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Quantum turbulence visualized by particle dynamics
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The Lagrangian dynamics of micrometer-sized solid particles of hydrogen and deuterium is investigated in
thermal counterflow of superfluid 4He at length scales �exp straddling about two orders of magnitude across
the average distance � between quantized vortices by using the particle tracking velocimetry technique. The
normalized probability distribution functions of the particle velocities and accelerations change from the shapes
typical of quantum turbulence, characterized by power-law tails, at length scales �exp � �, to forms similar to
those obtained in classical turbulent flows, at �exp � �, although the power-law behavior of the acceleration
distribution tails is less clear than that observed for the particle velocities. Moreover, the acceleration distribution
follows a nearly log-normal, classical-like shape, at � � �exp � Lint, where Lint denotes the integral length scale,
providing thus, within the just defined inertial range, experimental evidence of the existence of classical-like,
macroscopic vortical structures in thermal counterflow of superfluid 4He, which is traditionally regarded as a
quantum flow with no obvious classical analog. Additionally, we report our observations of the added mass effect
in quantum turbulence and discuss them in the framework of a developed model of particle dynamics.
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I. INTRODUCTION

Quantum turbulence can loosely be defined as the most
general form of motion of quantum fluids displaying su-
perfluidity. Their physical properties cannot be described by
classical physics but depend on quantum mechanics [1,2]. At
finite temperature, quantum fluids, such as superfluid 4He,
also known as He II, display the two-fluid behavior and, on
the phenomenological level, are viewed as consisting of two
interpenetrating fluids. The gas of thermal excitations—the
viscous normal component—carries the entire entropy content
of the quantum fluid, while the superfluid component is
assumed inviscid and its circulation quantized in units of
the quantum of circulation κ = h/msp, where h is the Planck
constant and msp denotes the mass of the superfluid particle,
e.g., the mass of the 4He atom. Quantized vortices can then
exist in superfluids (singly quantized in the case of He II) and
are usually arranged in a tangle, whose dynamical behavior is
an essential ingredient of quantum turbulence.

Recent progress in quantum turbulence—a fast developing
branch of fluid dynamics—has been especially stimulated
by the implementation of contemporary flow visualization
techniques [3] to the study of quantum flows of He II [4–7],
as these techniques allow tracing the motion of small particles
suspended in a fluid (the particles reflect the light of a laser
beam and their time-dependent positions are captured, for
example, by a fast digital camera). Fundamental results have
been obtained by visualizing the dynamics of hydrogen and
deuterium particles of micrometer size. Their motion is very
complex, as in quantum turbulence, particles interact with both
the normal and superfluid velocity fields simultaneously and
may become trapped (and/or detrapped) onto the cores of
quantized vortices. Both the normal and superfluid velocity
fields can become turbulent and are coupled by the action of
the mutual friction force [1,2,7].
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The application of the particle tracking velocimetry (PTV)
technique resulted specifically in the discovery of nonclassical
velocity statistics in decaying [8] and stationary thermal
counterflow [9,10] of He II, among other results, such as
direct observations of quantized vortex reconnections [11]
and Kelvin waves [12]. Recently, we have confirmed experi-
mentally the computational prediction of a crossover between
classical and quantum features in the velocity distribution of
steady-state thermal counterflow, which was probed at various
length scales �exp, smaller and larger than the average distance
� between quantized vortices [13]. Note that the latter scale
can be viewed as proportional to the quantum length scale
�Q ≈ 2π (ε/κ3)−1/4, where ε is the energy decay rate [1,14].

A step forward has been to focus on particle accelerations
in quantum flows [10], as this research field is well established
in classical fluid mechanics [15]. This paper extends our
recent work on deuterium particle accelerations [10] in
vertical thermal counterflow, where, at �exp ≈ �, we found
that the normalized probability density function (PDF) of the
instantaneous acceleration az in the vertical direction can be
approximated by the classical-like form

PDF = exp(3s2/2)
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where s = 1 and a = (az − az)/asd
z , with az and asd

z being the
mean and standard deviation of the dimensional acceleration
az, respectively. This functional form, associated with a
log-normal distribution of the acceleration magnitude, has
been reported by Mordant et al. [16] in their study on the
dynamics of fluid particles in classical turbulence, while the
results of Qureshi et al. [17,18] refer to inertial particles and
are consistent with s = 0.62. Note, however, that such a log-
normal behavior does not have a clear physical interpretation
and may be linked to the fact that classical vortices, unlike
quantized ones, have arbitrary strength (see, e.g., [19] for an
alternative, multifractal description of the problem).

