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for a wide range of contact types
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The superconducting proximity effect leads to strong modifications of the local density of states in diffusive
or chaotic cavity Josephson junctions, which displays a phase-dependent energy gap around the Fermi energy.
The so-called minigap of the order of the Thouless energy ETh is related to the inverse dwell time in the diffusive
region in the limit ETh � �, where � is the superconducting energy gap. In the opposite limit of a large
Thouless energy ETh � �, a small new feature has recently attracted attention, namely, the appearance of a
further secondary gap, which is around two orders of magnitude smaller compared to the usual superconducting
gap. It appears in a chaotic cavity just below the superconducting gap edge � and vanishes for some value
of the phase difference between the superconductors. We extend previous theory restricted to a normal cavity
connected to two superconductors through ballistic contacts to a wider range of contact types. We show that the
existence of the secondary gap is not limited to ballistic contacts, but is a more general property of such systems.
Furthermore, we derive a criterion which directly relates the existence of a secondary gap to the presence of small
transmission eigenvalues of the contacts. For generic continuous distributions of transmission eigenvalues of the
contacts, no secondary gap exists, although we observe a singular behavior of the density of states at �. Finally,
we provide a simple one-dimensional scattering model which is able to explain the characteristic “smile” shape
of the secondary gap.
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I. INTRODUCTION

One of the most striking impacts of a contact with a
superconductor (S) onto a small piece of normal metal (N)
is the modification of the local density of states (LDOS).
This effect, known as the superconducting proximity effect,
is related to the induction of superconducting correlations
resulting in a finite value of the pair amplitude ∼ 〈�̂↑(�r)�̂↓(�r)〉
on the normal side [1]. In the absence of phonon-mediated
attraction between electrons on the normal side, decoherence
between electronlike and holelike amplitudes leads to an
exponential decay of the pair amplitude with distance from
the contact, with a characteristic length scale exceeding the
superconducting coherence length.

Modification of the LDOS on both sides of the contact
strongly depends on the scattering properties of the contacts
(described in terms of transmission eigenvalues) and the
properties of the normal region (geometry, size, and impurity
concentration). In the case of diffusive systems, it was
predicted theoretically that the LDOS can even be fully
suppressed in a specific energy range around the Fermi energy
which is known as the minigap [2]. The minigap width is of
the order of the inverse dwell time in the normal structure,
which is given by the Thouless energy ETh = (G�/GQ)δs ,
where δs denotes the mean level spacing of the normal
region and G� � GQ is the total conductance of the structure
which is assumed large compared to the conductance quantum
GQ = e2/π�. In the decades after its discovery it has in detail
been studied theoretically [3–5]. The development of more
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elaborate experimental techniques with high spatial resolution
made variations of the LDOS in this energy range accessible
to experiments [6–12], which was found to be in agreement
with theoretical calculations to a high degree [13–15].

Much interest was concentrated on systems built up of a fi-
nite normal region sandwiched between two superconductors:
a Josephson junction [16]. In such systems, another parameter,
i.e., the phase difference between the superconducting order
parameters comes into play and leads to a phase-dependent
minigap [17,18]. Classical ballistic systems [19] were inves-
tigated as well as diffusive systems [5] and the crossover
between both [20]. It turns out that not only diffusive systems
exhibit a minigap, but also ballistic systems with a chaotic
classical motion [19,21–25].

At this point, one might think that such structures are
sufficiently explored and all relevant properties are understood.
However, recently Levchenko reported the finding of a dip
in the LDOS close to the gap edge � for short diffusive
Josephson junctions with ideal contacts [26]. Actually, this dip
was already seen in former publications [5,27–31], however,
no special attention was paid to it. In a previous work [32]
we found the peculiar result that the suppression of the
LDOS at � is not limited to a dip, but a secondary gap
of finite width appears for a diffusive system or chaotic
cavity with the normal region connected through ballistic
contacts to the superconductors. This secondary gap has
a finite width as a function of the superconducting phase
difference ϕ symmetrically around zero and closes with the
characteristic shape of a “smile”. It is situated directly below
the superconducting gap edge � for large ETh � �. For
decreasing ETh the upper edge of the secondary gap detaches
from � and the gap vanishes completely below a critical
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value of ETh. We have furthermore shown that the secondary
gap is robust against asymmetries in the setup, comprising a
difference in ballistic couplings or a weak spatial dependence.

