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Thermal transport through ac-driven transparent Josephson weak links
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We discuss how phase coherence manifests in the heat transport through superconducting single and
multichannel Josephson junctions in time-dependent situations. We consider the heat current driven through the
junction by a temperature difference in dc voltage and ac phase biased situations. At low bias, the electromagnetic
driving mainly modifies the form of the coherent resonance that transports a large part of the heat current, rather
than simply dissipating energy in the junction. We find a description for the heat current in terms of quasiparticle
n-photon absorption and emission rates, and discuss analytical and numerical results concerning them. In addition
to the ensemble average heat transport, we describe also its fluctuations.
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I. INTRODUCTION

Time-dependent effects in superconducting junctions have
been under extensive study since the discovery of the Joseph-
son effect. As far as charge transport is considered, the physics
is well understood both theoretically and experimentally and
has been studied in detail—both for tunnel junctions [1]
and for finite junction transparencies [2–8]. In contrast,
time-dependent heat transport through Josephson junctions
has attracted interest only quite recently [9], in the wake of
theoretical [9–15] and experimental [16,17] advances in the
understanding of how the heat transport is modulated by phase
differences of the superconducting order parameter.

In a stationary situation, electronic heat current between
two superconductors connected by a weak link is mainly
mediated by the transport of above-gap quasiparticles. The
heat transport is determined by their energy dependent trans-
mission rates Y (E) [10–14], which in the simplest picture
can be found by solving the Bogoliubov–de Gennes scattering
problem associated with the weak link [15,18]. Due to the
presence of phase-coherent Andreev reflections, the transport
depends on the phase difference between the superconducting
order parameters of the two sides, and moreover exhibits
transmission resonances which are of importance especially
in low-transparency junctions [9–15].

Presence of an electromagnetic field in the weak link
enables additional possibilities for quasiparticle transfer, as
energy can be absorbed from or emitted to the field (see
Fig. 1). Transport is no longer elastic, and processes such
as photon assisted tunneling [19] and multiple Andreev
reflections [20,21] appear. The energy absorption physics is
also related to the quasiparticle dynamics of the Andreev
bound states (ABS) residing in the junction. This physics
has been studied by a number of recent experiments using
quantum point contacts with a small number of transport
channels [22–24], diffusive metal junctions [25,26], and phase
dependent absorption has been studied in tunnel junctions [27].

To describe the effects of time-dependent drive on the
heat current carried by quasiparticles, the energy dependent
transmission rates Y (E) of the stationary state need to be
generalized to depend on both the initial E′ and final E

quasiparticle energies Y (E,E′). If the junction is driven with a
periodic signal at frequency ω0 (or dc voltage eV = �ω0), the
final energy is E = E′ − kω0, and the results can be described
in terms of a set of rates {Yk(E)} related to emission/absorption
of k photons to the field, as illustrated in Fig. 1(b).

Heat transport and its fluctuations in the presence of
time-dependent driving have been recently discussed in terms
of Floquet scattering matrices in Refs. [28,29] for normal-state
systems. In this description, the rates {Yk(E)} can be directly
related to the Floquet scattering matrices. Although these
works consider normal-state systems, the formal description
of electronic heat current in time-dependent superconducting
junctions turns out to be similar. This should be contrasted
to charge current: The superconducting condensate transports
charge without requiring quasiparticle transfer, which implies
that transport of charge and heat are not as closely connected
in superconductors as in normal-state systems.

In this work we study theoretically the heat transport in
superconducting junctions of general transparency driven by
classical fields, as shown in Fig. 1. We derive results for the
rates {Yk(E)} and for the heat transport and its fluctuations
using quasiclassical Green function theory. Previously, a
similar approach has been used in Ref. [30] for studying
time-dependent heat transport in NIS junctions, and it has
been extensively applied for examining the charge transport
(see, e.g., Refs. [2,6,8,31]). For tunnel junctions, the approach
here is equivalent to that of Ref. [9], but it can also describe
the time-dependent heat transport in junctions with a finite
transparency away from the tunneling limit.

We consider situations with dc and ac bias, and discuss how
the electromagnetic driving modulates the temperature-driven
heat current. In particular, for weak driving, we find the effect is
mainly dominated by a modulation and phase averaging of the
coherent resonances appearing in the rates {Yk(E)}. We find
analytical descriptions in certain limiting cases, and discuss
representative features in terms of numerically exact results.

This paper is structured as follows. Section II introduces
the theoretical and numerical approaches used. Section III A
discusses the effect of a dc voltage bias on the heat transport,
and Sec. III B concentrates on the ac bias case. Section IV
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FIG. 1. (Color online) (a) Heat currentJ flows through a Joseph-
son junction between identical superconductors R and L, driven
by a temperature difference TR > TL. The simultaneously applied
time-dependent voltage V (t) not only dissipates power in the junction,
but also modulates the phase coherent effects related to quasiparticle
transport, thereby changing J even when the dissipated power is
negligible compared to J . (b) Heat is carried by quasiparticles
traversing the junction. They can absorb or emit energy by interacting
with the electromagnetic field in the junction. For monochromatic
ac bias V (t) ∝ sin(ωt), energy absorbed is an integer k multiple
of the frequency. Heat transport is fully described by the total
rates Yk(E) of the corresponding processes. �L and �R denote the
temperature-dependent energy gaps of the two superconductors.

summarizes the main points. We postpone details of the
derivation of the analytical results to a number of appendixes,
referring to the salient points in the main text.

II. MODEL

We consider the situation depicted in Fig. 1: Heat transport
between two identical superconducting terminals that are
connected by a generic contact described by the transmission
eigenvalues {τj } of the normal-state scattering matrix of
the junction. The terminals are kept at different constant
temperatures, TL and TR , and a time-dependent voltage or
phase bias is applied between them. Moreover, they are
assumed to have sufficient impurity concentration to lie in the
dirty limit. To study the transport in this system, we make use of
the Keldysh-Nambu Green function formulation for transport
in superconducting structures [32–34], and the quasiclassical
boundary condition description of a weak link between bulk
superconductors in the diffusive limit [2,35,36].

