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Anomalous topological pumps and fractional Josephson effects
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We discover novel topological pumps in the Josephson effects for superconductors with time-reversal symmetry.
The phase difference, which is odd under the chiral symmetry defined by the product of time-reversal and
particle-hole symmetries, acts as an anomalous adiabatic parameter. In contrast to topological pumps with
conventional parameters, these pumps are characterized by Z × Z or Z2 × Z2 strong invariants. We determine
the general classifications in class AIII, and those in class DIII with a single anomalous parameter. For the
Z2 × Z2 topological pumps in class DIII, the first Z2 invariant describes the coincidence of fermion parity
and spin pumps whereas the second Z2 invariant reflects the non-Abelian statistics of Majorana Kramers pairs,
leading to three distinct fractional Josephson effects.
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Introduction. Topological insulators (TIs) and supercon-
ductors (SCs) have attracted tremendous interest [1–3] in con-
densed matter physics. Electronic systems with energy gaps
subject to time-reversal symmetry (TRS) and/or particle-hole
symmetry (PHS) can be classified topologically. Nontrivial
topological classes are associated with protected gapless
modes on the boundary. The topological phases for gapped free
fermion systems with different symmetries and dimensions fit
together into an elegant “periodic table” [4–6] that unifies and
generalizes the integer quantum Hall states [7,8], the chiral p

wave SCs [9–11], and the Z2 TIs [12–15]. This framework
has been extended to classify topological defects and pumping
cycles [6], which are characterized by a Hamiltonian H(k,r).
Here k is a dk dimensional momentum variable defined in
the Brillouin zone (BZ), whereas r is a set of dr adiabatic
parameters describing spatial and/or temporal variation of the
Hamiltonian. k and r are distinguished by their behaviors
under TRS and PHS: k → −k and r → r . It was found
that the topological classes for H(k,r) only depend on the
combination dk − dr [6]. Thus, the invariants characterizing
defects and pumps for dr �= 0 are related to the invariants
(given by Z, Z2, or 0) in the original table [4,5] in which
dr = 0.

In this Rapid Communication we introduce a class of
adiabatic pumping cycles with anomalous parameters that
have a mixed behavior under TRS and PHS. Such a pump
naturally arises in the theory of a Josephson junction coupling
TRS invariant topological SCs [16,17], as well as a junction
mediated by TI edge states [18]. Consider a Josephson junction
in which the phase difference φ is an adiabatic parameter. Since
φ is odd under TRS, a 2π cycle crosses two TRS invariant
points at φ = 0 and π , similar to the Z2 spin pump [19].
However, unlike the spin pump, the Bogoliubov–de Gennes
Hamiltonian [20] has PHS for any φ, so φ is even under
PHS. Unlike both k and r , φ is odd under the combination
of TRS and PHS, which defines the unitary chiral symmetry.
We will refer to parameters with this property as anomalous.
One may also consider another type of anomalous parameter
θ which is even (odd) under TRS (PHS), and anticipate an
extended new table which should depend on dk − dr and
dφ − dθ .

We find that anomalous parameters lead to topological
classes that substantially differ from those in the original

table [4–6]. We work out the general classification in class
AIII [21] (which only has the chiral symmetry) and show
that the classification is Z × Z when the numbers of normal
and anomalous parameters are both odd. We further determine
the case in class DIII [21] (which has both TRS and PHS)
with dφ = 1. In particular, for class DIII with dk = dφ = 1
we show there is a Z2 × Z2 strong topological invariant. One
Z2 invariant describes a TRS (PHS) invariant version of the
fermion parity (spin) pump, whereas the other Z2 reflects the
non-Abelian statistics of Majorana Kramers pairs, leading to
three distinct fractional Josephson effects, as TRS invariant
topological pumping cycles in SCs. Our main results are
summarized in Fig. 1 and Tables I and II.
Z×Z invariant. We first analyze the simplest case, class

AIII, in which antiunitary symmetries are absent and show the
chiral symmetry (�) leads to a Z × Z invariant. We will use
this result later to derive a Z2 × Z2 invariant in class DIII.
Moreover, on its own it can be used to classify the pumps
in Josephson effects with a mirror symmetry, in which each
mirror eigenspace by itself has chiral symmetry [17], but no
TRS or PHS.

Consider a gapped Hamiltonian satisfying

�−1H(k,φ)� = −H(k,sφ), (1)

where s = ±. Focusing on the strong invariant, we may
think of k (φ) as the azimuth (polar) angle of a sphere,
where −π � k,2φ � π . The chiral symmetry (1) requires
the valence (v) and conduction (c) band Berry curvature to
satisfy Fv(k,φ) = sF c(k,sφ), whereas the completeness rela-
tion of wave functions restricts

∑
i=c,v F i(k,φ) = 0, leading

to Fv(k,φ) = −sFv(k,sφ). Consequently, for normal cases
[4–6] in which s = +, the Chern number must vanish, whereas
for anomalous parameters with s = −, the Chern number
survives. Moreover, along the equator, H(k,0) describes a
normal one-dimensional insulator in class AIII, which has an
integer winding number [4,17,22].

