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We study superconductivity in isolated superconducting nanocubes and nanosquares of size L in the limit
of negligible disorder δ/�0 � 1 and kF L � 1 for which mean-field theory and semiclassical techniques are
applicable, with kF the Fermi wave vector, δ the mean level spacing, and �0 the bulk gap. By using periodic orbit
theory and number theory we find explicit analytical expressions for the size dependence of the superconducting
order parameter. Our formalism takes into account contributions from both the spectral density and the interaction
matrix elements in a basis of one-body eigenstates. The leading size dependence of the energy gap in three
dimensions seems to be universal as it agrees with the result for chaotic grains. In the region of parameters
corresponding to conventional metallic superconductors, and for sizes L � 10 nm, the contribution to the
superconducting gap from the matrix elements is substantial (∼20%). Deviations from the bulk limit are still
clearly observed even for comparatively large grains L ∼ 50 nm. These analytical results are in excellent
agreement with the numerical solution of the mean-field gap equation.
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The evolution of superconductivity in confined geometries
as the grain size enters the nanoscale region has been a recur-
rent research theme for more than 50 years. Anderson [1] was
the first to note, in the late 1950s, that superconductivity should
be strongly disturbed as the mean level spacing becomes
comparable with the superconducting energy gap. It was not
until the experiments on isolated Al nanograins [2] that it was
possible to study superconductivity in single nanograins with
relatively good experimental control. The recent experimental
observation [3] of superconductivity in single isolated Sn and
Pb hemispherical nanograins L � 30 nm has confirmed that
deviations from the bulk limit can be important even in the
limit of relatively large grains, L ∼ 10 nm, where a mean-field
approach is applicable.

Theoretically it was soon realized that the critical tempera-
ture in superconducting nanocubes [4], obtained by solving the
Bardeen-Cooper-Schrieffer (BCS) [5] gap equation, could be
much higher than in the bulk limit for grains where the Fermi
energy was in a region with an anomalously large density of
states.

Size effects in BCS mean-field theory not only depend
on the spectral density around the Fermi energy but also [5]
on the interaction matrix elements in the basis of one-body
eigenfunctions, In,n′ = V

∫
ψ2

n (r)ψ2
n′(r) dV , with ψn(r) the

solution of the Schrödinger equation in the grain. In the context
of thin films it was shown in Ref. [6] that, on average, this
contribution always enhances superconductivity. The leading
finite size correction related to these matrix elements for
chaotic grains [7] is comparable to that coming from the
spectral density. A complete analytical expression [8] of the
size dependence of the superconducting gap for chaotic grains,
including spectral density and matrix element contributions,
was found in Ref. [8]. The semiclassical techniques [9]
employed in Ref. [8] have also been used to estimate [10]
the typical deviation of the superconducting gap from the bulk
limit as a function of the grain size and symmetry.

Numerical studies of single superconducting nanograins
of different geometries—spheres [11], cylinders [12], and
harmonic oscillators [13]—have confirmed the important role

played by both the spectral density and the matrix elements in
the evolution of the superconducting gap. For L � 10 nm it has
been found that size effects are important but still a mean-field
approach is accurate since the bulk gap is much larger than
the mean level spacing. Moreover, in this region of sizes
the solutions of the Bogoliubov–deGennes equations and the
simpler approach of including the matrix elements in the BCS
theory, employed in Refs. [7,8,10], lead to similar results [12].

As was mentioned previously, analytical studies that com-
bine the effect of the spectral density and matrix elements
within a BCS mean-field approach are restricted to chaotic
grains [8]. It would be interesting to extend this analysis to
highly symmetric cubic and spherical grains where greater
deviations from the bulk limit are expected. This paper is a
step in this direction.

We solve analytically the BCS gap equation for a cubic and
square grain by using periodic orbit theory. Our main result is
an expansion, in the semiclassical parameter (kF L)−1, of the
superconducting gap, that takes into account corrections due
to both the matrix elements and the spectral density. We show
that in the region of interest L � 10 nm, for which BCS is still
applicable, the matrix element contribution is substantial. For
metallic grains of some weakly coupled BCS superconductors
noticeable deviations from the bulk limit are still observed
for L ∼ 50 nm. We start by introducing the model and the
techniques employed in our theoretical analysis.