At equilibrium, electrons inside a superconducting terminal
at temperature T with superconducting gap � are described
by the quasiclassical equilibrium Green function ǧ0(E),

ǧ0 =
(

ĝR
0

(
ĝR

0 − ĝA
0

)
tanh E

2T

0 ĝA
0

)
, (1)

ĝR =
⎛
⎝ E√

(E+iη)2−|�|2
�√

(E+iη)2−|�|2
− �∗√

(E+iη)2−|�|2 − E√
(E+iη)2−|�|2

⎞
⎠, (2)

with η → 0+ and ĝA = −τ̂3ĝ
Rτ̂3, where τ̂3 is the third spin

matrix in the Nambu space. We assume the energy gap
�(T ) depends on the temperature according to the BCS gap
relation [20]. The Green function describing a superconductor
at a nonzero electric potential V is found by a gauge transform

ǧ(t,t ′) = eiτ̂3φ(t)ǧ0(t − t ′)e−iτ̂3φ(t ′), (3)

where φ(t) = e
�

∫ t
dt ′ V (t ′) is the electromagnetic

phase [2,37]. Here ǧ0(t − t ′) = ∫ ∞
−∞

dE
2π

e−iE(t−t ′)ǧ0(E).
We consider the phase as a classical field, neglecting its
quantum fluctuations, which simplifies its Keldysh structure.

For cases where the frequencies in the drive φ and the dc
bias voltage are commensurate, with a base harmonic ω0, we
can use a (Floquet) matrix representation [38]

ǧ(t,t ′) =
∞∑

k,m=−∞

∫ ω0

0

dε

2π
e−i(ε+mω0)(t−t ′)−ikω0t ǧm+k,m(ε).

(4)

In this representation, time convolution
∫ ∞
−∞ dt1 A(t,t1)B(t1,t)

is equivalent to a matrix product
∑

k Ank(ε0)Bkm(ε0). Below,
products between two-time quantities with time or energy
arguments omitted imply time convolutions. We also denote
φ(t,t ′) ≡ δ(t − t ′)φ(t), so that Eq. (3) is written as ǧ =
eiτ̂3φǧ0e

−iτ̂3φ .
The charge and heat currents flowing between two con-

nected superconductors can be found from boundary con-
ditions applicable to quasiclassical Green functions [2,35].
Transport properties of the junction are described by a matrix
current [35]

Ǐ = [ǧL,ǧR]−Ž, Ž = e2

h

∑
n

τn

1 − τn

2 + τn

4 [ǧL,ǧR]+
, (5)

where ǧL and ǧR are the Green functions inside the terminals at
the two sides of the junctions. In particular, the charge current,
and the heat current entering terminals L and R read (cf. also
Ref. [30])

I (t) = 1
8 tr σ̌1τ̂3Ǐ (t,t), (6)

Q̇L(t) = 1
16 tr σ̌1[(ε + μτ̂3)Ǐ + Ǐ (ε + μτ̂3)](t,t), (7)

Q̇R(t) = − 1
16 tr σ̌1[εǏ + Ǐ ε](t,t), (8)

where σ̌ are spin matrices in Keldysh space, and ε(t,t ′) =
i∂t δ(t − t ′) and μ(t,t ′) = δ(t − t ′)∂tφ(t). Moreover, we fix the
potential of the right terminal to zero. The heat currents as
defined above satisfy conservation of energy at each instant of
time μ(t)I (t) = Q̇L(t) + Q̇R(t).

To make a connection with Ref. [9], it is advantageous
to rewrite the heat currents in a different form, using eiφε =
(ε + μ)eiφ ,

Q̇L = 1

8
tr σ̌1[ġLŽgR − gRŽġL](t,t) + ∂tQJ (t)

2
, (9)

Q̇R = 1

8
tr σ̌1[ġRŽgL − gLŽġR](t,t) + ∂tQJ (t)

2
, (10)

where ġR = εgR,0 and ġL = eiφτ3εgL,0e
−iφτ3 . The quantity

appearing in the second terms is

QJ (t) ≡ i
1

8
tr σ̌1[ǧLŽǧR + ǧRŽǧL](t,t). (11)

The total time derivative ∂tQJ does not contribute to time-
averaged heat currents. Below, as far as heat currents are
concerned, we mostly discuss the time-averaged quantities
Q̇dc,L/R , as these are experimentally more easily accessible.
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In the case of low-transparency tunnel junctions, we have
Ž = 1/RT , where RT is the tunnel resistance. The approach
then coincides with that discussed in Ref. [9]. Comparison to
the tunneling Hamiltonian calculation of Ref. [9] identifies first
terms of Eqs. (9) and (10) as the heat carried by quasiparticles
into the bulk of the terminals. Moreover, the term QJ ∼
〈HT (t)〉, the component of the internal energy associated with
the part of the Hamiltonian coupling the two terminals together.
For slow phase variations φ̇ → 0, one can verify that the
expression is related to the Josephson energy of the junction
at equilibrium, ∂tQJ (t) → IJ (t)φ̇(t) = ∂tEJ [φ(t)].

One can compute the sums over τn for different trans-
parency distributions. A relevant case is the eigenvalue
distribution corresponding to a dirty interface [39,40]

ρ(τ ) = h

2πe2R

1

τ 3/2
√

1 − τ
, (12)

which has been experimentally found to agree with high-
transparency oxide junctions [41]. From this,

Ž = 1

R

1√
2 + [ǧL,ǧR]+

. (13)

The result for diffusive junctions in the short junction limit
(dwell time τD � �/�) can be found either by solving the Us-
adel equation [34,42,43], or averaging over the corresponding
transparency distribution [44]. The former approach readily
yields

Ǐ = 2

R
log ǧLǧR. (14)

As discussed in Ref. [15], the resulting heat current in diffusive
junctions in the absence of voltage bias turns out to be
independent of the phase difference ϕ over the junction.

The above approach can also be used to compute statis-
tics of heat transport. The problem can be formulated as
follows [45,46]: The internal energy QR of one terminal is
probed two times, first at t = 0 and a second time at t = t0. The
cumulant generating function SR(t0,u) of the energy change
�QR = QR(t0) − QR(0) can in the long-time limit (t0 → ∞)
be written as [45–47]

∂uSR(t0,u) = it0Q̇R,dc|ǧR,0 →ǧR,0(u), (15)

ǧR,0(u) ≡ eiuEσ̌1/2ǧR,0e
−iuEσ̌1/2. (16)

The resulting statistics in the absence of driving are discussed
in Ref. [15], and results including driving are for the tunnel
limit discussed in Ref. [9]. Below, as far as fluctuations are
concerned, we mainly concentrate on the zero frequency heat
noise SE ≡ −∂2

uSR|u=0/t0 = 〈(Q̇R − 〈Q̇R〉)2〉.
The above formulation is directly accessible to numerical

calculations in the matrix representation (4). The numerical
results below are found by keeping only a finite number of
the harmonics k and truncating the energy range to energies
within several |�|,T from the Fermi level. Matrix inverses,
exponentials, square roots, and logarithms can be computed
efficiently numerically [48,49].