In this work, we investigate a wide range of possible
nonballistic contacts and show that the secondary “smile”-gap
is not only an exotic feature which appears for ballistic
contacts, but is a more general property of short diffusive
or chaotic Josephson systems. Using quasiclassical Green’s
functions in the form of the quantum circuit theory, we begin by
generalizing our ballistic calculations to contacts with constant
transmission eigenvalues <1, for which we calculate the
density of states as a function of ETh and ϕ. We find a secondary
gap which scales for large ETh like in the ballistic case. In a
specific example of contacts described by different constant
transmission eigenvalues, we show that one is not limited to a
single secondary gap, but this gap can be split up into multiple
subgaps. Numerical considerations of continuous transmission
distributions (diffusive, dirty, double ballistic contacts) suggest
that the secondary gap below the superconducting gap edge
vanishes if the contacts include channels with close-to-zero
transmission coefficients. We prove this conjecture by an
analytical calculation. By considering asymmetric setups with
a tunnel contact on one and a ballistic contact on the other side
we show, however, that in this case a secondary gap can exist at
slightly smaller energies. By considering a three-node system
we show that although the LDOS varies at different nodes, the
secondary gap appears either in all nodes or in none of them.
It should as well be observable in the integrated DOS of the
normal part. Finally, we provide a simple one-dimensional
(1D) model in order to describe transmission through the
normal region, which is able to explain the “smile” shape
of the secondary gap.

II. MODEL

In order to calculate the LDOS in the normal region, we
make use of the retarded Green’s function in the quasiclassical
approximation. In the diffusive or dirty limit, the angle-
averaged Green’s functions are described by the nonlinear
diffusive Usadel equation which has the form of a continuity
equation for coherence functions including the leakage of
coherence due to a finite energy difference between electrons
and holes. Since the spatial dependence of the Green’s
function is not important for our needs (for more details see
Sec. III F), we can solve the problem by applying the so-called
quantum circuit theory [33–35]. We can discretize the system
and reduce the equations to an algebraic problem. A sketch of
the investigated system is shown in Fig. 1. The superconductors
have equal energy gaps �, however, in general the phases of
the order parameters can be different. Since the global phase
is of no significance, only the phase difference ϕ enters our
calculation and we can assign the phase ±ϕ/2 to the left
and right superconductors, respectively. The Green’s function
in the normal node Ĝc is determined by the constraint of
matrix current conservation, including the currents to the two
superconductors Îic (i being the index denoting left and right
lead) as well as the leakage current related to the volume of
the normal region through ETh:

Î1c + Î2c + iG�

E

ETh
[τ̂3,Ĝc(E)] = 0. (1)

FIG. 1. (Color online) (a) Schematic representation of the inves-
tigated structure in discretized form. Both superconductors have equal
energy gaps � and a relative phase difference ϕ. Information on
the size of the normal region is contained in the Thouless energy
ETh = �/τ , τ being the average dwell time in the normal part.
In discretized form, the Green’s function in the normal node is
determined by requiring current conservation under consideration
of matrix currents to both superconductors as well as a leakage
current related to ETh. The transmission properties of the contacts
are described by a set of transmission eigenvalues {T i

n },which can in
general be different for the two leads i.(b) Contour of the secondary
gap for different constant transmissions T = 0.9 (red), T = 0.8
(blue), T = 0.7 (green), T = 0.6 (brown), and T = 0.5 (purple)
compared to the LDOS for ballistic contacts.

The scattering properties of the contacts are contained in the
expressions for the matrix currents [35]

Îic = 2GQ

∑
n

T i
n (ĜcĜi − ĜiĜc)

4 + T i
n (ĜcĜi + ĜiĜc − 2)

(2)

in terms of a set of transmission eigenvalues {T i
n }. In general,

the transmission eigenvalues can be different on both sides.
For continuous transmission distributions ρi(T ), the sums must
be replaced by integrals over the particular distributions. The
Green’s functions in the leads are those of a bulk supercon-
ductor, given by Ĝ1,2 = cτ̂3 + is[τ̂1 cos(ϕ/2) ± τ̂2 sin(ϕ/2)]
with the spectral functions c and s being given by c =√

1 + s2 = E/
√

E2 − �2 for E > � and by c = √
1 + s2 =

−iE/
√

�2 − E2 for E < �, τ̂i being the Pauli matrices in
Nambu space of electrons and holes. In the normal node,
the Green’s function can be parametrized as Ĝc = gτ̂3 +
if [τ̂1 cos(φ/2) − τ̂2 sin(φ/2)]. g and f are related via the
normalization condition for quasiclassical Green’s functions
Ĝ2

c = 1, which is equivalent to g2 − f 2 = 1. In the general
case with different contacts on both sides, this corresponds
to the solution of two equations for two complex variables.
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Expanding (1) in Pauli matrices and comparing the coefficients
provides two independent equations

2i
E

ETh
f cos(φ) + [gs cos(ϕ/2) − cf cos(φ)]

×
[

X−1
1

1 + G2/G1
+ X−1

2

1 + G1/G2

]
= 0, (3)

− 2i
E

ETh
f sin(φ) + [−gs sin(ϕ/2) + cf sin(φ)]

X−1
1

1 + G2/G1

+ [gs sin(ϕ/2) + cf sin(φ)]
X−1

2

1 + G1/G2
= 0. (4)