I. THE MODEL

BCS theory describes pairing between electrons by a
Hamiltonian of the form [5]

H =
∑
n σ

εnc
†
nσ cnσ − λ

ν(0)

∑
n,n′

In,n′c
†
n↑c

†
n↓cn′↑cn′↓, (1)

where c
†
nσ creates an electron of spin σ in a state with quantum

numbers n and energy εn, λ is the dimensionless BCS coupling
constant for the material, and ν(0) is the density of states at
the Fermi energy. The short range electron-electron interaction
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matrix elements are given by

In,n′ = V

∫
ψ2

n (r)ψ2
n′(r) dV, (2)

where V is the volume of the grain and ψn(r) is the
eigenfunction of the one-body problem labeled by the quantum
numbers n.

The BCS order parameter is defined by

�n = λ

ν(0)

∑
n′

In,n′ 〈c†n′↑c
†
n′↓〉, (3)

and can be calculated from the self-consistency equation

�n = λ

2

∑
n′

�n′In,n′√
ε2

n′ + �2
n′

1

ν(0)
, (4)

where the sum is now taken over all elements of the set
{n′; |εn′ | < εD}, where εD is the Debye energy [14]. In the
bulk limit and for negligible disorder the eigenfunctions are
well approximated by simple plane waves so that In,n′ ≈ 1,
which leads to the well known relation for the superconducting
gap,

�0 ≈ 2εDe− 1
λ . (5)

However, in small grains one expects In,n′ can deviate signifi-
cantly from its bulk value. Here we consider the enhancement
of the gap due to the matrix elements in small grains. We
restrict our interest to grains in which both a mean-field BCS
theory δ/�0 � 1, with δ = 1/ν(0) the mean level spacing at
the Fermi energy, and the semiclassical periodic orbit theory
kF L � 1 are applicable.

For our system of interest, a cubic or square grain, the
eigenfunction of the one-body problem are simply

ψn(r) =
⎧⎨
⎩

2√
A

sin
(

nxπ

Lx
x
)

sin
( nyπ

Ly
y
)

(2D),

2
√

2√
V

sin
(

nxπ

Lx
x
)

sin
( nyπ

Ly
y
)

sin
(

nzπ

Lz
z
)

(3D),
(6)

with eigenenergies

εn =
⎧⎨
⎩

�
2π2

2m

[(
nx

Lx

)2 + ( ny

Ly

)2]
(2D),

�
2π2

2m

[(
nx

Lx

)2 + ( ny

Ly

)2 + (
nz

Lz

)2]
(3D).

(7)

where Lx,Ly,Lz are the side lengths of the grain, A(V ) is
the area(volume), and n = (nx,ny,nz) are not simultaneously
zero. The matrix element can be easily calculated,

In,n′ =
{(

1 + 1
2δnxn′

x

)(
1 + 1

2δnyn′
y

)
(2D),(

1 + 1
2δnxn′

x

)(
1 + 1

2δnyn′
y

)(
1 + 1

2δnzn′
z

)
(3D),

(8)

where δα,β is the Kronecker delta. The problem of computing
the matrix element is equivalent to that of finding the number
of shared quantum numbers for a given state, which is closely
related to the degeneracy of a given energy level. The latter
are usually referred to as shell effects. Here we will consider
the special case where Lx = Ly = Lz = L in which the level
degeneracy is higher and hence we expect stronger size effects.
For clarity we will use the word “state” exclusively to refer to
a single electron state of the system and the word “shell” to
refer to the full set of degenerate states at some energy.

In Sec. II we find an analytical expression for the average
size dependence of the superconducting gap by applying
results from number theory, more specifically we relate the
behavior of the Diophantine equation n2

x + n2
y + n2

z = n to the
problem of level degeneracies in a cubic grain. In Sec. III we
employ periodic orbit theory, valid in the semiclassical limit
kF L � 1, in order to find an analytical expression for the
nonmonotonic size dependence of the superconducting gap.
These analytical expressions include finite-size contributions
from both the matrix elements and the spectral density.

II. AVERAGE SIZE DEPENDENCE OF THE GAP:
RESULTS FROM NUMBER THEORY

In this section we apply results from number theory to
study the mean size dependence of the matrix elements and the
superconducting gap. To make the problem tractable we will
remove the n dependence from the left-hand side of Eq. (4)
by replacing In,n′ with its average taken across all possible
states in the Debye window and Fermi level for n and n′,
respectively. The gap equation can then be solved by taking
the matrix element outside the integral.