III. DRIVEN QUASIPARTICLE TRANSPORT

The electronic dc heat current is carried by quasiparticles,
which are either transferred from one side to the other, or
created or destroyed in pairs by breaking or creating Cooper
pairs in the condensate. During their traversal through the
junction area, the quasiparticles can either gain or lose energy
via interaction with the electromagnetic field.

Within the formalism described here, the dc heat current
entering terminal α = L/R can in general be written in terms
of the quasiparticle distributions in the two terminals:

Q̇dc,α = 1

R

∫ ∞

−∞
dE E

∑
β=L,R

∞∑
k=−∞

×Yα,β,k(E)

[
tanh

(
E + kω0

2Tβ

)
− tanh

(
E

2Tα

)]
.

(17)

Expressions for Yαβk(E) can be found with some algebraic ma-
nipulations discussed in Appendix B. The functions Yα,β,k(E)
can be understood to be proportional to the total rates of
processes in which a quasiparticle starting at energy E + kω0

in terminal β ends up in terminal α at energy E while losing
or gaining energy kω0 by interacting with the electromagnetic
field in the junction.

One should note that the rates Y do not correspond to
elementary energy transfer processes in the counting statistics
sense. Rather, they are simply proportional to time-averaged
total rates. Analogous expressions as Eq. (17) for the heat
current can in normal-state systems be written in terms of the
Floquet scattering matrices [28,29].

The total power dissipated in the junction is

P = Q̇dc,L + Q̇dc,R. (18)

In general, it is directly connected to the charge current in
the junction, by conservation of work done by the bias, P =
IV . For the discussion below, we also define the temperature-
driven heat current as

J = (Q̇dc,L − Q̇dc,R)/2. (19)

The result is a well-defined temperature-driven current pro-
vided the dissipation is low, P � |J |, which requires a large
enough temperature difference between the two sides of the
junction.

A. dc voltage bias

In dc voltage biased junctions with a finite trans-
parency, the well-known multiple Andreev reflection processes
(MAR) [20,21] play a role in the quasiparticle transport. They
lead to diffusion of quasiparticles upward in energy inside
the junction, and in general give rise to several side bands
YLR,k �=0, corresponding to quasiparticles Andreev reflected
several times inside the junction.

Similarly as for the charge transport [21,31,50], the calcu-
lation of the heat transport and its fluctuations in the dc voltage
biased case reduces to solving a relatively simple recurrence
equation, describing the propagation of quasiparticles upwards
in energy. We defer the derivation of the equations to
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FIG. 2. (Color online) Quasiparticle transport factors YLL,0(E)
(dotted line) and YLR,±1(E) (solid and dashed lines) for tunnel
junction at constant bias voltage φ(t) = V t , V = 0.4�. Analytic
results in Eq. (20) are shown as dotted lines.

Appendix C. They can be solved analytically in certain limiting
cases, and are in general straightforward to solve numerically.

The tunnel junction limit is one of the analytically tractable
cases, and for it one finds [9,11]

YL,R,k = NL(E)[δk,1NR(E + V ) + δk,−1NR(E − V )], (20)

YL,L,k = [YL,R,1 + YL,R,−1]δk,0, (21)

where NL/R are the densities of states of the superconductors.
The result is shown in Fig. 2 for reference. The resulting
expression for the electronic heat current is similar to that
in normal-state junctions, with the superconductivity only
modifying the quasiparticle densities of states of the two
terminals.

In junctions with finite transparency, Andreev reflections
as expected start to facilitate quasiparticle transport across the
energy gap region. The corresponding factors Yk are plotted in
Fig. 3 for a fully transparent junction (τ = 1). One can note
that in addition to the direct quasiparticle transmissions, one
obtains MAR processes for |k| > 2�/V .

FIG. 3. (Color online) Energy flow functions Yαβ,k(E) for quan-
tum point contact with τ = 1 at constant bias voltage φ(t) = V t ,
V = 0.4�. Only processes with energy absorption are shown. Inset:
Schematic energy diagram showing the quasiparticle trajectories
corresponding to YLR,1 (direct quasiparticle transport) and YLR,7

(MAR). Note that Andreev reflection probability is finite also at
|E| > �.

FIG. 4. (Color online) Heat current J (solid lines) through a
quantum point contact with τ = 0.5, as a function of bias voltage,
normalized by its zero-bias value. Temperature difference is present,
with TL = 0 and TR varying. Dotted lines indicate the normalized
power IV /J (V = 0) dissipated in the junction. Results are plotted
up to voltages where the dissipated power P becomes larger than the
heat current.

Results for the heat current under the simultaneous appli-
cation of a temperature difference and bias voltage are shown
in Fig. 4, corresponding to a quantum point contact with
partial transparency. One can note that features of multiple
Andreev reflections do not appear to play a large role in the
temperature-driven heat current as long as P � J . This can
be seen explicitly by considering the contributions in Eq. (17)
separately for each sideband k (not shown), which indicates
direct quasiparticle transfer (Yk=±1) is responsible for the low-
bias features. At higher bias when P � J , especially in the
high-temperature curves for which �R(TR) < �L(TL), MAR
processes do not contribute in the same way to Q̇R and Q̇L.
This results in sharp changes inJ = (Q̇R − Q̇L)/2 at voltages
close to thresholds of the different possible MAR processes.

The nonmonotonic behavior at low voltages in Fig. 4 arises
from modification of the resonance in YLR,±1 at |E| > �. The
evolution of the resonance in Y with increasing bias voltage is
shown in Fig. 5. Initially, transport at energies immediately
above the gap is reduced. A somewhat similar effect also
occurs in the tunnel junctions, as described by Eq. (20),
where the peak in YLR,1 near E = � is reduced from N (E)2

to N (E)N (E + V ). The behavior of partially transparent
junctions differs from tunnel junctions in that the amplitude of
the resonance increases again at larger voltages, resulting in a
nonmonotonic behavior in the heat current. The effect is the
largest at low temperatures, as visible in Fig. 4, as transport
close to gap edges has the most importance in that case.