Now we demonstrate that the Chern number Nc and
the winding number Nw are distinct but related. Winding
numbers may be evaluated [17] by introducing a continuous
deformation that trivializesH(k,0) to a constant �, formulated
by H0(k,φ′) = H(k,0) cos φ′ + � sin φ′. In this trivial gauge,
Stokes’ theorem relates the loop integral of Berry connection
along the equator to the integral of Berry curvature over the
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FIG. 1. (Color online) The three Z2 topological and one trivial
pumps in the Z2 × Z2 Josephson effects for class DIII SCs. Green
and red (solid and dashed) states are related by TRS (PHS). The
shaded areas are the bulk continuum.

upper hemisphere (u.h.),

πNw =
∮

Av(k)dk =
∫

u.h.
Fv

0 (k,φ′)dkdφ′. (2)

Moreover, a Chern number is produced if one glues together
the two u.h. integrals of Fv

0 (k,φ′) and Fv(k,φ) along the
common equator, i.e.,

2πNd =
∫

u.h.
Fv

0 (k,φ′)dkdφ′ −
∫

u.h.
Fv(k,φ)dkdφ. (3)

As a result of Fv(k,φ) = Fv(k, − φ) derived above, the last
integral is πNc. We therefore conclude

Nw = Nc + 2Nd. (4)

Thus, the winding number along the equator and the Chern
number over the sphere are distinct but only differ by an
even integer. To further illustrate this unprecedented relation,
consider the following smooth and nonsingular Hamiltonian
flattened on a unit sphere:

H = cos(3φ)[cos(Nk)σx + sin(Nk)σy] + sin(3φ)σz. (5)

Here � = σz; the integer N = Nw when |φ| � π/6 and N =
Nd otherwise. Along the equatorH(k,0) has a winding number
Nw in the trivial gauge, whereas over the sphere H(k,φ) has a
Chern number Nw − 2Nd .

This result can be generalized to higher “dimensions.”
When dk + dφ = 2n is even, Eq. (1) with s = − leads to

Tr[F(k,φ)n] = (−1)dφ+1 Tr[F(k, − φ)n], (6)

TABLE I. Topological classifications of gapped Hamiltonians in
class AIII with and without anomalous parameters.

dk − dr Even Odd

dφ − dθ = even 0 Z
dφ − dθ = odd 0 Z × Z

where the Berry curvature F = dA + A ∧ A and A is the
non-Abelian Berry connection. The nth Chern number is an
integral of Eq. (6) over the extended BZ spanned by k and φ.
Thus, the Chern number vanishes when dφ is even, whereas it
survives when dφ is odd. When dk is odd, there is a winding
number along the equator spanned by k. These results are
summarized in Table I.
Z2 ×Z2 Josephson effects. Before advancing the Z2 × Z2

strong invariant for class DIII with dφ = dk = 1, we first
analyze the boundary consequence, i.e., the spectra of Andreev
bound states (ABSs) as a function of the phase difference
φ, which naturally arises from the Josephson effects for
topological SCs with TRS [16,23–26].

Figure 1(a) describes the spectrum of two ABSs with a
single crossing at φ = π and E = 0. This twist reminds us of
the fractional Josephson effect [10,18,27,28], yet the switching
must occur at φ = π or 0 as required by TRS. This crossing
is also reminiscent of the TI edge state [1–3,12], with an extra
feature being the PHS between the conduction and valence
bands. This pump is even robust against TRS (PHS) breaking
as long as one symmetry is intact, and thus is the coincidence
of spin and fermion parity pumps. A symmetry-allowed
perturbation can only gap an even number of such spectra,
indicating that this pumping cycle is characterized by a Z2

index ν = 1. Such a topological pump can be realized by
proximity coupling TI edge states [18] or hybridized double
Rashba wires [25] to an s wave Josephson junction.

Figure 1(b) depicts the spectrum of four ABSs exhibiting a
pair of zero-energy crossings. The degeneracies at φ = 0 and
π are required by TRS, whereas the crossings at E = 0 are
protected by local conservation of fermion parity. By exam-
ining a model below, we find that the zero-energy crossings
cannot be annihilated without breaking TRS or PHS, even if
they are brought together. However, an even number of such
double crossings can be gapped out by a symmetry-allowed
disturbance. These features, in sharp contrast to Fig. 1(a),
imply a distinct Z2 index μ = 1. Importantly, this topological
pump explicitly shows the non-Abelian statistics of Majorana
Kramers pairs protected by TRS. In the fermion parity (0 or 1)
basis of each Kramers partner (↑ or ↓), the adiabatic pumping
of fermion parity and spin follows

|0↑0↓〉 → |1↑0↓〉 → |1↑1↓〉 → |1↑0↓〉 → |0↑0↓〉, (7)

in which φ advances by π in each step. This topological pump
can be achieved [16] through proximity coupling a Rashba
wire to an s± wave Josephson junction.