The gap equation may be written in the more transparent
form

�n = λ

2

∑
n′

�n′In,n′√
ε2
n′ + �2

n′

1

ν(0)
, (9)

where the sum is over the set {n′; |εn′ − εf | < εD} and we have
moved the sum over quantum numbers into the definition of
the matrix element as this is the only term which depends upon
them explicitly. Therefore,

In,n′ ≡
∑
{n′}

In,n′ , (10)

where this sum is over the quantum numbers {(n′
x,n

′
y,n

′
z); n

′ =
n′

x
2 + n′

y
2 + n′

z
2}. This is the starting point for the number

theory analysis.

A. Three dimensions

For a given state with quantum numbers n = (nx,ny,nz)
we can calculate the total matrix element due to states in the
Debye window by expanding Eq. (8),

In,n′ =
∑
{n′}

⎛
⎝1 + 1

2

∑
r∈{x,y,z}

δnr ,n′
r
+ 1

4

∑
〈r,s〉

δnr ,n′
r
δns ,n′

s

+ 1

8
δnx,n′

x
δny ,n′

y
δnz,n′

z

⎞
⎠ , (11)

where 〈r,s〉 ≡ (r,s) ∈ {(x,y),(y,z),(z,x)}. The sum in {n′} is
then carried out leading to

In,n′ = r3(n′) + 1

2

∑
r∈{x,y,z}

r2
(
n′ − n2

r

)

+ 1

4

∑
〈r,s〉

r1
(
n′ − n2

r − n2
s

)+ 1

8
, (12)
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where ri(n) is the number of non-negative representations of n

as the sum of i squares. For example, r3(n) is the number
of solutions to the Diophantine equation n = a2 + b2 + c2

such that a,b,c are non-negative integers. In other words, it
is the degeneracy of the εn shell in a cube. In Appendix B
we provide a summary of the closed forms for these functions
using number theory techniques. This expression for the matrix
elements, together with Eq. (9) and Appendix B, provides
a complete description for the system. More insight can
be gained by some further rearrangements. First taking the
degeneracy of the shell out of the matrix element by defining
the mean matrix element

Īn,n′ ≡ In,n′

r3(n′)
, (13)

which facilitates the writing of the gap equation using the
familiar integral notation

�n = λ

2

∫ εD

−εD

�n′ Īn,n′√
ε2 + �2

n′

ν(ε)

ν(0)
dε. (14)

For a cube this problem has been studied and solved ex-
actly [15] in the limit I = 1 by using periodic orbit theory [9].
In order to tackle the problem of a nontrivial Īn,n′ �= 1 we carry
out a further smoothing over the Debye window by taking an
additional average over n′, ri(n′ + · · · ) → ∑

n′ ri(n′ + · · · ).
The leading finite size correction is then given by

Ī = 1 +
1
2

∑
n′
∑

r∈{x,y,z} r2
(
n′ − n2

r

)
∑

n′ r3(n′)
. (15)

The mean value of r2(n) is π/4 [16] and it is straightforward to
show that

∑
n′ r3(n′) = k2

DkF L3/2π2 and
∑

n′ 1 = 2k2
DL2/π2.

Combining these results we find

Ī = 1 + 3π

2

1

kF L
. (16)

The correction found here is of the same order as that coming
from the Weyl expansion of the density of states. Therefore,
both contributions must be considered on equal footing. For
instance, for Neumann boundary conditions, the correction
from the Weyl expansion cancels exactly the contribution
from the matrix elements Eq. (16). We note that for 3d chaotic
grains the leading corrections to the matrix elements [8]
is also given by Eq. (16). This strongly suggests that it is
universal, namely, does not depend on the shape of the grain.
Analytical and numerical results for Dirichlet boundary
conditions, depicted in Fig. 1, are in good agreement for
L � 20 nm. For smaller sizes deviations are indeed expected
since the analytical calculation only provides the leading size
correction. Explicit expressions for higher orders are hard to
obtain by number theory techniques.

B. Two dimensions

As in three dimensions we write the mean matrix element as

In,n′ =
∑
{n′}

⎛
⎝1 + 1

2

∑
r∈{x,y}

δnrn′
r
+ 1

4
δnxn′

x
δnyn′

y

⎞
⎠

= r2(n′) + 1

2

∑
r∈{x,y}

r1
(
n′ − n2

r

)+ 1

4
. (17)
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FIG. 1. (Color online) The matrix elements Eq. (8) as a function
of the square size L. Blue dots correspond to the exact numerical
calculation, the blue solid line shows the numerical average of the
exact results, and the red dashed line corresponds to the analytic
prediction, Eq. (16). For sufficiently large grains L > 20 nm the
agreement is excellent. For small sizes deviations are expected since
our results neglect higher order terms in the expansion parameter
(kF L)−1.