Note that f and g as well as φ are complex valued in
general. All information on the contacts is contained in the
characteristic functions X−1

i given by

X−1
i = GQ

Gi

∑
n

T i
n

1 + T i
n (ai − 1)/2

, (5)

with a1/2 = −f s cos(φ ∓ ϕ/2) + cg and Gi = GQ
∑

n T i
n

being the conductance of the particular side. Again, for
a continuous transmission distribution, the sums must be
replaced by integrals over the particular distributions ρi(T ).
For a symmetric setup X1 = X2 = X and φ = 0. Equation (4)
becomes trivial and only one equation in one complex variable
remains. From Eq. (3) we find

2iE/EThf + [gs cos(ϕ/2) − cf ]X−1 = 0. (6)

The density of states N (E) is finally obtained from Ĝc through
N (E)/N0 = Re{Trτ̂3Ĝc(E)}/2 = Re{g}, N0 being the density
of states at the Fermi energy of the normal state.

III. RESULTS

In previous analysis [32] this setup was investigated for
ballistic contacts with all Ti = 1. It turned out that the
secondary “smile”-gap which appears in the symmetric case
is stable under asymmetries G1/G2 �= 1. For an asymmetric
setup, two further gaps, complementary to the usual minigap
and the “smile”-gap, appear symmetrically around ϕ = π . In
this work, we want to extend these calculations and consider a
wider range of contact types, corresponding to a wider range
of characteristic functions X−1

i , either described by discrete
transmission eigenvalues or by continuous distributions ρi(T ).
The idea of this work is to investigate the stability of
the secondary gap under deviation from the ballistic limit.
Especially, we want to determine which contact properties
define the existence of the secondary gap since it is known that
for tunnel contacts no secondary gap is found. For this reason,
we consider symmetric as well as asymmetric setups in the
intermediate regime between the tunnel and ballistic limits.

A. Constant transmission T < 1

A natural generalization of the ballistic contact is to stick
to constant transmission eigenvalues, however, to allow for
T < 1. As T approaches 0, the secondary gap is expected
to disappear and the tunnel result for the LDOS should be
reproduced. We begin by considering symmetric contacts and

FIG. 2. (Color online) (a) For constant transmission eigenvalues
T < 1, a secondary gaps appears below � similar to the ballistic
case. For large Thouless energies, the upper edge is attached to �,
at ETh,det = T � it detaches from � and approaches the lower edge
until the gap disappears at some critical value which seems to scale
linearly with T as well. The maximum width of the gap decreases with
decreasing T . The plot shows the numerical results for the critical
parameters E

upp
c and Elow

c at ϕ = 0 for different values of the constant
transmission eigenvalue T . (b) Dependence of the critical phase ϕc

on ETh. The maximum of the critical phase does not change with T .
However the ETh dependence seems to scale linearly with T and is
shifted to smaller Thouless energies for decreasing T .

thus solve Eq. (6) with the characteristic function

X = 1 + T/2(a − 1).

We find a secondary gap in the LDOS similar to the ballistic
result, which survives even for small but finite T . The
numerical results for the critical phase ϕc, for which the gap
closes, as well as for the upper and lower gap edges E

upp
c and

Elow
c at ϕ = 0, are shown in Fig. 2. The colored regions denote

the gap. Above a special value ETh,det, which scales linearly
with T and is given by ETh,det = T �, the upper gap edge is
fixed to � and the lower edge approaches � for increasing
ETh following a power law. The linear scaling of ETh,det with
T follows from Eq. (6) for E = � and ϕ = 0. The dependence
of the lower gap edge Elow

c on ETh for ETh � � is derived in
the following.

Below ETh,det, the upper edge is detached from � and
approaches the lower edge until the gap disappears at some
critical value of ETh which as well seems to scale linearly with
T . The maximum of the critical phase at which the secondary
gap closes [Fig. 2 (b)] does not depend on T , however, it is
shifted to smaller Thouless energies with decreasing T . The
dependence of the critical phase on ETh seems to scale linearly
with T . In the limit T → 0, the gap disappears and the tunnel
result without secondary gap is reproduced. However, for each
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FIG. 3. (Color online) Solution of the linearized Eq. (7) being
valid for large ETh in the parameter range of interest [i.e., δ = (� −
E)/� � 1, ϕ � 1]. For finite T , a secondary gap appears, however,
with decreasing T the gap shrinks and the LDOS approaches the
tunnel limit with singularities at E = � and above the minigap. In
this limit, no secondary gap exists.

finite value of T the secondary gap exists, if the Thouless
energy is made large enough. To get further insight to the
analytic properties, we linearize Eq. (6) in the energy range
below E = � and around ϕ = 0 in the limit ETh � �. We
find

0 = 1

2g2
+ (δ − ϕ2/8) − 2�

ETh

√
2δ

×
{

1 + T

2

[ −ig√
2δ

(
1

2g2
− δ + ϕ2

8

)
− 1

]}
, (7)

with δ = (� − E)/� being the dimensionless energy relative
to �.