This paper shows that the experimental results on particle
accelerations, similarly to those on velocities [13], depend on
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the length scale �exp at which the stationary thermal counter-
flow is probed and, consequently, display either quantum, at
�exp � �, or classical, at �exp � �, features. The size of the
particle, d ≈ �/10, represents the smallest physical length
scale we can access, providing that the images are taken
fast enough, so that the particle between two successively
taken frames does not move further than its size. The upper
length-scale limit is determined by the lengths of the particle
trajectories that we can follow. In order to directly compare
visualization studies on velocity and acceleration, the quantum
flow under study is the same [13], i.e., steady-state thermal
counterflow [1,2] of He II, generated by a flat square heater
placed on the bottom of our vertical channel. This allows
selecting a suitable quantum length scale, by tuning the heat
flux q per unit area. The superfluid component of He II moves
towards the heater where it converts into the normal component
that flows away from it. Above a (small) critical velocity vc,
the counterflow velocity vns = q/(ρsσT ) generates a tangle of
quantized vortex lines with density L = [γ (T )(vns − vc)]2 ≈
�−2, where γ (T ) is known with sufficient accuracy (ρs is the
superfluid density, σ indicates the entropy per unit volume,
and T denotes the temperature).

II. EXPERIMENTAL SETUP AND PROTOCOL

We use the Prague experimental visualization setup already
described in our previous publications [9,10,13]. It consists
of a custom-built optical cryostat, a purpose-made seeding
system supplying micrometer-sized solid particles (generated
by mixing helium and deuterium, or hydrogen, gases at room
temperature and injecting the mixture into the helium bath), a
continuous-wave laser and cylindrical optics, in order to obtain
a thin laser sheet of about 10 mm high and less than 1 mm
thick, and a fast digital camera situated perpendicularly to the
laser sheet, focused on a 12.8 by 8 mm field of view. The
PTV technique is used for the measurement of Lagrangian
quantities in a vertical plane, in the middle of the square
experimental channel of 25 mm sides and about 100 mm
long. The gaseous mixture is injected into the helium bath
that is then brought to some chosen temperature. As both
hydrogen and deuterium particles are not neutrally buoyant,
images are recorded in order to estimate their settling velocities
and dimensions, which are of a few micrometers [9,13]. The
heater is then switched on, images collected (each movie is
typically made of a few thousand images), and the particle
tracks are computed by using an open-source algorithm [20].

The trajectories obtained from the images are filtered by
using a dedicated computer program in order to remove
spurious tracks before calculating velocities and accelerations.
The latter are computed by interpolating linearly consecutive
position differences, in the case of velocities, and velocity
differences, in the case of accelerations, by purpose-made
computer programs (the obtained accelerations are therefore
linearly related to the particle velocity differences). Note
also that the distance between particles along the trajectories,
which can be seen as a measure of the probed length scale,
is proportional to the time between successive frames, i.e.,
it decreases as the frame rate increases. Besides, particle
positions at a low frame rate can also be obtained by ac-
cordingly removing particle positions from data sets recorded

at a high frame rate, not only from images recorded at a low
frame rate. This procedure is, in fact, better, as the particle
tracks are confidently known, being already identified using
dense particle positions from high frame rate movies. The
Lagrangian quantities calculated from several movies obtained
under the same experimental conditions are finally combined.
Although our data processing approach is simpler than some
employed for the Lagrangian analysis of classical turbulent
flows [21–23], the calculated velocities and accelerations
appear consistent with the proposed physical description of
the problem.

