted from a large number of candidate functions.
As a result, we have obtained a sparse PES with prediction
errors of 1.3 and 0.9 meV/atom for Na and Mg, respectively.
The present method can increase the accuracy of atomistic
simulations while decreasing the computational costs.
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