This equation can be solved analytically, however, the
expression for the general solution is quite long and will not
be given here. In Fig. 3, it is plotted for various values of T .
Figure 3(a) shows the width of the secondary gap approaching
0 with decreasing T ; Fig. 3(b) shows the structure of the
density of states above the upper edge of the minigap. Note
the different scales of the energy axes in the two plots. For
decreasing T , the LDOS approaches the tunnel limit without
secondary gap but with the usual singularities [36] at E = �

and above the minigap.
Considering δ = 0 provides an analytical expression for the

critical phase

ϕc =
√

2(5
√

5 − 11)T
�

ETh
.

Similarly, for ϕ = 0 we find an analytical expression for the
critical energy δc in the limit of large ETh describing the width

of the gap

δc = f (T )

(
�

ETh

)2

,

f (T ) being a lengthy expression related to the solution
of a quartic equation. For T � 1 it has the form f (T ) ≈
1/2(T/4)4. The position of the minigap edge [Fig. 3(b)] can
as well be calculated analytically. For T � 1 it is given by

δmini = (8 + 12T 2/3)

(
�

ETh

)2

.

B. Combination of transmission eigenvalues

A generalization of the calculations from the previous
section can be achieved by considering not only one constant
transmission eigenvalue, but a whole set of different trans-
mission eigenvalues, each weighted with a specific weight
wn. We stick to a symmetric system with only one set of
transmission eigenvalues and weights {Tn,wn} describing both
sides. From the huge variety of possible sets, which could be
analyzed, we pick only one in order to demonstrate that the
secondary gaps structure in principle is not limited to only a
single gap: An even finer subdivision of the LDOS below �

can be observed for certain contact types. We calculate the
LDOS for one representative set {Tn,wn} given by

Tn 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
wn 10 5 5 2 3 20 50 70 90 200

A plot of the numerical results in the energy range below �

is shown in Fig. 4. We find that for certain sets of transmission
eigenvalues not only one secondary gap appears, but the DOS
acquires an even finer structure with multiple subgaps. The
number of subgaps depends strongly on the set {Tn,wn} under
consideration and on ETh. In the presented case we find three
gaps at ETh = �. Similar to the previously found secondary
gaps they are symmetric around ϕ = 0 and vanish at some
critical phase, which is not the same for different subgaps.

FIG. 4. (Color online) DOS of a symmetric system described by
a discrete set of transmission eigenvalues Tn and weights wn. In the
energy range below � we find a multiply gapped density of states
consisting of three secondary gaps with a finite DOS between them.
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C. Continuous transmission distributions ρ(T )

So far, we investigated systems where scattering in the
contacts is described by constant transmission eigenvalues.
However, in systems experimentally accessible scattering is
rather described by a continuous transmission distribution
ρ(T ) than by discrete transmission eigenvalues T . It is thus
of crucial interest whether the secondary gap appears as well
if continuous transmission distributions are considered. Here,
we investigate three generic contact types, each characterized
by a distribution of transmission eigenvalues of the form
ρ(T ) ∼ 1/(T β

√
1 − T ) with β = 1

2 ,1, 3
2 . The normalization

constant is determined by the condition G = GQ

∫ 1
0 Tρ(T )dT .

The distributions for x = 3
2 and x = 1 correspond to a dirty and

a diffusive connector [37,38], respectively. The distribution
for x = 1

2 is equivalent to two ballistic connectors with equal
conductances in series [34].

Again, we stick to symmetric setups with equal contacts on
both sides. The characteristic functions corresponding to the
considered distributions have a relatively compact form [39].
For a dirty connector (x = 3

2 ), it is given by X = √
(1 + a)/2.

In case of a diffusive contact (x = 1), the characteristic func-
tion is X =

√
(1 − a2)/ arccos a, and for the double ballistic

contact [34] we have X = [(1 + a)/2 + √
(1 + a)/2]/2.

Figures 5(a)–5(c) show the numerical results for the LDOS
calculated from Eq. (6) for the three cases. Since in previous
calculations the suppression of the LDOS around � was
strongest at ϕ = 0, only this case is presented. Figure 5(a)
contains the numerical results for dirty contacts (x = 3

2 ) for
different values of ETh. No signature for a suppression of the
LDOS at the superconducting gap edge � is found. The plots
in Fig. 5(b) are the results for diffusive contacts (x = 1). For
ETh ∼ 0.3�, a weak suppression at E = � can be seen. The
inset with a higher resolution of the energy range of interest,
however, shows that this suppression is no gap. At first glance,
this seems to disagree with Ref. [26] but is possibly due to
differences in the considered geometries. The lowest Fig. 5(c)
shows the results for the third contact type (x = 1

2 ) with the
highest weight at transmission eigenvalues around T = 1 of
all three distributions. We find a strong suppression at E = �

for all considered values of ETh. The inset of this plot confirms
that the LDOS is suppressed to 0 at E = �.

In summary, we find that with decreasing weight of
ρ(T ) at T = 0 the suppression of energy levels at E = �

is reinforced. This observation supports the idea that the
existence of Andreev bound states with energies directly
below E = � is related to the tunnel character of the
boundaries, i.e., the transport channels with transmissions
at T ∼ 0.