The probed length scale �exp is quantified by introducing the
nondimensional time τ = t1/t2, where t1 is the time interval
used for the calculation of the particle velocities and accelera-
tions along the tracks, which, as explained above, is equal to,
or larger than, the time between two successive images taken
by the camera, and t2 = �/Vabs, where Vabs denotes the mean
particle velocity obtained under the considered experimental
conditions, at the smallest t1, i.e., t2 represents the time that
a particle moving with the mean velocity Vabs takes to travel
the distance �, in other words, �exp ≈ �, if t1 ≈ t2. For a more
detailed discussion on the experimental setup and procedure,
we direct the reader to our previous works [9,10,13].

III. ACCELERATION STATISTICS

We have argued in [13] that, for �exp � �, the power-law
shape of the velocity PDF tails in quantum turbulence follows
from the simple assumption that, close to a singly quantized
vortex, the superfluid velocity vs = κ/(2πr), where r is the dis-
tance from the vortex core. If the probability Pv(v) of observing
a velocity v is assumed proportional to

∫
δ(v − vs)rdr , where δ

denotes the delta function, it follows that Pv(v) ∝ v−3 [24–26].
Here, we are extending this reasoning by assuming that the
probability Pa(a) of observing an acceleration a is proportional
to

∫
δ(a − as)rdr and, as in the proximity of a quantized

vortex, the superfluid acceleration as = v2
s /r (see, e.g., [27]), it

follows that Pa(a) ∝ a−5/3 [24,26]. We stress that the influence
of the normal-fluid velocity field and superfluid velocity field
due to other quantized vortices is neglected here, i.e., the
necessary condition is �exp � �.

As we stated in [13], within the investigated range of
parameters, the character of the observed particle tracks,
moving upwards and/or downwards in steady-state thermal
counterflow, appears very similar. It is not possible to easily
identify particles trapped into quantized vortex lines. We
therefore report the statistical investigation of the particle
dynamics.

Our typical experimental results are shown in Fig. 1,
where the normalized acceleration distribution (ax − ax)/asd

x ,
computed at various �exp, for both hydrogen and deuterium
particles, is plotted (ax and asd

x are the mean and standard
deviation, respectively, of the instantaneous dimensional ac-
celeration ax in the horizontal direction, perpendicular to the
mean counterflow velocity vns). First of all (see especially the
inset of Fig. 1), we report the result that the distribution of
the particle acceleration a, at length scales about one order
of magnitude smaller than �, is indeed found to be consistent
with the law that predicts tails of a−5/3 form, on the basis of
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FIG. 1. (Color online) PDF of (ax − ax)/asd
x . Tracks with at least five points. Number of trajectory points: at least 1.9 × 105, up to

12.3 × 105; see also Table I. The area below the data curves is normalized to 1. Filled symbols refer to hydrogen particles, while open symbols
denote deuterium particles. Black �: images taken at 400 fps, T = 1.77 K, q = 612 W/m2, � = 70 μm, Vabs = 2.46 mm/s; black �: 400 fps,
T = 1.77 K, q = 608 W/m2, � = 70 μm, Vabs = 3.91 mm/s; red •: 400 fps, T = 1.66 K, q = 490 W/m2, � = 75 μm, Vabs = 3.02 mm/s; red
◦: 400 fps, T = 1.65 K, q = 487 W/m2, � = 74 μm, Vabs = 3.76 mm/s; black �: 200 fps, T = 1.66 K, q = 489 W/m2, � = 75 μm, Vabs =
2.90 mm/s; black �: 200 fps, T = 1.65 K, q = 490 W/m2, � = 73 μm, Vabs = 3.15 mm/s; red �: 100 fps, T = 1.66 K, q = 489 W/m2,
� = 75 μm, Vabs = 2.34 mm/s; red 	: 100 fps, T = 1.66 K, q = 492 W/m2, � = 74 μm, Vabs = 2.13 mm/s; blue line: power-law fit,
0.005|(ax − ax)/asd

x |−5/3; orange line: log-normal fit, given by Eq. (1), with s = 1 and a = (ax − ax)/asd
x ; green line: log-normal fit, given by

Eq. (1), with s = 0.62 and a = (ax − ax)/asd
x . Inset: Log-log plot of the PDF of |(ax − ax)/asd

x |; symbols as in the main panel.

the quantum description of superfluid 4He, although the latter
power-law behavior is less clear than that observed in the case
of velocities [13].