As before, Eq. (17), along with the number theoretic results
in Appendix B, provides an exact description of the matrix
elements. To study the behavior assuming local smoothing we
must consider the contribution from states where just one of
the quantum numbers match, for example, nx = n′

x,ny �= n′
y .

This contribution can be determined probabilistically using
the following argument. The states which verify this condition
and which are contained in the Debye window are those such
that

�ε =
∣∣∣∣ �2π2

2mL2
(a2 ± 2nxa)

∣∣∣∣ < εD, (18)

where a is an integer greater than zero. The total possible
contribution if all nx were available for a given grain size
is then

T ≡ 2

√
σ 2+1−1∑
a=1

σ2−a2

2a∑
n=1

1 ≈ 1

2
[2γ − 1 + ln(σ )]σ, (19)

where σ = ( kDL
π

)2, the factor 2 accounts for positive and
negative values, and γ ≈ 0.577 is the Euler-Mascheroni
constant. However, not every nx is available in the shell at
the Fermi level. In order to determine the fraction of available
T which is realized we note that, provided that every nx <√

n − 1 has equal probability to be in the Fermi level shell,
there are approximately kF L

π
possible values for nx of which,

discounting permutations, r2(n)/2 independent values are cho-
sen. Hence the total contribution to the shell from states of this
form is

T
πr2(n)

2kF L
. (20)
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FIG. 2. (Color online) The matrix elements Eq. (8) as a function
of the square size L. Blue dots correspond to the exact numerical
calculation, the blue solid line shows the numerical average of the
exact results, and the red dashed line corresponds to the analytic
prediction, Eq. (23). Since the analytical calculation does not neglect
any term in the expansion the agreement is much better than for the
cube across the whole size range.

As a result,

Ī = 1 + 1∑
n′ r2(n′)

(
5

4
+ T

π2

8kF L

)
, (21)

where the first term accounts for the case nx = n′
x,ny = n′

y .
The denominator

∑
n′ r2(n) is simply the number of single

electron states in the Debye window. We calculate this by
dividing the phase space volume of the Debye window by the
phase space volume of a single electron state. In the εD � εF

limit,

∑
n′

r2(n′) = (kDL)2

2π
, (22)

which leads to our final result,

Ī = 1 + 5π

2

1

(kDL)2
+
[

2γ − 1 + 2 ln

(
kDL

π

)]
π

4kF L
.

(23)

The presence of the Euler-Mascheroni constant indicates the
inherently number theoretic nature of this result.

We have found, see Fig. 2, an excellent agreement between
Eq. (23) and numerical results in the full range of sizes studied.
This is expected since, unlike the previous case, the analytical
prediction also includes the higher order terms.

III. GAP SIZE DEPENDENCE BY PERIODIC
ORBIT THEORY

In this section we compute analytically the size dependence
of the superconducting gap, including contributions from
matrix elements and density of states, by using periodic orbit
theory. The final expression for the gap captures quantitatively
oscillations induced by shell effects. We refer to [9] for
a pedagogical introduction to this technique though we do
provide a brief summary in Appendix A. The square and cube
cases are discussed separately.

A. Three dimensions

The starting point is to rewrite the gap equation by
substituting Eq. (8) into Eq. (4),

�n = λ

2

∫ εD

−εD

�n′
(
ν3(ε′) +∑

r∈{x,y,z}
ν2(ε′′

r )
2 +∑

〈r,s〉
ν1(ε′′′

r,s )
4 + δ(ε′)

8

)
√

ε′ 2 + �2
n′ν(0)

dε′, (24)

where νi(ε) is the density of states at energy ε in a cubelike
billiard of size L in i dimensions and

ε′′
r = ε′ − �2π2

2mL2
n2

r ,

(25)

ε′′′
r,s = ε′ − �2π2

2mL2

(
n2

r + n2
s

)
.