In order to check this, a fourth type of transmission distri-
bution is considered. Each contact in this system is built up of
two ballistic contacts in series (G1

i and G2
i ) having different

conductances. Note that the total setup is still symmetric. The
corresponding transmission distribution fundamentally differs
from the previously considered distributions in the sense that
it has no contribution at small transmissions, i.e., below a
critical value Tmin given by Tmin = (G1

i − G2
i )2/(G1

i + G2
i )2.

For G1
i = G2

i it follows Tmin = 0 which corresponds to the
previously investigated distribution with x = 1

2 . Since we
again stick to symmetric setups, we drop the lead index i

FIG. 5. (Color online) LDOS for ϕ = 0 for symmetric setups
with contacts having continuous transmission distributions given by
ρ(T ) = 1/(T x

√
1 − T ) with x = 1

2 ,1, 3
2 , respectively. With increas-

ing relative weight at transmissions close to T = 1 the LDOS at
E = � is more and more suppressed. (a) The plots correspond to
x = 3

2 (dirty contact). The relative weight of transmission eigenvalues
around 0 is the strongest of all distributions considered in this
section. No suppression of the LDOS at E = � is found. (b) In the
diffusive case (x = 1) there is no gap either. However, the LDOS is
weakly suppressed at E = � for ETh ∼ 0.3�. (c) For double ballistic
contacts, a dip in the LDOS appears, which is fully suppressed at
E = �. However, no gap of finite width is found.

in the following. The characteristic function is given by [34]

X(a) = G1G2

(G1 + G2)2

a − 1

1 −
√

1 − 4G1G2

(G1+G2)2
a−1
a+1

.

The results are plotted in Fig. 6. Compared to the previous
distributions, a gap of finite width appears directly below E =
� (inset of Fig. 6). As expected, the gap appears when there is
no contribution of the transmission distribution around T = 0.
This agrees with the results of Sec. III A. In the following, we
derive a criterion that relates the existence of the secondary
gap directly below E = � to the weight of the transmission
distribution around T = 0.
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FIG. 6. (Color online) LDOS at ϕ = 0 for a relation of conduc-
tances G1/G2 = 2 for different values of ETh. A ETh-dependent
secondary gap is found below E = �.

D. Analytical criterion

In this section, we show that the existence of the secondary
gap below � is indeed directly related to the distribution ρ(T )
of the transmission eigenvalues in the vicinity of T = 0. We
show that the existence of a minimal transmission Tmin > 0
results in a secondary gap below �. To reach this conclusion,
we consider Eq. (6) for a symmetric setup containing one
general function X(a) and ϕ = 0. It reads as

g

f
= c(E)

s(E)
− 2iE

EThs(E)
X(a).

We linearize this equation in δ = (� − E)/� in the limit
ETh � �. The left side is expanded in 1/g which must be
small in order to be valid. This has to be verified for the
solution. Using the limiting form of c(E) and s(E) at small δ

we get

1

2g2
= −δ + 2�

ETh

√
2δX(a).

In the leading order in δ, the general expression for a(f,g,E)
given after Eq. (5) yields: a = i/

√
2δ [δg − 1/(2g)]. Intro-

ducing rescaled variables, we get an equation without explicit
dependence on ETh. With the definitions δ = x(�/ETh)2 and
g = y(�/ETh)−1 we have

1

2y2
= −x + 2

√
2xX

[
i√
2x

(
xy − 1

2y

)]
. (8)

The LDOS is related to the real part of g, so a purely imaginary
solution for y(x) at small x means having a gap at energies
E close to �. To show this, we consider the sum D(a) in
Eq. (5), which is an integral in the continuous case. For an
arbitrary distribution ρ(T ), which can be normalized to satisfy∫

ρ(T )T dT = 1, it reads as

D(a) =
∫ 1

Tmin

ρ(T )dT

1
T

+ 1
2

[
i√
2x

(
xy − 1

2y

)
− 1

] ,

where the minimal transmission in ρ(T ) was used to replace
the lower boundary in the integral. Considering small x and
assuming y ∼ xα with α > − 1

2 (later verified by the solution)
we can neglect all other terms in the denominator compared to
−i/(4

√
2xy). We find

X(a) = −ik/4
√

2xy,

k being a constant factor defined as k = 1/
∫

ρ(T )dT .
It is constrained to the interval ]0,1], k = 1 correspond-
ing to a ballistic setup. Its value depends on the exact
form of ρ(T ) in the whole interval, particularly on Tmin.
For a diffusive connector which is cut at Tmin we have
k = 2

√
1 − Tmin/[2 ln(1 + √

1 − Tmin) − ln Tmin], which be-
comes 1 for Tmin = 1 and approaches 0 as Tmin approaches
0. With this, Eq. (8) reduces to a quadratic equation