Figure 6 displays the dependence of the heat current on
the bias voltage for different values of the transparency. The
above nonmonotonic behavior becomes more prominent as the
junction transparency increases and the suppression of heat
current is lifted. As expected, MAR processes also become
more significant as the transparency increases: The higher
the transparency, the lower the bias voltage V at which the
dissipated power P overwhelms the heat current J .

How multiple Andreev processes contribute to the heat
transport is also visible in the heat transport noise, shown
in Fig. 7. At low bias, the voltage dependence of the noise
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FIG. 5. (Color online) Bias dependence of YLR,1 for τ = 0.5.
The functions are symmetric around E = −V/2. The reduction of
transport at energies � < E < � + V for intermediate V/� ∼ 0.15
is responsible for the reduction of heat current in Fig. 4. Inset: Bias
dependence of

∑
k YLR,k . For V → 0, the result converges towards

the adiabatic limit (dashed line) given by averaging the dc result over
phase differences ϕ0 [Eq. (C28)].

follows that of the heat current itself, a feature similar to what
occurs in a stationary situation without bias [15]. At high bias,
the noise increases rapidly as the MAR processes activate.
The MAR features are best visible in the ratio SE/Q̇, which
has sharp features at the activation thresholds V = 2�/n.
For a Poissonian process of absorbing energy packets E0,
the ratio SE/Q̇ = E0 indicates directly the energy transferred
by a single elementary process. Although the situation in
the present case is more complicated, the fact that order
n = ceil(2�/V ) MAR process is associated with absorption
of energy E0 ∼ nV ∼ ceil(2�/V )V results in oscillatory
behavior similar as seen in Fig. 7 (right panel).

Finally, Fig. 8 shows the bias dependence of the
temperature-driven heat current for the dirty interface and
diffusive channel distributions. The behavior of the heat
current in these cases is dominated by the large number
of low-transparency channels, and is mainly similar to low-
transparency junctions in that the heat current decreases with
increasing bias without significant oscillations. The peaks
appearing in the dirty interface case occur at V = �L(TL) −

FIG. 6. (Color online) Heat current J in a QPC as a function of
bias, for fixed TL = 0 and TR = 0.35Tc and different τ . The adiabatic
limit result J = J (ϕ(t)) is indicated with dots on the left axis, and
the dissipated power IV is shown with dotted lines.

FIG. 7. (Color online) Heat current noise SE as a function of
bias voltage V for a point contact with τ = 0.5. Noise in the heat
current into left (SE,L, solid line) and right (SE,R , dotted line)
terminals is shown, for different temperatures TR keeping TL = 0
fixed. Right panel shows the noise normalized to the heat current.
Zero temperature MAR thresholds V = 2�0/n are indicated with
dotted lines.

�R(TR), and are due to matching the peaks in the above-gap
DOS in the superconductors. A similar feature is present also
in tunnel junctions [9]. In contrast, the results for the diffusive
distribution contain less low-transparency channels, and the
gap-difference features are not clearly resolved.

B. ac phase bias

Consider now the case of a junction under monochro-
matic ac phase bias, φ(t) = ϕ0/2 + 2s cos(ωt), where s =
Vac/(2�ω). Such an excitation in general has two effects—first,
the microwave photons �ω can be absorbed, which can result
in dissipation in the form of photon-assisted tunneling and
breaking of Cooper pairs. Second, the time-dependent phase
modulates the coherent transmission resonance responsible for
carrying a significant portion of the heat current.

Let us first discuss the dissipation in the junction, for which
Cooper-pair breaking transitions from negative to positive
energies are important. In particular, the Andreev bound states
are crucial for this, as they reduce the frequency threshold
for Cooper-pair breaking [4,5,51]. An ABS at energy EA < �

FIG. 8. (Color online) As Fig. 4, but for the dirty interface (solid
line J , dotted line P ) and diffusive distributions (dashed line J ) of
transmission channels.
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FIG. 9. (Color online) Dissipated power (solid line, left axis)
and heat transport noise (dashed line, right axis) in a QPC with
τ = 0.7 under ac drive φ(t) = π/2 + 0.2 cos(ωt), with TL = TR = 0.
The frequency thresholds associated with pair breaking facilitated by
ABS are clearly visible. Noise SE = nωQ̇R expected from Poissonian
n = �(� + EA)/ω� photon statistics is also shown (dotted line).
Inset: Illustration of the processes corresponding to the thresholds
shown.

enables pair breaking by one-photon processes to occur via
processes involving only the bound states at ω = 2EA and
via processes involving also the continuum at ω > � + EA,
as also seen, e.g., in Refs. [5,6]. These frequency thresholds
occur prominently in the dissipated power shown in Fig. 9 [52].
Analytical results for the dissipated power in the representative
case �L = �R = �, TL = TR = T in the limit s → 0 can be
deduced from results in Ref. [5].

Figure 9 also displays the heat transport noise, computed
numerically via Eq. (15). At high frequencies, the result
converges towards SE → ωQ̇R , and one can check that also the
third cumulant ∂3

uSR(u)|u=0 ≈ it0ω
2Q̇R in this limit. That the

cumulants coincide suggests that photon absorption follows
Poisson-like statistics. The situation at lower frequencies
ω < � + EA is somewhat more complicated, as multiple
photons are required for each absorption event. For Pois-
sonian multiphoton processes, we expect SE = nωQ̇R for
(EA + �)/n < ω < (EA + �)/(n − 1). This is in line with
the results in Fig. 9, apart from features that come from the
second possible transition process involving only the bound
states.

At frequencies below the transition thresholds, dissipation
by photon absorption via processes involving the ABS be-
come less important. Rather, the main physics comes from
quasiparticles in the continuum and from the modification of
their phase dependent transport resonances. Analytical results
can be obtained by taking the drive amplitude s as a small
parameter. Working to order s2 and considering only processes
in the continuum (E > �), we find for a fully transparent QPC
(τ = 1),

YRL,±1 = s2 2B0B±ω[(E ± ω)E + �2 cos ϕ0 + B0B±ω]

A0A±ω

,

(22)

YRR,±1 = s2 2B0B±ω[(E ± ω)E + �2 − B0B±ω]

A0A±ω

, (23)

YRL,0 = θ0
2(E2 − �2)

A0

(
1 − s2

∑
±

C±ω

A0A±ω

)
,

Aω = 2(E + ω)2 − (1 + cos ϕ0)�2,

Bω = θω

√
(E + ω)2 − �2 ,

(24)
θω = θ [(E + ω)2 − �2],

Cω = [2B0Bω − (1 − cos ϕ0)�2]

× [2E(E + ω) + (1 + cos ϕ0)�2].