Figure 2 displays the evolution of the acceleration PDF
obtained at different τ under the same experimental conditions.
We see that, as t1 increases, the PDF changes its shape to a
nearly classical-like one, i.e., the crossover reported in [13] for
the velocity distribution is here confirmed in the case of the
particle accelerations. Besides, the outcome may be seen as
indicating the occurrence of classical-like turbulent behavior
in quantum turbulence, at length scales larger than �, i.e., as
an indirect evidence of the existence of macroscopic vortical
structures in thermal counterflow of He II, which is a quantum
flow without any obvious classical analog. This is especially
relevant as in the bulk of thermally driven quantum flows the
coherent motion of bundles of quantized vortices has been until
now investigated only in numerical simulations; see, e.g., [28]
and references therein.

Consider that the velocity difference PDF, at scales exceed-
ing, or of the order of, the integral scale Lint, is found to be of a
nearly Gaussian shape in classical turbulent flows [24,29,30].
Such a scale can be obtained from the velocity autocorrelation
function. In the present analysis, however, it could not be
calculated precisely, mainly due to the limited size of the
data sets at large τ . Nevertheless, the integral length scale
appears to be of the same order of, or larger than, �exp, at

the largest achievable τ , which is much smaller (about two
orders of magnitude) than that corresponding to a particle
traveling across the entire channel width. Note also that
in Fig. 2 the core of the corresponding distribution, which
contains the vast majority of the data set points, has a
Gaussian form, while, at smaller scales, the distribution core
is clearly non-Gaussian. Additionally, as shown in Fig. 3,
the normalized distribution of the particle velocity u in the
horizontal direction, obtained for the same data set, is already
nearly Gaussian at τ ≈ 2, confirming thus that our recent
results on the velocity distribution crossover [13], found with
solid deuterium particles, hold also in the case of hydrogen
particles.

The previous discussion consequently supports the claim
that at length scales larger than � and smaller than Lint, i.e., in a
quasi-inertial range of scales, we are observing a classical-like
turbulent behavior of a quantum flow, as, at τ ≈ 10, the particle
velocity and acceleration distributions both have classical-like
forms.

The recent numerical results by Baggaley and Barenghi [26]
on acceleration statistics also support our experimental find-
ings. At the investigated length scales, equal to about 0.3 �,
their distributions appear to have Gaussian (log-normal)
cores for velocity (acceleration) and power-law tails, that
is, the computational outcome qualitatively agrees with the
experimental data.
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⎯

FIG. 2. (Color online) Evolution of the PDF of (ax − ax)/asd
x

with τ . Hydrogen particles data collected at 400 fps, T = 1.77 K,
q = 612 W/m2, � = 70 μm, Vabs = 2.46 mm/s. Black �: t1 = 2.5
ms, τ = 0.09 (each subsequent data set shifted down by one decade);
black �: t1 = 5 ms, τ = 0.18; red •: t1 = 10 ms, τ = 0.35; red ◦:
t1 = 25 ms, τ = 0.88; black 
: t1 = 50 ms, τ = 1.77; black ♦: t1 =
250 ms, τ = 8.83; blue line: power-law fit, 0.005|(ax − ax)/asd

x |−5/3;
orange line: log-normal fit, given by Eq. (1), with s = 1 and
a = (ax − ax)/asd

x ; green line: log-normal fit, given by Eq. (1), with
s = 0.62 and a = (ax − ax)/asd

x (shifted down by five decades);
magenta line: Gaussian fit of the black ♦ data set (shifted down
by five decades).

⎯

FIG. 3. (Color online) Evolution of the PDF of (u − u)/usd with
τ , where u and usd are the mean and standard deviation of the
dimensional particle velocity u in the horizontal direction, respec-
tively. Hydrogen particles data collected at 400 fps, T = 1.77 K, q =
612 W/m2, � = 70 μm, Vabs = 2.46 mm/s. Black �: t1 = 2.5 ms,
τ = 0.09 (each subsequent data set shifted down by one decade);
black �: t1 = 5 ms, τ = 0.18; red •: t1 = 10 ms, τ = 0.35; red ◦:
t1 = 25 ms, τ = 0.88; black 
: t1 = 50 ms, τ = 1.77; black ♦: t1 =
250 ms, τ = 8.83; blue line: power-law fit, 0.008|(u − u)/usd|−3;
magenta line: Gaussian fit of the black ♦ data set (shifted down by
five decades).