The density of states in a finite-size systems can be written
as [9]

ν(ε) = νTF(ε)[1 + ḡ(ε) + g̃l(ε)], (26)

where νTF(0) is the bulk Thomas-Fermi density of states,
and ḡ(ε) = −3π/2kF L + · · · is the monotonous contribution,
usually referred to as Weyl’s expansion where we assume
Dirichlet boundary conditions. Finally, g̃(ε) is the oscillating
contribution which can be expressed as a sum over periodic
orbits of the classical counterpart. See Appendix A for
explicit expressions of νi . Using the ansatz � = �0(1 +
f (1) + f (3/2) + f (2) + · · · ), with f (k) ∝ (kF L)−k , we expand

the gap equation in powers of the small parameter (kF L)−1/2

and solve order by order to find

f (1) = 1

2

∫ εD

−εD

1d ε′√
ε′ 2 + �2

0

,

f (3/2) = 1

2

∫ εD

−εD

3/2d ε′√
ε′ 2 + �2

0

,

(27)

f (2) = 1

2

∫ εD

−εD

2d ε′√
ε′ 2 + �2

0

+ 1

2
(f (1))2

− �2
0f

(1)

2

∫ εD

−εD

1d ε′(
ε′ 2 + �2

0

)3/2 ,

where we have collected terms in the numerator according to
their kF L dependence such that k ∝ (kF L)−k . Applying the

asymptotic form of the Bessel function J0(x) =
√

2
πx

cos(x −
π
4 ), expanding ε about the Fermi energy. and carrying out the
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integrals, we arrive at the following expression for the gap:

f (1) =
∞∑

Ln �=0

j0(kF Ln)ω(1/2)(Ln),

f (3/2) = π

2kF L

∞∑
Ln �=0

⎡
⎣ ∑

r∈{x,y,z}
J0
(
XrkF Li,j

n

)
ω(1/2)

(
L

i,j
n

Xr

)
− 3J0

(
kF Li,j

n

)
ω(1/2)(Li,j

n

)⎤⎦ ,

f (2) = π

(kF L)2λ

⎛
⎝∑

〈r,s〉

1

2Xr,s

−
∑

r∈{x,y,z}

1

Xr

⎞
⎠+ f (1)

⎛
⎝f (1)

2
−

∞∑
Ln �=0

j0(kF Ln)ω(3/2)(Ln)

⎞
⎠ (28)

+ π

(kF L)2

∞∑
Ln �=0

⎡
⎣3 cos

(
kF Li

n

)
ω(1/2)(Li

n

)−
∑

r∈{x,y,z}

2

Xr

cos
(
XrkF Li

n

)
ω(1/2)

(
Li

n

Xr

)

+
∑
〈r,s〉

1

2Xr,s

cos
(
Xr,skF Li

n

)
ω(1/2)

(
Li

n

Xr,s

)⎤⎦ ,

where Xr =
√

1 − ( πnr

kF L
)2, Xr,s =

√
1 − ( π

kF L
)2(n2

r + n2
s ), and the weight functions ω are given by

ω(1/2)(Ln) = 1

2

∫ ∞

−∞

cos
(

Lnt
ζ

)
√

1 + t2
d t = K0

(
Ln

ζ

)
, ω(3/2)(Ln) = 1

2

∫ ∞

−∞

cos
(

Lnt
ζ

)
(1 + t2)3/2

d t = Ln

ζ
K1

(
Ln

ζ

)
, (29)

where Kj is the modified Bessel function of the second kind of order j , and ζ = �2kF /m�0 is the coherence length. These
weight functions suppress exponentially the contribution of periodic orbits Ln longer than the coherence length ζ .

For the sake of comparison we have also derived the analytical expression of the gap size dependence in the limit I = 1 first
obtained in Ref. [15] [see Eqs. (18) and (19)],

f
(1)
I=1 = −3π

2λ

1

kF L
+

∞∑
Ln �=0

j0(kF Ln)ω(1/2)
1 (Ln),

f
(3/2)
I=1 = − 3π

2kF L

∞∑
Ln �=0

J0
(
kF Li,j

n

)
ω

(1/2)
1

(
Li,j

n

)
, (30)

f
(2)
I=1 = f

(1)
I=1

⎛
⎝f

(1)
I=1

2
+ 3π

2

1

kF L
−

∞∑
Ln �=0

j0(kF Ln)ω(3/2)(Ln)

⎞
⎠+ 3π

(kF L)2

∞∑
Ln �=0

cos
(
kF Li

n

)
ω

(1/2)
1

(
Li

n

)
.