1

2y2
= −x − i

2y
k

with solutions y± = (i/2)(−k/2x ±
√

k2/4x2 + 2/x). Both
solutions are purely imaginary for x > 0 signifying a gap in
the LDOS. However, only the solution y+ ≈ i/k for x � k

is consistent with the previously made assumption y(x) ∼ xα

with α > − 1
2 for small x. Since this solution is finite for small

x, the second assumption, which assumed g to be large, can
always be fulfilled for k > 0 by choosing ETh sufficiently large.
This is in agreement with our numerical results which predict
no secondary gap below some critical value of ETh. This
critical ETh depends on the value of k and thus on the whole
transmission distribution ρ(T ). The condition k > 0 is related
to the existence of a Tmin > 0 since only ρ(T � 1) ∼ T −α with
α > 1 leads to k = 0. To conclude this section, we have shown
that for an arbitrary transmission distribution ρ(T ) without
contribution in a finite interval above T = 0 a secondary
gap appears directly below E = �, if ETh is sufficiently
large.

E. Asymmetric setup

In this section, we demonstrate that having the distribution
function of transmission coefficients ρ(T ) = 0 at T below
some Tmin is a sufficient but not necessary condition for having
a secondary gap. We consider a device with two nonidentical
junctions and show that the secondary gap may exist even if
the latter condition on ρ(T ) is violated. The secondary gap,
however, does not appear directly below � but is shifted to
slightly smaller energies, thus it appears in a different regime
than considered in Sec. III D.

The most interesting case to which we confine ourselves
here is the one which combines the two extremal contact types:
a tunnel contact with T ∼ 0 for all transport channels on one
side and a ballistic contact with T = 1 for all channels on the
other side. The conductances of both sides enter our calculation
via the relation G1/G2, where G1 denotes the conductance of
the tunnel contact and G2 corresponds to the ballistic contact.
For G2 � G1, the role of the tunnel contact is negligible and
the result of a symmetric ballistic system at ϕ = 0 showing
a secondary gap below � [32] should be reproduced. It is of
particular interest how the transition from the ballistic limit
G1/G2 � 1 to the tunnel limit G1/G2 � 1 occurs. Results of
the previous section indicate that there should be no secondary
gap just below �: The condition on ρ(T ) for the appearance
of the secondary gap is violated by the presence of a tunnel
junction even for G1/G2 � 1.

Figure 7 shows the results of our numerical calculation. In
Fig. 7(a), the phase ϕ is fixed at ϕ = 0 and the vanishing of the
secondary gap is shown for different values of ETh as G1/G2

increases. At small G1/G2, the upper gap edge is close to its
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FIG. 7. (Color online) Asymmetric setup with a tunnel contact
(G1) and a ballistic contact (G2). (a) In the ballistic limit G1/G2 � 1
a secondary gap exists below �, which vanishes as G1/G2 increases.
The shaded regions denote the gap. (b) Phase dependence of the
secondary gap for constant ETh = � and different values of G1/G2.

ballistic value and decreases as G1/G2 increases. Similarly,
the lower gap edge is close but slightly below its value of
the symmetric ballistic case and decreases with increasing
G1/G2. At some critical value of G1/G2 which depends on
ETh the secondary gap disappears. This critical value is smaller
for smaller ETh. In Fig. 7(b), the Thouless energy is fixed
at ETh = � and the phase dependence of the secondary gap
is plotted for different values of G1/G2. We find that for
the considered system the secondary gap has its maximum
width not at ϕ = 0 as one might expect, but at ϕ = π . With
decreasing G1/G2, the ϕ = 0 result of the symmetric ballistic
system is approached at all phases. Compared to previous
findings for asymmetric ballistic contacts [32], where a similar
behavior with decreasing G1/G2 was found, no band of finite
DOS separates the gap at ϕ = 0 from the gap at ϕ = π .

F. Spatial dependence

In order to achieve a spatial resolution of the local density of
states (LDOS), we consider a symmetric model of three normal
islands connected to two superconductors at ϕ = 0. Due to
symmetry, the Green’s functions in the left and right normal
nodes are equal. Both nodes are thus called N1 in the following,
the central node is called N2. The nodes N1 are connected
via a ballistic conductance G1 to the superconductor and via
G2 to N2. In each normal node, electron-hole decoherence is
described through Thouless energies E

1,2
Th , respectively. The

system setup is sketched in Fig. 8.
Matrix current conservation in one of the nodes N1 and in

the node N2 determines the Green’s function and the LDOS in

FIG. 8. (Color online) Sketch of the system with three normal
nodes connected to two superconductors at ϕ = 0. Such a geometry
can model, for example, a series of three cavities connected by point
contacts of different widths. The contacts have the conductances G1

and G2 and at each normal node a leakage current described by E
1,2
Th

is taken into account.

the particular node [33,35]

Î1S + Î12 + i(G1 + G2)
(
E/E1

Th

)
[τ̂3,Ĝ1(E)] = 0,

−2Î12 + i(2G2)
(
E/E2

Th

)
[τ̂3,Ĝ2(E)] = 0.