The divergence in YRL,0 at |E| = ω + �| cos(ϕ0/2)| is to be
understood in the principal value sense—the above result does
not describe the dissipative processes involving the Andreev
bound states. Details of the calculation and results for τ �= 1
are in Appendix D. In the tunneling limit, τ → 0, on the other
hand,

YRL,±1 = θ0θ±ω

(E ± ω)E + �2 cos ϕ0√
E2 − �2

√
(E ± ω)2 − �2

, (25)

YRR,±1 ≈ 0, (26)

YRL,0 = θ0
E2 − �2 cos ϕ0

E2 − �2
(1 − 2s2). (27)

The results for τ = 1 are shown in Fig. 10. The energy
dependence of the driven response reflects the behavior in the
stationary state: There is a resonant contribution at energies
immediately above the superconducting gap, which is for
transparent junctions reduced when the Andreev bound states
at EA =

√
1 − τ sin2(ϕ/2) separate from the gap edges.

The resulting change δGth = Gth(s) − Gth(s = 0) in the
heat conductivity Gth = J /(TL − TR) in the limit s → 0 is
shown in Fig. 11 for a transparent junction and in Fig. 12 for a
low-transparency junction. For the transparent junction case,
the effect of the ac excitation is the largest at phase differences
ϕ0 ≈ 0, as expected on the basis of Fig. 10. Moreover, the
excitation tends to suppress the heat flow more than it enhances

FIG. 10. (Color online) YR,L/R,+1 related to one-photon absorp-
tion processes, for a fully transparent QPC (τ = 1) under harmonic
drive φ(t) = ϕ0/2 + 2s cos(ωt). Here ω = �/5, and the result is
shown for ϕ0 = 0, π

2 ,π (curves from top to bottom). The functions
are symmetric around the point E = −ω/2. The results are from
Eqs. (22) and (23), which are valid for s → 0. Thin black lines
indicate results from Eq. (B6) for s = 0.1, which have additional
multiphoton resonances due to bound states.
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FIG. 11. (Color online) Change of heat conductivity in a τ = 1
QPC caused by small harmonic drive s > 0. Shown as a function
of phase, temperature (left panels), and frequency of the drive (right
panels). The contour lines denote regions where change in dissipation
is >10% (dotted line) and >100% (solid line) of the change in the
temperature-driven heat current for TR − TL = 0.1�. The region ω >

� + EA, where one-photon Cooper pair breaking activates is omitted
in the plots, as it is not described by Eqs. (22)–(24).

it. The dependence on ϕ0 in the tunneling limit is opposite to
the transparent limit, reflecting the similarly reversed phase
dependence in the stationary case [13]. In the tunneling limit,
the resonance has the largest effect at ϕ0 ≈ π , and the ac drive
reduces its contribution to the heat current.

The amount of power dissipated relative to the change
in heat current for a 0.1�0 temperature difference is also
indicated in Figs. 11 and 12 with contour lines. In the

FIG. 12. (Color online) As Fig. 11, but for a low-transparency
junction τ = 0.01.

FIG. 13. (Color online) Phase oscillations of heat conductivity in
a QPC with τ = 1, at T/� = 0.3 and ω/� = 0.3, for different drive
amplitudes. Results from Eqs. (22)–(24) (dashed line) and adiabatic
limit (dotted line) are also shown.

regime shown, power dissipation is mainly due to processes
at E > |�|, which are well described by Eqs. (22)–(24). The
features seen in the left panels mainly come from the fact that
the change δGth reverses its sign around ϕ0 ≈ π/4 both for
tunnel and transparent junctions—as seen in Figs. 11 and 12,
the sign reversal is only weakly temperature and frequency
dependent. The main feature of the dissipation in the right
panel is that if the phase excitation amplitude is kept fixed, the
dissipated power grows with increasing frequency, whereas
the effect of the drive on the temperature-driven heat current
saturates towards higher frequencies. Moreover, at sufficiently
high frequency, the Cooper pair breaking processes activate,
and start to dominate the heat flows.

Phase oscillation of heat conductivity as a function of
increasing drive amplitude is shown in Fig. 13. Initially,
the response is well described by the leading-order theory,
but starts to deviate from the s → 0 limit when the drive
amplitude exceeds s � 0.1. The result moreover stays close
to the adiabatic limit Gth(ϕ(t)), obtained by averaging the
stationary heat-current–phase relation over the drive cycle.

The heat current in diffusive short junctions is independent
of the phase difference ϕ0 [15]. Nevertheless, the response of
the heat current to a small ac excitation is phase dependent.
This is illustrated in Fig. 14, which shows the temperature-
driven heat current J = (Q̇R − Q̇L)/2 as a function of ϕ0.
The inset of Fig. 14 displays the comparison to results from
Eqs. (D5)–(D12), which neglect transitions involving the
subgap Andreev bound states in the junction, but still capture
the main features. The changes inJ are however not very large,
and are of a similar order of magnitude or smaller compared
to the power dissipated in the junction.

The power dissipated in a diffusive junction grows rapidly
at phase differences away from zero. Such behavior is expected
due to (multi)photon absorption processes involving the sub-
gap bound states, as these processes are limited by the presence
of a phase-dependent energy gap 2Eg = 2|�|| cos(ϕ/2)| in the
density of states inside the junction [5]. As ϕ increases, the
energy gap decreases, and n-photon processes activate after
corresponding thresholds are crossed:

ϕ > ϕn = 2 arccos
nω

2|�| . (28)
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FIG. 14. (Color online) Emergence of phase-dependent oscilla-
tions in the heat current through a short diffusive junction, when it
is driven by ac bias φ(t) = ϕ0/2 + 2s cos(ωt), with ω/� = 0.2, for
TL = 0, TR = 0.2�. Relative change in the heat current δJ /J =
[J (s)/J (s = 0)] − 1 (solid line) and the relative dissipated power
P/J (s = 0) (dashed line) are shown. The n-photon process activa-
tion thresholds (28) are indicated with arrows. Inset: Comparison to
results for J from Eqs. (D5)–(D12) (dotted line).