⎯

FIG. 4. (Color online) PDF of (a3d − a3d)/asd
3d, where a3d and

asd
3d are the mean and standard deviation of the three-dimensional

acceleration magnitude a3d = √
2a2

x + a2
z , respectively. Hydrogen

particles data collected at 400 fps, T = 1.77 K, q = 612 W/m2,
� = 70 μm, Vabs = 2.46 mm/s. Black �: t1 = 2.5 ms, τ = 0.09; blue
line: power-law fit, 0.01[(a3d − a3d)/asd

3d]−5/3; orange line: log-normal
fit, given by Eq. (1), with s = 1 and a = (a3d − a3d)/asd

3d.

At length scales smaller than �, the departure from the log-
normal shape is observed at the largest accelerations, when the
particles are, on average, closer to the quantized vortices. As
shown in Figs. 1 and 2, this is consistent with the prediction for
the tails up to about 20|asd

x |, which approximately corresponds
to the acceleration of a few micrometer-sized particle touching
a vortex core (note that the particle size d has a large influence
on the acceleration magnitude as a ∝ d−3). This could also
explain why the acceleration power-law behavior is less clear
than that observed in the case of velocities. In other words,
smaller particles should lead to acceleration distributions with
more pronounced power-law tails, assuming the flow is being
probed at small enough scales.

As recently discussed by us [13], the statistical distributions
of the particle velocity in the vertical direction are affected
by the imposed vertical counterflow velocities of He II and
show less noticeable departures from the classical shapes at
scales smaller than �. The same behavior is observed for the
acceleration distributions, as recently shown in [7] in the case
of deuterium particles (hydrogen particles behave similarly).
However, the power-law tails can also be seen if the normalized
distribution of the particle three-dimensional acceleration
magnitude a3d = √

2a2
x + a2

z is plotted, as displayed in Fig. 4
for a sample case, at �exp < �.

IV. ADDED MASS EFFECT

Having identified the quantum and classical signatures in
both velocity and acceleration distributions, the following
step was to analyze the role of inertia in the dynamics of
hydrogen/deuterium particles in thermal counterflow, taking
into account the two-fluid behavior of quantum fluids. A deeper
quest must consider the added mass problem; see, e.g., [31] and
references therein. In order to appreciate its physical meaning,
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we start by considering it in its simplest case, in an inviscid
fluid.

The equation of motion of a particle p, of unit volume, in a
fluid f, can be written as

ρp
dup

dt
= ρf

Duf

Dt
+ Cρf

(
Duf

Dt
− dup

dt

)
, (2)

where u is the instantaneous velocity vector and ρ indicates
the density. The dimensionless quantity C is known as the
added mass coefficient, equal to 1/2 for a spherical particle.
The particle acceleration is assumed to be only a function
of time t , i.e., the particle dimensions are assumed much
smaller than the relevant length scales of the considered flow,
while the fluid acceleration depends on both time and space.
Stokes drag, buoyancy force, and other forces (see, e.g., [6,32])
are neglected here.

Let us write Eq. (2) in a slightly different form, i.e.,

dup

dt
= 1 + C

ρp/ρf + C

Duf

Dt
= Kp

Duf

Dt
, (3)

where Kp can be seen as the ratio between particle and fluid
accelerations. From this equation, the following conclusions
can be drawn: (i) if ρp = ρf , Kp = 1, i.e., the particle has the
same acceleration as the fluid; (ii) if ρp > ρf , Kp < 1, i.e., the
particle accelerates less than the fluid; (iii) if ρp < ρf , Kp >

1, i.e., the particle accelerates more than the fluid, until the
limiting case, ρp � ρf , when, e.g., a spherical particle (C =
1/2) accelerates three times faster than the fluid (a negative ion,
a spherical empty bubble in He II [33], closely corresponds to
this limit).