The matrix currents Î12 and Î1S are defined according to the
definition (2). In general, the system is described by three
parameters E1

Th, E2
Th, and G1/G2. We fix one parameter by

considering only systems with equal mean level spacings
in all three normal nodes δ1

s = δ2
s = δs . Furthermore, we fix

G1G2/[(G1 + 3G2)�]δs = GQ/2. In this case for G1/G2 �
1 the LDOS in N1 and N2 are equal and correspond to the
result of Fig. 1(a) in [32], and for G1/G2 � 1 we have
the BCS-DOS in N1 and again the result of Fig. 1(a) of
[32] in N2. Figure 9 shows the LDOS in the two nodes for

FIG. 9. (Color online) Spatial dependence of the DOS. (a) The
DOS for G1/G2 = 1/500 is constant in the normal region. (b)
For G1/G2 = 500, the outer nodes are strongly coupled to the
superconductors, whereas the inner node shows the standard result
for a ballistic cavity (a).
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FIG. 10. (Color online) LDOS in N1 (a) and N2 (b) for interme-
diate values of G1/G2 between e−6 and e6. The white regions in
(a) are regions where N (E)/N0 > 5. Whenever a gap appears in the
central node N2 there appears a gap in the outer nodes N1 as well.

G1/G2 = 1/500 [Fig. 9(a)] and for G1/G2 = 500 [Fig. 9(b)].
Taking this into account, E1

Th and E2
Th can be expressed in

terms of G1/G2. We find

E1
Th = (G1 + G2)/GQδs = �(G2 + G1)

× (3G2 + G1)/(2G1G2),

E2
Th = 2G2/GQδs = �(3G2 + G1)/G1.

In Fig. 10, we show the numerical results for the LDOS
in both normal nodes in dependence of G1/G2 and energy in
the secondary gap region below the superconducting gap edge
�. Figure 10(a) shows the result in the outer nodes N1, and
Fig. 10(b) shows the result for the inner node N2. The white
region in Fig. 10(a) denotes N (E)/N0 > 5. The main finding
of our calculations is that the LDOS in the two nodes differs
only where N (E)/N0 > 0 in both nodes. Whenever it is zero
in the central node it is also zero in the outer nodes and vice
versa. We thus find a behavior of the secondary gap similar
to what is already known from the usual minigap [20]. The
width of this gap is not position dependent, only the LDOS
above/below the particular gap edge varies with position.

We thus expect the secondary gap not only in the LDOS of
a singular point, but as well in the integrated DOS of a finite
region. Depending on the parameters, not for every system
does a secondary gap appear. However, if it appears in one
point, it exists also in every other point of the normal part.
The previously used model with only a single normal node
between the superconductors is thus sufficient if the main
interest concerns the existence of the secondary gap and its

properties. However, with this method we cannot calculate
a position-resolved LDOS and thus cannot make statements
about the integrated DOS in the energy interval between
minigap and secondary gap.

IV. 1D SCATTERING MODEL

The secondary gap we found for diffusive Josephson
systems was calculated using Green’s function techniques
in the quasiclassical approximation. Whereas this method is
very powerful in calculating expectation values of physical
observables, it does not provide a simple intuitive explanation
for the absence of Andreev levels in the secondary gap region
and the dependence of these levels on the phase difference ϕ

between the superconductors. In this section, we investigate
a simple 1D scattering model which is able to explain
qualitatively the secondary “smile”-gap. However, since we
deal with diffusive or chaotic scattering systems with large
conductance, we should not expect to reproduce the details of
3D solutions.

A. Single-trajectory Andreev level

We consider a semiclassical path between the left (S1) and
the right (S2) superconductors (Fig. 11) and first recall the char-
acteristics of Andreev bound states between superconductors
on a ballistic trajectory. The bound state energies follow from
the semiclassical quantization condition

2E/ETh − 2 arccos(E/�) ± ϕ = 2πn . (9)

Here, the first term is the phase difference acquired between
electron and hole upon traversing the normal region. ETh is
essentially the inverse traversal time, which could also be due
to ballistic motion ∼d/vF for a trajectory of length d. The
second factor is twice the energy-dependent Andreev reflection

FIG. 11. (Color online) Upper plot: Sketch of the system with
a dirty normal metal between two superconductors S1 and S2.
The upper plot shows one possible path connecting left and right
superconductors with a single scattering event. In the lower plot, the
description of excitations following such paths is shown in terms of
an impurity scattering matrix (ST ) in the normal region and Andreev
reflection at the superconductors.
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phase and the third term the phase difference ϕ between the
superconducting order parameters. All terms together have to
add to an integer multiple of 2π .