The onsets of dissipation in the numerical results in Fig. 14
align with these thresholds, even though the phase oscillation
amplitude 4s is not very small compared to π . Note that in
contrast to the above-gap heat transport, the subgap absorption
physics can be sensitive to electron-phonon and other inelastic
relaxation processes [53,54], as excited subgap quasiparticles
cannot easily escape to the leads. Such mechanisms are
neglected in the above results, and the subgap populations
are determined via the drive-induced multiphoton coupling to
the above-gap states.

IV. DISCUSSION

The effect of electromagnetic driving on heat transport in
superconducting junctions is twofold: First, quasiparticles can
absorb energy from the field and the field can break Cooper
pairs, both of which leads to dissipation. Second, a nonzero
electromagnetic field inside the junction implies a time
dependence in the the phase difference in superconducting
order parameters. This results in modulation and averaging
of phase coherent transport effects, which does not directly
dissipate power in the junction.

In general, we find that at low drive frequencies or voltages,
there is a finite parameter range in which the response of the
system is nonadiabatic while the power dissipated by the elec-
tromagnetic fields is still small compared to the temperature-
driven heat currents. That is, time-dependent effects associated
with modification of the transport resonances of the continuum
quasiparticles can be seen before the dissipation heats up the
system significantly.

The steady-state effects on the temperature-driven heat
current J can in principle be measured with the help of estab-
lished experimental thermometry techniques [55] for studying
heat in mesoscopic structures, similar to those applicable
to a stationary situation. In addition, the energy absorption
P is experimentally accessible via certain spectroscopic
approaches, used for quantum point contacts in Ref. [24] and

it can also be deduced from susceptibility measurements, used
in Ref. [25] for diffusive junctions.

In summary, we consider heat current driven by a temper-
ature difference across superconducting junctions of different
transparencies. We obtain analytical and numerical results for
the transport rates describing transport combined with energy
absorption of k photons from the electromagnetic field. The
results are applicable to quantum point contacts and to generic
quantum coherent multichannel junctions.
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APPENDIX A: SYMMETRIES

The charge and heat currents in this problem have specific
symmetries with respect to transformations of the input
drive φ.

We can first observe that since −τ3τ2ǧ0τ2τ3 = ǧ0 and
τ2τ3τ2 = −τ3, it follows that

Q̇dc,L/R[φ] = Q̇dc,L/R[−φ], Idc[φ] = −Idc[−φ], (A1)

which is associated with the electron-hole symmetry within
the model. Moreover,

Qdc[φ] = Qdc[−φ]|L↔R, (A2)

from gauge choice. In symmetric junctions for TL = TR , this
implies Qdc,L/R = 1

2IV .

APPENDIX B: ALGEBRAIC MANIPULATIONS

It is useful to start by splitting to partial fractions (cf.
Ref. [35])

Ǐ = f (ǧLǧR) − f (ǧRǧL) = f̃ (y̌), (B1)

f (y) = −4
∑

n

qn

y + qn

,

(B2)

qn = −1 + 2

τn

+ 2
√

1 − τn

τn

,

where y̌ = ǧLǧR and y̌−1 = (ǧLǧR)−1 = ǧRǧL. The quantities
qn are eigenvalues of the Hermitian square of the transfer
matrix of the junction [35,56]. For continuous transmission
distributions, we can define the corresponding density

j (ζ ) = 4
∑

n

qnδ(ζ − qn) (B3)

= 4
∑

n

τn

√
1 − τnδ

(
τn − 4ζ

(1 + ζ )2

)
. (B4)

The result is particularly simple for diffusive
junctions j (ζ ) = θ (−1 + ζ ), as the transmission distribution
∝ 1/(τ

√
1 − τ ) cancels the prefactor. Similar result applies
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also to the analogously defined j̃ corresponding to f̃ . For
diffusive junctions, j̃ (ζ ) = θ (ζ ).

From the above discussion, and the symmetries (ŷR/A)† =
τ̂3(ŷA/R)−1τ̂3, (y̌K )† = −τ̂3(y̌−1)Kτ̂3, it follows that

Q̇R,dc =
∫ ∞

−∞
dE E

∑
n

qn Re tr σ̌1

(
1

qn + y̌

)
00

=
∫ ∞

−∞
dE E

∑
n

qn Re tr

(
1

qn + ŷR
ŷK 1

qn + ŷA

)
00

,

(B5)

which is a form useful for analytic considerations. In particular,
this can be rewritten in the form used in Sec. III, with

YRR,k

R
= − Re tr

∑
n

(
qn

qn + ĝR
L ĝR

R

ĝR
L

)
0,k

×
[(

ĝR
R,0 − ĝA

R,0

) 1

qn + ĝA
L ĝA

R

]
k,0

, (B6)

YRL,k

R
= Re tr

∑
n

[
qn

qn + ĝR
L ĝR

R

eiφτ3
(
ĝR

L,0 − ĝA
L,0

)]
0,k

×
(

e−iφτ3 ĝA
R,0

1

qn + ĝA
L ĝA

R

)
k,0

. (B7)

The results corresponding to Q̇L,dc are found by exchanging
φ ↔ −φ and L ↔ R. A sum rule applies,

∑
k

YRR,k + YRL,k

R

= Re tr
∑

n

(
qn

qn + yR
[yR − yA]

1

qn + yA

)
00

= 0, (B8)

where the second step follows from (ŷA)† = (ĝA
R )†(ĝA

L )† =
τ̂3ĝ

R
R ŷRĝR

R τ̂3, and the fact that ĝR is diagonal in the energy
space.

Finally, let us point out how the heat current in diffusive
junctions is phase independent in the absence of bias. In the
absence of spectral broadening, quasiparticle heat current can
only originate from region |E| > |�L|,|�R|. From the form
of the equilibrium Green functions (1) it follows that for |E| >

|�L|,|�R|:
ĝA

L/R(E) = −ĝR
L/R,0(E), (B9)

y̌eq(E) =
(

ŷR
eq(E) 2ŷR

eq(E)[hR − hL]

0 ŷR
eq(E)

)
. (B10)

Therefore, for this energy range,

tr σ1
1

ζ + y̌eq(E)
= tr

2ŷR
eq(E)

[ζ + ŷR
eq(E)]2

(hR − hL). (B11)

Integrating over the j̃ distribution yields

∫ ∞

0
dζ

2ŷR
eq(E)[

ζ + ŷR
eq(E)

]2 = 2, (B12)

which indeed has no phase modulation. It is also clear that
phase modulation in general prevails if the distribution j̃ (ζ ) is
nontrivial.