The expansion above does not agree completely with that of Ref. [15]. There is a factor of 1
2 missing before the f (1)2 term

on the first line of Eq. (19) of Ref. [15]. On the second line, the term g̃(1) should be replaced by g̃(3). Finally, in the equation for
W3/2(LP /ξ ), just below Eq. (20) of Ref. [15], the prefactor �2

0 should be replaced by λ.
It is also important to note a crucial limitation of the semiclassical expansion in the small variable (kF L)−1 � 1, not discussed

in Ref. [15], which is especially relevant in the case of symmetric grains. From Eq. (30) it is clear that the prefactors in front of
the expansion parameter involve sums over all periodic orbits shorter than the coherence length. For typical values of parameters
ζ ∼ 200 nm and L ∼ 10 nm the sum runs over thousands of periodic orbits. It is entirely plausible that for sizes for which
shell effects are strong, and therefore the different terms of the oscillating sum add coherently, these prefactors can become
very large to the point that f (i) > 1 and the semiclassical expansion breaks down. The exact range of validity of the expansion
is going to be very sensitive to the choice of parameters since ζ ∝ e1/λ. For instance, we have found that for λ > 0.3 and
εD ∼ 30 meV it will be convergent for almost all sizes L > 15 nm. For λ > 0.4, and the same εD , it will converge for all sizes
L > 10 nm.

Here our main goal is to study analytically the role of the matrix elements in the semiclassical expansion. Therefore, we use
the two expressions above to find the difference between the size dependence of the superconducting gap with Eq. (28) and
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without Eq. (30) nontrivial matrix elements,

�Diff = �Exact − �I=1

�0
= f

(1)
Diff + f

(3/2)
Diff + f

(2)
Diff, f

(1)
Diff = 3π

2λ

1

kF L
,

f
(3/2)
Diff = π

2kF L

∞∑
Ln �=0

∑
r∈{x,y,z}

J0
(
XrkF Li,j

n

)
ω(1/2)

(
L

i,j
n

Xr

)
,

f
(2)
Diff = π

(kF L)2λ

⎛
⎝∑

〈r,s〉

1

2Xr,s

−
∑

r∈{x,y,z}

1

Xr

⎞
⎠+

(
3π

2

1

kF L

)2 (1

λ
− 1

2λ2

)

+ 3π

2kF L

∞∑
Ln �=0

[(
1

λ
− 1

)
j0(kF Ln)ω(1/2)(Ln) − 1

λ
j0(kF Ln)ω(3/2)(Ln)

]

+ π

(kF L)2

∞∑
Ln �=0

⎡
⎣∑

〈r,s〉

1

2Xr,s

cos
(
Xr,skF Li

n

)
ω(1/2)

(
Li

n

Xr,s

)
−

∑
r∈{x,y,z}

2

Xr

cos
(
XrkF Li

n

)
ω(1/2)

(
Li

n

Xr

)⎤⎦ . (31)

The limitation of the semiclassical expansion due to shell
effects mentioned above also applies to Eq. (31) but there
are important differences. The potentially most divergent
sums cancel each other which increases substantially the
convergence of the expansion. For λ = 0.3 and εD = 30 meV
the expansion is convergent for almost all L > 10. Indeed,
as can be observed in Fig. 3, the agreement between the
numerical and analytical results is excellent for any λ > 0.3
and L > 10 nm. We also note that for L ∼ 10 nm, �Diff , that
physically describes the contribution of the matrix elements
to the superconducting gap, is substantial. That suggests that
any quantitative description of superconductivity in nanograins
must take it into account.

We note that deviations for smaller λ is an indication of the
incipient breaking of the semiclassical expansion due to strong
shell effects. Indeed we have checked that, in this case, includ-
ing higher orders in the expansion only worsens the agreement
with the numerical results. In part this is also due to the pres-
ence of crossed terms f (1)f (3/2) which, despite being of higher
order in (kF L)−1, have the potential to be larger than those of
lower order at sizes for which shell effects are important.

A natural question to ask is whether these results are really
relevant for realistic superconducting grains. It is reasonable
to neglect disorder since current growth techniques make it
feasible to reach mean-free paths much larger than the grain
size. Small deviations from a highly symmetric geometry,
due to imperfections, can be included in the semiclassical
formalism by adding an additional cutoff length that describes
the typical length that a particle travels inside the grain without
hitting the imperfection. If this length is larger than the
coherence length it has no impact at all on our results. If it is
shorter it will diminish shell effects but their role will still be
important provided the imperfection scattering length is much
larger than the grain size. Highly symmetric grains such as
hemispheres [3] are within the reach of current experimental
techniques, however we are not yet aware of experimental
results regarding nanocubes or nanosquares.