Since μ and ν are independent indices, it is possible to have
a third Z2 topological pump with ν = μ = 1, which is shown
in Fig. 1(c) [29] and will be discussed later. For comparison,
the trivial pump is plotted in Fig. 1(d).

TABLE II. Topological classifications of adiabatic pumps in class
DIII, with zero or one anomalous parameter effectively.

(dk − dr ) mod 8 0,4,5,6 1 2 3 7

dφ − dθ = 0 0 Z2 Z2 Z 2Z
dφ − dθ = 1 0 Z2 × Z2 Z2 × Z2 Z × Z 2Z × 2Z
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FIG. 2. (Color online) (a) The extended BZ of H(k,φ) in class
DIII. (b)–(e) Schematics of the contraction and deformation of the
special lines and points on the torus (a) in our homotopy theory.

Homotopy argument. Now we derive the above Z2 × Z2

strong invariant using a homotopy argument in the spirit of the
Moore-Balents [13] argument on the Z2 TIs. This approach
has an advantage of being model independent. When folded
into each other, the two SCs coupled at a Josephson junction
may be described by a Hamiltonian H(k,φ) in class DIII. The
Josephson effects sketched in Fig. 1 can thus be interpreted as
the boundary consequences of the bulk invariant of H(k,φ),
which inherits PHS and TRS constraints:

�−1H(k,φ)� = −H(−k,φ), (8)

	−1H(k,φ)	 = H(−k, − φ), (9)

the combination of which determines the chiral symmetry
specified by Eq. (1) with s = −. We focus on deriving
the strong invariants instead of the weak ones, so we
assume the topologically nontrivial physics only occurs near
k,φ = 0. The k,φ = π lines may be trivialized and contract
to a point O ′. Hence the torus in Fig. 2(a), the extended BZ
of H(k,φ), is topologically equivalent to a sphere in Fig. 2(b).
Because of the topological triviality of H(0,φ) which will be
demonstrated below, the k = 0 circle may further contract to
a trivial point, as described in Fig. 2(c). The resulting two
spheres are related by PHS (TRS), whereas each one only
respects the chiral symmetry and thus has a Z × Z strong
invariant, as we have demonstrated in Eq. (4).

However, there are multiple topologically inequivalent
contractions from the k = 0 circle to a point. These ambiguities
reduce the Z × Z invariant to a Z2 × Z2 invariant. For a
homotopic deformation, it is required that at each stage the
contracted circle has the same symmetry constraints as the
original one. Thus the contraction is naturally parametrized
by r , which is even under both TRS and PHS, as shown in
Fig. 2(c). The two hemispheres forming in the contraction
can be glued into a sphere, which can be described by a
Hamiltonian H(r,φ) in class DIII. From Table I, H(r,φ) has a
Z × Z invariant. Yet the antiunitary symmetries require both
integers to be even. Indeed, the original table [6] has revealed
that the winding number of H(r,0) is 2Z in class DIII, and
that the Chern number of H(r,φ) is also 2Z in both class
D and AII. Similarly to Eq. (4), here the winding number

and the Chern number are distinct but only differ by 4Z.
This not only explains that there are 2Z × 2Z topologically
distinct contractions of the k = 0 circle, but also determines
the invariant of H(r,φ) in class DIII.

The remaining task is to show H(φ) is topologically trivial
in class DIII. In the original table [4,5], zero-dimensional DIII
SCs are trivial and thus we can glue together the two points
φ = 0 and π , as done in Fig. 2(e). The two resulting circles
are related by TRS (chiral symmetry), whereas each one has
PHS, i.e., in class D. As H(φ) in class D is trivial as shown
in the table [6], we conclude that H(φ) is indeed trivial in
class DIII.

So far, we have established the strong invariants forH(k,φ),
H(r,φ), and H(φ) in class DIII, which are summarized in
Table II. Now we demonstrate the remaining nontrivial entries
in this table. Consider the case for dφ = 1 and dk = 3 in Table I;
the second Chern number is compatible with having TRS and
PHS, as it exists in class AII with dk + dφ = 4 [5,14] and
in class D with dk − dφ = 2 [6]. The winding number along
the equator is exactly the integer invariant in class DIII with
dk = 3 [4,22]. Hence, H(k,φ) with dk = 3 in class DIII has a
Z × Z invariant. As forH(k,φ) with dk = 2 in class DIII, there
can be a weak Z2 × Z2 invariant in each of the two “planes”
with dk = dφ = 1, as we have demonstrated above. If one
plane is trivial, then the invariant in the other plane becomes a
strong invariant, which is analogous to the relation between
two- and three-dimensional Z2 TIs [13]. In light of these
analyses, we complete Table II, which has Bott periodicity 8 in
dk − dr [5,6].