This equation reproduces two limiting cases. In long
junction limit ETh � �, we replace arccos(E/�) ≈ π/2
and find the usual spectrum of Andreev levels En(ϕ) =
(EThπ/2)(2n + 1 ± ϕ/π ). In this case, levels move up and
down in energy linearly with the phase difference ϕ. The lowest
positive energy states have the energies (EThπ/2)(1 ± ϕ/π ).
The levels split with ϕ and cross 0 at ϕ = ±π , corresponding
to the closing of the minigap. In the opposite, short junction
limit ETh → ∞, we neglect the first term in Eq. (9) and find
the Andreev levels E(ϕ) = ±� cos(ϕ/2).

The most interesting case is the “not-so-short” junction
limit ETh � �. Assuming the energy is close to �, we can
replace E by � in the first term of Eq. (9), and taking n = 0
we obtain

E(ϕ) = � cos(�/ETh ± ϕ/2)

≈ �[1 − (�/ETh ± ϕ/2)2/2]. (10)

Thus, we obtain two states shifted in phase by the (small)
parameter �/ETh. They touch the gap at the critical phase
ϕc = ±2�/ETh and the maximal distance to � (at ϕ = 0)
is �3/2E2

Th. This is in quantitative agreement with the
characteristics of the secondary gap found previously within
the quasiclassical Green’s function theory. Note that in the
present approximation, the two levels cross at ϕ = 0. We can
expect that finite backscattering will lead to an anticrossing
and the phase dependence of the level resembles the “smile”
shape of the secondary gap.

B. Single-trajectory Andreev level with scattering

We investigate a simple model for the anticrossing and
calculate the Andreev bound-state energies for a 1D model
with impurity scattering modeled by a scattering matrix.
Although this model takes only backward scattering into the
same trajectory into account and neglects the complex inter-
ference effects of three-dimensional impurity scattering which
are covered by our original Green’s function calculations,
the results provide an understanding of the phase-dependent
Andreev level density of states. The bound-state energies
are obtained from the scattering matrices in the normal
region [34]. We consider the geometry shown in Fig. 11. The
normal scattering matrix encompasses the backscattering at the
impurity as well as the dynamical phases along the trajectory
to the superconductor and is given by

Se
N (E,x) =

(
re2ixE/ETh teiE/ETh

teiE/ETh −re2i(1−x)E/ETh

)
,

where x ∈ [0,1] accounts for the position of the impurity along
the path and t2 = T = 1 − r2 is the transmission probability.
The normal region scattering matrix for holes is related through
Sh

N (E) = Se∗
N (−E).

The scattering matrices for electron-hole conversion at the
interface to the superconductors are given by She

A (E,ϕ) =
exp[−i arccos(E/�) − iϕ/2σ3] and Seh

A (E,ϕ) = She
A (E, −

ϕ), respectively. Note that the σ space is not Nambu space.
An electron arriving at either superconductor is reflected as a

FIG. 12. (Color online) Energy of Andreev levels for a single
mode with transmission probability T [T = 1 in (a) and T = 0.9 in
(b)] through the normal part for ETh = � (red curve), ETh = 2�

(green curve), ETh = 5� (blue curve), and ETh = 10� (yellow
curve). The shaded regions in (b) correspond to variations of the
energies with the position of the scatterer along the trajectory
(described by the parameter x).

hole traveling towards the normal region from the same side,
thus, Andreev reflection is described by a diagonal matrix. The
condition for a bound state reads as

det
[
1 − Se

N (E,x)Seh
A (E,ϕ/2)Sh

N (E,x)She
A (E, − ϕ/2)

] = 0.

(11)

The bound-state energies in dependence of ϕ are plotted in
Fig. 12 for different values of ETh. Without backscattering
in the normal region, at ϕ = 0 the two Andreev levels
are degenerate [Fig. 12(a)]. Taking into account impurity
scattering in the normal part [Fig. 12(b)], this degeneracy
is lifted (the exact curve depends on the position where
scattering occurs, i.e., on the parameter x). This results in
the characteristic shape of the minigap and the secondary
“smile”-gap below E = �. Figure 12(b) shows the x-averaged
results for Andreev bound states with one scattering event
with T = 0.9 (weak scattering). It is worth mentioning that
only channels without scattering contribute to the zero-energy
Andreev states at ϕ = ±π (not shown). For paths with one or
more scattering events (more scattering matrices in the normal
part), these levels are shifted to higher energies. Thus, we
have shown that the secondary gap can be understood from
the phase dependence of the Andreev level when the junction
length exceeds a length of the order of the superconducting
coherence length, given by ETh � �. The “smile” shape can
be traced back to the effect of backscattering.

V. CONCLUSION

To summarize, we have calculated the local density of states
for diffusive Josephson systems for a wide range of contact
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types with attention to the energy range below �, in which
a secondary gap can appear. We have generalized previous
calculations for ballistic contacts [32] and shown that the
secondary “smile”-gap is a robust feature in the proximity
density of states for large Thouless energies. We thus suggest
that this feature should be accessible to an experimental
detection by means of high-resolution scanning tunneling
spectroscopy and want to encourage research in this direction.
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