It is useful to consider the consequences of this simple
analysis for flow visualization experiments at very low
temperatures (He II density ρf ≈ 145 kg/m3), where there
is no normal-fluid component, assuming the use of spherical
particles of solid hydrogen, of density ρH ≈ 88 kg/m3, and
deuterium, of density ρD ≈ 200 kg/m3. It follows that KH ≈
1.36 and KD ≈ 0.80, i.e., in the same quantum flow, spherical
hydrogen particles ought to accelerate about KH/KD ≈ 1.70
times faster than deuterium particles.

In order to appreciate the effect of the shape of the particles
on their acceleration, let us consider a prolate spheroid of major
axis M and minor axis m, in which case C can be calculated
analytically; see, e.g., [34]. If the particle is accelerating in
the direction of the major axis and M = 2m (M = 5m), we
find that hydrogen particles in He II accelerate about 1.94
(2.16) times more than deuterium particles. If the same prolate
spheroid is instead accelerating in the direction of the minor
axis, the same hydrogen particles accelerate about 1.59 (1.51)
times more than deuterium particles. We see that, under the
assumptions of the present model, hydrogen particles in He II
at very low temperature are expected to accelerate roughly 1.5
to 2 times more rapidly than deuterium particles.

Let us now consider the case of a spherical particle of
unit volume in a classical viscous flow. The corresponding
equation of motion can be obtained by taking into account
the buoyancy force and Stokes drag and neglecting other
forces; see, e.g., [32] for a detailed discussion on its derivation.

Equation (3) is then rewritten as

dup

dt
= Kp

Duf

Dt
+ Bg + S(uf − up), (4)

where g is the acceleration due to gravity and Kp =
1.5/(ρp/ρf + 0.5) = 1.5ρf/ρ0. The second term on the right-
hand side of Eq. (4) denotes the buoyancy force, with B =
(ρp/ρf − 1)/(ρp/ρf + 0.5) = (ρp − ρf )/ρ0, while the third
term represents the Stokes drag, with S = 6πμRp/[Vp(ρp +
0.5ρf )] = 9μ/(2R2

pρ0), where μ is the fluid dynamic viscosity,
Rp indicates the particle radius, and Vp denotes its volume.

The fluid acceleration per unit volume can generally be
written as

ρf
Duf

Dt
= −∇P + μ∇2uf + F, (5)

where P is the fluid pressure and F indicates other body forces.
Note that, for an inviscid fluid, the second term on the right-
hand side of Eq. (5) vanishes and in the vicinity of a vortex,
also neglecting F , Eq. (5) becomes ρfDuf/Dt = −∇P .

In the case of a spherical particle moving in superfluid 4He,
the two-fluid description of He II can be used to reformulate
Eq. (4) as

dup

dt
= Kp

(
ρn

ρf

Dun

Dt
+ ρs

ρf

Dus

Dt

)
+ Bg + S(un − up), (6)

where the subscripts n and s indicate the normal and superfluid
components of He II, respectively, S becomes 9μn/(2R2

pρ0),
and the total fluid density ρf is equal to the sum of ρn and ρs.
If it is also assumed that

Duf

Dt
=

(
ρn

ρf

Dun

Dt
+ ρs

ρf

Dus

Dt

)
, (7)

then Eq. (6) is analogous to Eq. (4) and can be rewritten more
conveniently as

dup

dt
− Bg − S(un − up) = Kp

Duf

Dt
, (8)

in order to allow comparisons with experimental data.
The ratio between the accelerations of hydrogen and

deuterium particles in the same experimental conditions can
then be evaluated from suitable ensemble averages of the
left-hand side of Eq. (8) and, finally, compared to KH/KD ≈
1.70. This is done by using instantaneous values of particle
velocity and acceleration and postulating adequate values of
particle radius and fluid velocity. In the case of vertical thermal
counterflow, the latter normal-fluid velocity is assumed null in
the horizontal direction and equal to its mean value in the
vertical direction, while the mean particle radius can be either
assumed or obtained experimentally from the particle settling
velocities, following the procedure described in [9,13].