APPENDIX C: DC VOLTAGE BIAS RECURRENCE

We proceed now to evaluate the cumulant generating
function of energy exchange [15,45,47]:

SR(u) = 1

2

∑
n

Tr ln

(
1 + τn

4
{[ǧL,ǧR(u)]+ − 2}

)
(C1)

=
∑

n

Tr ln[qne
iφτ̂3/2ǧL,0e

−iφτ̂3/2

+ e−iφτ̂3/2eiuεσ1/2ǧR,0e
−iuεσ1/2eiφτ̂3/2] (C2)

in the dc voltage-biased case. One can simplify the problem by
reusing the approach of Ref. [31], where a similar generating
function for the charge rather than the heat current is discussed.
The key idea is to make use of the fact that the sum of the Green
functions is a block-tridiagonal matrix in energy space, so that
one can apply a determinant recursion formula:

det X =
N∏

j=1

det aj , (C3)

a1 = X1,1, (C4)

aj+1 = Xj+1,j+1 − Xj+1,j a
−1
j Xj,j+1. (C5)

In the case here, it is useful to work in a gauge where the
superconducting terminals are biased to ±V/2, so that the
frequency components read

[ǧL]ij =
(

δij ğL(Ei) δj,i+1f̆L(Ei)

−δi,j+1f̆L(Ei) −δij ğL(Ei − V )

)
, (C6)

[ǧR]ij =
(

δij ğR(Ei − V ) δi,j+1f̆R(Ei)

−δj,i+1f̆R(Ei) −δij ğR(Ei)

)
, (C7)

where En = E0 + nV , and we work in Nambu⊗Keldysh
instead of Keldysh⊗Nambu:

ğL =
(

cosh θL 2 Re[cosh θL] tanh E
2TL

0 − cosh θ∗
L

)
, (C8)

ğR = eiEuσ̆1/2

(
cosh θR 2 Re[cosh θR] tanh E

2TR

0 − cosh θ∗
R

)
e−iEuσ̆1/2,

(C9)

where θL/R = arctanh[�L/R/(E + i0+)]. Expressions for f̆

are obtained by replacing cosh → sinh.
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In the recursion formula for the generating function, we
therefore have

Xj,j =
(

qnğL(Ej ) + ğR(Ej−1) 0

0 −qnğL(Ej−1) − ğR(Ej )

)
,

(C10)

Xj+1,j =
(

0 f̆R(Ej )

−qnf̆L(Ej ) 0

)
, (C11)

Xj,j+1 =
(

0 qnf̆L(Ej )

−f̆R(Ej ) 0

)
. (C12)

Clearly aj stays diagonal in the recursion.
Finding the generating function now reduces to solving a

pair of 2 × 2 matrix recurrences:

v̆(E + V,u) = qnğL(E + V ) + ğR(E,u)

+ f̆R(E,u)[w̆(E,u)]−1f̆R(E,u), (C13a)

w̆(E + V,u) = −qnğL(E) − ğR(E + V,u)

+ q2
nf̆L(E)[v̆(E,u)]−1f̆L(E), (C13b)

and

SR(u) = t0
∑
qn

∫ ∞

−∞

dE

2π
ln

det v̆(E,u) det w̆(E,u)

(1 + qn)4
+ C,

(C14)

where a normalization was added to make the result conver-
gent; this does not affect observables. Differentiation yields
directly the average heat current, ∂uSR|u=0 = iQ̇R,dc.

The recursion can be solved numerically in a straightfor-
ward way, as f̆ → 0 for |E| → ∞. Analytical results can be
obtained in some particular limiting cases.

1. Tunnel limit

We can consider the solution of the recursion in the tunnel
limit q → ∞. There, to order O(q0), it reads

v̆(E + V ) � qnğL(E + V ) + ğR(E), (C15)

w̆(E + V ) � −qnğL(E) − ğR(E + V )

+ qnf̆L(E)ğL(E)−1f̆L(E)

− f̆L(E)ğL(E)−1ğR(E − V )ğL(E)−1f̆L(E)

= −qnğL(E)−1 − ğR(E + V )

− f̆L(E)ğL(E)−1ğR(E − V )ğL(E)−1f̆L(E),

(C16)

where we used the normalization conditions ğ2 − f̆ 2 = 1̆,
ğf̆ = f̆ ğ. From this,

ln det v̆(E,u)w̆(E + V,u)

� 1

qn

Tr ğL(E)[ğR(E + V,u) + ğR(E − V,u)] + C.

(C17)

This yields the result for heat transport by tunneling quasipar-
ticles, also obtained in Ref. [9],

SR(u) � t0

π

∑
n

τn

∫ ∞

−∞
dE NL(E)NR(E − V )

×{[ei(E−V )u − 1]FR(E − V )[1 − FL(E)]

+ [e−i(E−V )u − 1]FL(E)[1 − FR(E − V )]}, (C18)

where N = Re cosh θ are the densities of states on both sides,
and FL/R Fermi functions.

2. Zero bias

In the zero-bias limit V → 0, the results coincide with
averaging the corresponding dc formulas in Refs. [13,15] over
the phase difference ϕ = 0–2π . However, in this case it is also
possible to solve the recurrence relation exactly.

We first observe that a factorization applies

ğL(E) = gL(E)h̆L(E), gL(E) = cosh θL(E), (C19)

h̆L(E) =
{

1 , |E| < |�L|,(1 2hL

0 −1

)
, |E| > |�L|, (C20)

and similarly for f̆ . For L → R, the h̆R matrix obtains the
additional u-dependent unitary transformation (C9).

Importantly, h̆2
R = 1 and h̆2

L = 1. Defining x̆ = v̆h̆L and
y̆ = w̆h̆R , we have

x̆ = qngL + gRh̆Rh̆L + f 2
Ry̆−1h̆Rh̆L, (C21)

y̆ = −qngL[h̆Rh̆L]−1 − gR + q2
nf

2
Lx̆−1[h̆Rh̆L]−1. (C22)

The equations projected to the eigenspaces of h̆Rh̆L have no
matrix structure, and can be solved. The eigenvalues μ of h̆Rh̆L

satisfy

μ−1 + μ − 2 = 4(eiuE − 1)FL(1 − FR)

+ 4(e−iuE − 1)FR(1 − FL). (C23)

As a consequence, the generating function can be found
in closed form, although the general expressions are not
particularly illuminating.