Effective theory. Table II suggests a dimension reduction
rule, generalizing the case [14] with no anomalous parameter.
This becomes more clear in a minimal effective theory near
k = 0 and φ = π . We choose a gauge in which PHS and
TRS operators are � = K and 	 = σyK. Consider a flattened
four-band (eight-band) model,

H = kxσxsx + kzσz + δφσy(τz) + kyσxsz + Mσxsy, (10)

where M = m − k2 − δφ2 and k̂y is normal to the Josephson
junction. The boundary problem is specified by the last two
terms in Eq. (10), with m switching signs [30].

The four-band model has Nc = Nw = 1, and we can derive
the ABS spectrum,

H̄ = kxσx + kzσz + δφσy, (11)

which resembles a “Weyl fermion.” Any perturbation in H̄ is
prohibited by both TRS and PHS. Even an even number of such
spectra cannot be gapped, consistent with the invariants being
integers. When one or two k terms are taken off, H̄ describes
the lower dimensional cases. Although any disturbance is
still prohibited, a pair of such spectra can be gapped without
breaking any symmetry, indicating the Z2 character.

The eight-band model has Nc = 0 and Nw = 2, and the
corresponding ABSs can be described by

H̃ = kxσx + kzσz + δφσyτz, (12)

resembling a “Dirac fermion.” In the presence of both TRS
and PHS, a perturbation in H̃ is allowed but cannot gap
the spectrum for the dk = 1,2,3 cases. Without breaking a
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symmetry, two copies of H̃ can be gapped for the dk = 1,2
cases but not for the dk = 3 case, reflecting theirZ2 and integer
invariants, respectively.

In light of the above model analysis, the three Z2

topological pumps in Figs. 1(a)–1(c) can be described
respectively by H̄a = δφσy , H̃b = δφσyτz + �σx,zτy , and
H̄c = −δφσy [29]. Two copies of eachZ2 pump can be gapped
out without breaking any symmetry, whereas combining any
two different Z2 pumps leads to the third Z2 pump. Evidently,
for the dk = 3 cases, the protection of the gapless nature of
H̄ requires no symmetry, whereas that of H̃ requires both
symmetries. This difference, together with the difference in Nw

and Nc, distinguishes the two Z2 invariants deduced from the
two models.

Discussion. TheZ2 topological pump described in Fig. 1(b)
is a general feature of the Josephson effect for two TRS
invariant topological SCs [16,25,31]. This may be most easily
achieved [16] by proximity coupling a Rashba wire to an s±
wave Josephson junction. The Z2 topological pump depicted
in Figs. 1(a) or 1(c) may be realized by proximity coupling
TI edge states [18] or hybridized double Rashba wires [25]
to an s wave Josephson junction. Note that when ν = 1, the
second Z2 index μ which distinguishes Figs. 1(a) and 1(c) is
not gauge invariant. In this case, μ = 0 and μ = 1 topological
pumps can be switched by advancing the phases of both SCs by
π . Yet, their distinction is meaningful, as coupling two copies
of Fig. 1(a) or Fig. 1(c) yields to Fig. 1(d), whereas coupling
Fig. 1(a) and Fig. 1(c) produces Fig. 1(b).

The 4π Josephson effect in Fig. 1(b) was first proposed in
Ref. [16] and further studied in Refs. [25,31]. However, each
one requires an extra mirrorlike symmetry to decompose the
class DIII pump into two decoupled pumps in class AIII or in
class D. Importantly, as demonstrated in this Rapid Communi-
cation, the fractional Josephson effect in Fig. 1(b) and the non-
Abelian statistics of Majorana Kramers pairs can be protected
by the TRS even in the absence of any extra symmetry.

With similar homotopy arguments on “bulk” invariants,
stability analysis of “boundary” consequences, and the Clif-
ford algebra of representative models, our results can be
generalized to another three symmetry classes with the chiral
symmetry and to the DIII cases with more than one anoma-
lous parameters. Thus, we anticipate an extended new table
with 8 × 8 × 10 entries, specified by dk − dr , dφ − dθ , and
symmetry classes, to completely classify topological phases
for gapped free fermion systems. Besides the strong invariants
that we have established, we note there exist multiple weak
invariants in lower dimensional subspaces of the extended BZ.

Note added in proof. Recently, it has been discovered [32]
that the dissipative Z2 Josephson effect, shown in Fig. 1(a) or
Fig. 1(c), becomes a dissipationless Z4 Josephson effect in the
presence of electron-electron interactions.
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