More specifically, the ratio RA between the amplitudes
of the three-dimensional acceleration of hydrogen, H, and
deuterium, D, particles can be written as

RA =
(√

2A2
h + A2

v

)
H(√

2A2
h + A2

v

)
D

, (9)
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TABLE I. Ratio RA between the amplitudes of the three-dimensional acceleration of hydrogen, H, and deuterium, D, particles, computed
as detailed in the text, to be compared to KH/KD ≈ 1.70. Heat flux qp (W/m2), temperature Tp (K), camera frame rate f (fps), number Np of
track points (105). If the particle radius Rp (μm) was obtained experimentally, following the procedure described in [9,13], its mean value was
used in the computations (its standard deviation is also shown in the table, as for RA).

qH qD TH TD f NH ND RH RD RA

612 608 1.77 1.77 400 12.3 5.5 2.7 ± 0.8 2.6 ± 1.0 2.28 ± 1.49
490 487 1.66 1.65 400 8.0 1.9 2.7 ± 0.8 5.2 ± 1.3 7.95 ± 5.81
490 487 1.66 1.65 400 8.0 1.9 2.5 2.5 1.81 ± 1.56
489 490 1.66 1.65 200 7.2 3.1 2.7 ± 0.8 5.2 ± 1.3 9.94 ± 8.21
489 490 1.66 1.65 200 7.2 3.1 2.5 2.5 2.09 ± 2.05
489 492 1.66 1.66 100 12.2 2.3 2.7 ± 0.8 5.2 ± 1.3 11.57 ± 9.34
489 492 1.66 1.66 100 12.2 2.3 2.5 2.5 2.17 ± 2.21
481 490 1.68 1.65 200 3.4 3.1 2.5 2.5 3.03 ± 2.28
481 492 1.68 1.66 100 2.0 2.3 2.5 2.5 1.98 ± 2.07

where the subscripts h and v indicate the horizontal and vertical
thermal counterflow directions, respectively, and A denotes
relevant ensemble averages of the left-hand side of Eq. (8).

The outcome is shown in Table I. It is clear that the
proposed model qualitatively agrees with the experimental
data, as the acceleration of hydrogen particles is always found
to be larger than that of deuterium particles, i.e., RA � 1.5.
The quantitative agreement is less satisfactory and this may
be due to various reasons. For example, the particles are, in
general, not spherical and occasionally rotate [9]. Besides,
other forces may affect their motion; see, e.g., [32] for a
detailed discussion on the issue. Note also that deuterium
particles prepared under the same experimental conditions
tend to be larger than hydrogen particles [9] and that the
particle radius significantly influences the value of RA (for
example, the drag experienced by the largest particles is likely
not accurately estimated by the Stokes drag approximation).

V. CONCLUSIONS

Our study on the dynamics of hydrogen and deuterium
particles visualizing quantum turbulence in counterflowing
superfluid 4He provides direct experimental evidence that both
quantum and classical characteristics of turbulence can be
detected simultaneously when quantum turbulence is probed
at small and large length scales, where coarse graining over
a number of quantized building blocks—singly quantized
vortices—implies classical behavior. Our acceleration studies

also reveal the importance of the added mass effect in quantum
turbulence, in qualitative agreement with the developed model
of particle dynamics. Quantum and inertial effects, together
with the finite size of the particles, shape not only the
distribution of the velocity v, characterized by v−3 tails
and a classical Gaussian core [13], but also, as shown here
experimentally, the distribution of the acceleration a, having
tails of a−5/3 form, of predictable width, and a classical
log-normal core, although the power-law behavior of the
acceleration distribution tails is less clear than that obtained
for the velocities. Remarkably, at scales larger than the mean
distance between quantized vortices but not exceeding the
integral length scale of the flow, i.e., within a quasi-inertial
range of scales, the shape of the acceleration PDF strongly
suggests the existence of macroscopic vortical structures in
thermal counterflow of He II. In other words, taking into
account the statistical distributions of both particle velocities
and accelerations, we observe a classical turbulent behavior of
a steady quantum flow that does not have any direct classical
analog. This confirms the robustness of the principles and
phenomenology of hydrodynamic turbulence.
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