For simplicity, let us consider τ = 1 and �L = �R . In this
case,

ln det[v̆w̆] = 2 ln

{
cosh−4 θ

2

8
[μ−1 + μ + 1 + cosh(2θ )

+ (1 + μ)μ−1/2
√

μ−1 + μ + 2 cosh(2θ )

}
+ C.

(C24)

This V → 0 heat transport statistics deviates from the station-
ary Levitov-Lesovik form [57,58] due to the averaging over
the slowly varying phase ϕ(t) = 2V t in the long time limit.

Expanding in u, we find

ln det[v̆w̆] = C − 2iuE(fL − fR)
1

cosh θ
+ O(u3/2), (C25)

014511-10



THERMAL TRANSPORT THROUGH AC-DRIVEN . . . PHYSICAL REVIEW B 90, 014511 (2014)

so that the heat current is

Q̇R,dc = 1

π

∫ ∞

−∞
dE E Re

√
E2 − �2

|E| [fR(E) − fL(E)].

(C26)

We can verify that this coincides with the average of the dc
result in Ref. [13]:

Y =
∫ 2π

0

dϕ

2π

(E2 − �2)
(
E2 − �2 cos2 ϕ

2

)
[
E2 − �2

(
1 − sin2 ϕ

2

)]2 =
√

E2 − �2

|E| .

(C27)

For comparison with the inset of Fig. 5, let us also state the
result for τ = 1/2:

Y (E > �) = 2E2
√

4E4 − 6�2E2 + 2�4

(2E2 − �2)2
, (C28)

which coincides with numerics.

APPENDIX D: SMALL AC PHASE BIAS

In the case of a small ac phase bias, φ = ϕ0/2 + a, we can
expand

eiφτ3 ≈ eiϕ0 τ̂3/2
(
1 + iaτ̂3 − 1

2a2
) + · · · . (D1)

The corresponding expansion for the expressions appearing in
the heat current is

1

qn + y̌
� 1

qn + y̌0
+ 1

qn + y̌0
[iaτ̂3,ǧL,0]ǧR,0

1

qn + y̌0

− 1

qn + y̌0
X̌

1

qn + y̌0
, (D2)

X̌ = −1

2
a2ǧL,0ǧR,0 − 1

2
ǧL,0a

2ǧR,0 + τ̂3aǧL,0τ̂3aǧR,0

+ [aτ̂3,ǧL,0]−ǧR,0
1

qn + y̌0
[aτ̂3,ǧL,0]−ǧR,0 , (D3)

where ĝL,0 contains the phase ϕ0 and y̌0 = ĝL,0ĝR,0. For
harmonic drive, a(t) = 2s cos(ω0t), we can evaluate the
leading term in the expansion in s in closed form.

It is useful to identify the stationary Andreev bound states
(ABS):

1

q + y̌
R/A

0 (E)
= B̂+

E ± iη − EA

+ B̂−
E ± iη + EA

+ 1

1 + q
,

(D4)

where EA = |�|
√

1 − τ sin2(ϕ0/2) are the ABS energies, and
B̂± 2 × 2 matrices independent of E. The contributions to the
heat current separate to δ contributions from E ± ω = ±EA

corresponding to processes involving the bound states, and
principal value parts corresponding to continuum processes.

Straightforward calculation for the principal value part
yields

YRL,0 = δYRL,0 + 1

r

∑
n

qnD0(qn), (D5)

δYRL,0 = −s2 1

r

∑
±

∑
n

qnD
±
1 (qn)θ0, (D6)

YRL,± = s2 1

r

∑
n

qn[D±
2 (qn) + D±

3 (qn)]θ0θ±ω, (D7)

YRR,± = s2 1

r

∑
n

qn[D±
2 (qn) − D±

3 (qn)]θ0θ±ω, (D8)

where r = ∑
n τn, θω = θ [(E + ω)2 − �2], and

D0(q) = 2 tr
ŷ0

(q + ŷ0)2
, (D9)

D±
1 (q) = 2 tr

(
ĝR,0

4qŷ0

(q + ŷ0)3
τ̂3

1

q + ŷ±ω

ĝL,±ωτ̂3

+ (q − ŷ0)ŷ0

(q + ŷ0)3
τ̂3

q − ŷ±ω

q + ŷ±ω

τ̂3

)
, (D10)

D±
2 (q) = tr

(
ĝR,0

1

q + ŷ0
τ̂3

1

q + ŷ±ω

ĝL,±ωτ̂3

)
, (D11)

D±
3 (q) = tr

(
ĝR,0

q − ŷ0

(q + ŷ0)2
τ̂3

q − ŷ±ω

(q + ŷ±ω)2
ĝL,±ωτ̂3

+ 4qŷ0

(q + ŷ0)2
τ̂3

ŷ±ω

(q + ŷ±ω)2
τ̂3

)
. (D12)

We have here used additional symmetries arising from assum-
ing �L = �R . Above,

ĝR,ω = 1√
(E + ω)2 − �2

(
|E + ω| �

−� −|E + ω|

)
, (D13)

ĝL,ω = 1√
(E + ω)2 − �2

(
|E + ω| eiϕ0�

−e−iϕ0� −|E + ω|

)
, (D14)

ŷω = ĝL,ωĝR,ω. (D15)

Evaluating the result for τ = 1 (q = 1) yields Eqs. (22)
and (23). Explicit expressions for general τ can be written,
but are too lengthy to be useful.

We can also observe that the coincidence (B12) that made
phase oscillations disappear in the diffusive limit for the
stationary heat current does not occur for the time-dependent
modifications above. While D0(q) averages to a phase inde-
pendent constant when integrating over the q distribution, the
other coefficients retain their phase dependence.

In the situation TL = TR = T , �L = �R = � only D±
2

contributes to the principal value part. The reason why the
result in this case is simpler, is that heat currents are then
directly connected to the total dissipated power, P = I (t)V (t),
via P = Q̇L + Q̇R = 2Q̇R . The power can be obtained by
calculating I (t) to first order in a, i.e., from the frequency-
dependent admittance of the junction. This is done via direct
linear response approach in Ref. [5], and the results coincide
with the above formulation.
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