B. Two dimensions

Following the same prescription as in the three-dimensional
case we use the ansatz � = �0(1 + f (1/2) + f (1) + · · · ) and

solve order by order. In the absence of matrix elements we find

f
(1/2)
I=1 =

∑
Ln

J0
(
kF Li,j

n

)
ω(1/2)

(
Li,j

n

)
,

f
(1)
I=1 = f

(1/2)
I=1

(
f

(1/2)
I=1

2
−
∑
Ln

J0
(
kF Li,j

n

)
ω(3/2)

(
Li,j

n

))
(32)

− 2

λkF L
− 4

kF L

∑
Ln

cos
(
kF Li

n

)
ω(1/2)

(
Li

n

)
.

With the matrix elements included we find

f (1/2) =
∑
Ln

J0
(
kF Li,j

n

)
ω(1/2)

(
Li,j

n

)
,

f (1) = f (1/2)

(
f (1/2)

2
−
∑
Ln

J0
(
kF Li,j

n

)
ω(3/2)

(
Li,j

n

))

+ 1

λkF L

⎛
⎝ ∑

r∈{x,y}

1

Xr

− 2

⎞
⎠

− 4

kF L

∑
Ln

cos
(
kF Li

n

)
ω(1/2)

(
Li

n

)

+
∑

r∈{x,y}

1

XrkF L

∑
Ln

cos
(
XrkF Li

n

)
ω(1/2)

(
Li

n

/
Xr

)
.

(33)

The difference between the two leads to the final expression
for the gap size corrections due to matrix elements,

�diff = 1

λkF L

∑
r∈{x,y}

1

Xr

+
∑

r∈{x,y}

1

XrkF L

×
∑
Ln

cos
(
XrkF Li

n

)
ω(1/2)(Li

n

/
Xr

)
. (34)

In this case we have also found a very good agreement
between Eq. (34) and numerical results.

Naively one might expect the final number theory results
Eq. (21) and the periodic orbit results Eq. (34) to be similar.
On first inspection though, they appear to be quite different,
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FIG. 3. (Color online) Comparison of the numerical and analyti-
cal calculation of �Diff , the difference between the superconducting
gap with and without matrix elements. The upper plot shows the mean
value and the lower plot the standard deviation taken over consecutive
intervals of size 0.4 nm. The solid line shows numerical results and the
dashed line the results from the periodic orbit calculation, Eq. (31).
From top to bottom the line pairs correspond to λ = 0.2 (green), 0.3
(red), and 0.4 (blue). We note the extremely good agreement not just
in the line shape but also in the fine structure of the standard deviation.
The contribution of the matrix elements to the gap size dependence
is substantial in the region L ∼ 10 nm and where the BCS formalism
is still applicable. Deviations are still noticeable even for much larger
grains L � 50 nm. As was expected (see text) the expansion begins
to breakdown for the case of λ = 0.2, L ∼ 10 nm.

in particular it is not clear where the logarithm in Eq. (21) can
be found in the semiclassical expressions. The relationship
between the number theory and periodic orbit results is not
entirely straightforward, however as in the former we are
studying the smoothed value of the matrix element, whereas
for periodic orbits we have calculated the difference in the
superconducting gap with and without matrix element. In
principle, it should be possible to derive the number theory
results from the semiclassical density of states by taking care
to include the smoothing over the Debye window for Xr,Xr,s

terms. This task would be difficult however without applying
results from number theory.

IV. CONCLUSIONS

We have computed analytically the size dependence of
the energy gap for square and cubic superconducting grains
in the mean-field approximation by making extensive use
of semiclassical and number theory techniques. For typical
values of the parameters λ ∼ 0.3, εD ∼ 30 meV the result
for the difference between the gap with and without matrix
elements, our main finding, is in excellent agreement with
numerical results for almost all sizes L > 10 nm. These results
indicate that the contribution of the matrix elements to the
superconducting gap is important to model superconductivity
in the region L ∼ 10 nm. We note that mean-field approaches
are still valid in this region. For the square nanograin, the
expression for the average matrix elements has an inherent
number theoretic nature. For the superconducting nanocube
the leading size correction is equal to the one for a chaotic
grain which suggests that it is universal.
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APPENDIX A: SEMICLASSICAL RESULTS

Here we summarize the relevant semiclassical results for the
density of states [9]. Applying the Gutzwillar trace formalism
we may express the densities of states in the following
form:

ν(ε) = νTF(ε)[1 + ḡ(ε) + g̃l(ε)], (A1)

where νTF(0) is the Thomas-Fermi density of states in the
bulk

νTF(ε) = 2 ×

⎧⎪⎪⎨
⎪⎪⎩

V
4π2

(
2m
�2

)3/2√
ε + εF (3D),

A
4π

(
2m
�2

)
(2D),

L
2π

√
2m
�2

1√
ε+εF

(1D),

(A2)

ḡ(ε) is the smooth contribution, given by the Weyl expansion,
in this work we have used Dirichlet boundary conditions,

ḡ(ε) =
⎧⎨
⎩

− Sπ
4kV

+ 2C
k2V

(3D),

− 2L
kA

(2D),
0 (1D),

(A3)

S is the surface area of the grain and C is the curvature. g̃(ε)
is the oscillating contribution given by

g̃(ε) =

⎧⎪⎨
⎪⎩

g̃(3)(ε) − 1
2

∑
i

∑
j �=i g̃

(2)
i,j (ε) + 1

4

∑
i g

(1)
i (ε) (3D),

g̃
(2)
1,2(ε) − 1

2

∑
i g

(1)
i (ε) (2D),

g
(1)
1 (ε) (1D).

(A4)
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These terms each correspond to the sum over a set of
periodic orbits. g̃(3)(ε) is over the orbits of length Ln =
2
√

L2
xn

2
x + L2

yn
2
y + L2

zn
2
z , with nx,ny,nz not simultaneously

zero, according to

g̃(3)(ε) =
∞∑

Ln �=0

j0(kLn), (A5)

where j0 is the zeroth order spherical Bessel function.
Similarly, g̃

(2)
i,j is over periodic orbits L

i,j
n = 2

√
L2

i n
2
i + L2

jn
2
j ,

g̃
(2)
i,j =

{
LiLj π

kF V

∑∞
Ln �=0 J0

(
kL

i,j
n
)

(3D),
LiLj

A

∑∞
Ln �=0 J0

(
kL

i,j
n
)

(2D),
(A6)

J0 is the zeroth order Bessel function. g
(1)
i sums over periodic

orbits of length Li
n = 2Lini ,

g̃
(1)
i =

⎧⎪⎪⎨
⎪⎪⎩

4πLi

k2
F V

∑∞
Ln �=0 cos

(
kLi

n

)
(3D),

4Li

kF A

∑∞
Ln �=0 cos

(
kLi

n

)
(2D),∑∞

Ln �=0 cos
(
kLi

n

)
(1D).

(A7)

APPENDIX B: NUMBER THEORY RESULTS

One dimensional
r1(n) is trivially

r1(n) =
{

1 if n is square,
0 otherwise. (B1)

Two dimensional
It has been shown that the number of representations of n as
the sum of two squares is [17]

r2(n) = d1(n) − d3(n), (B2)

where dl(n) is the number of divisors of n congruent to
l(mod4).

Three dimensional
It has been shown [18] that the number of representations of n

as the sum of three squares is

r3(n) = π

4
n

1
2 ξ (3,n), (B3)

where

ξ (3,n) =
∏
p

(1 + Ap + Ap2 + · · · ).

where the product is over the prime divisors of n and these series truncate according to

(a) if p = 2,A2a is
(i) A2 = 0,
(ii) if a is even

A2a =
{

cos((π/4)(2n1−3))
2(a−1)/2 if ∃ n1 such that n = 2a−2n1 (n1 not necessarily odd),

0 if 2a−2�n,

(iii) if a is odd

A2a =
{

(−1)(n2−3)/42(a−1)/2 if ∃ n2 such that n = 2a−3n2 and n ≡ 3(mod4),
0 otherwise,

(b) if p is an odd prime,
(i) if a is even,

Apa =

⎧⎪⎨
⎪⎩

(p − 1)p−(a/2+1)i3( pa−1
2 )2

if pa|n,

−p−(a/2+1)i3( pa−1
2 )2

if pa−1‖n,

0 if pa−1�n,

(ii) a is odd,

Apa =
{

0 if either pa|n or pa−1�n,

p−(a+1)/2
(

n1
p

)
J
i3( pa−1

2 )2 (1−i)(1+ip)
2 such that n = pa−1n1 and p�n1,

where ( a
b
)J is the Jacobi symbol. So, for example, in the case where n is odd and square free [16],

r3(n) = ξ
2
√

n

π

∞∑
m=1,m odd

(−n

m

)
J

1

m
,

(B4)
ξ = 1 + 1√

2
cos[π (2n − 3)/4] + 1

2
cos[π (n − 3)/4].
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