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Fermion fractionalization to Majorana fermions in a dimerized Kitaev superconductor
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We study theoretically a one-dimensional dimerized Kitaev superconductor model which belongs to BDI class
with time-reversal, particle-hole, and chiral symmetries. There are two sources of the particle-hole symmetry,
i.e., the sublattice symmetry and superconductivity. Accordingly, we define two types of topological numbers
with respect to the chiral indices of normal and Majorana fermions, which offers an ideal laboratory to examine
the interference between the two different physics within the same symmetry class. Phase diagram, zero-energy
bound states, and conductance at normal metal/superconductor junction of this model are unveiled from this
viewpoint. Especially, the electron fractionalization to the Majorana fermions showing the splitting of the local
density of states is realized at the soliton of the dimerization in this model.
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I. INTRODUCTION

Classification of the gapped electronic states from the
viewpoint of quantum topology has shed a new light on our
understanding of the physical properties of solids. Topological
insulators and superconductors are the two major ingredients
of this classification [1–3]. The topological periodic table has
been proposed based on the time-reversal, particle-hole, and
chiral symmetries, which are the three fundamental and robust
symmetries of the Hamiltonian even without the translational
symmetries or point-group symmetries [4–7]. 10 classes are
identified in this table, and the homotopy group is allocated
to each class depending on the spatial dimensionality of the
system. This mathematical classification alone, however, does
not provide the physical properties of the concrete systems,
nor provide the way how to construct the topological indices
linked to the zero-energy bound states at the boundary of
the sample. Therefore, the studies of explicit models are
needed to explore the rich physics hidden in the periodic table.
One interesting question is how the two different physical
phenomena, characterized by each topological index, are
related within the same symmetry class. To examine this
question in the simplest model, we analyze in this paper the
dimerized Kitaev model, which belongs to the BDI class and
is a hybrid system comprised of the spinless Su-Schrieffer-
Heeger model of polyacetylene [8–11] and the Kitaev model of
the one-dimensional (1D) p-wave topological superconductor
[12–15].

The Su-Schrieffer-Heeger (SSH) model, i.e., dimerized
one-dimensional chain, is a model proposed for polyacetylene.
At the edges of the sample or at the kink of the dimerization
pattern, i.e., soliton, the zero-energy in-gap bound states
appear due to the topological reason. On the other hand,
the Kitaev model is the one-dimensional spinless p-wave
topological superconductor, where superconducting pairing
occurs between the nearest-neighbor sites. The finite chain
of the Kitaev model supports Majorana fermions at edges. The
Kitaev model is realized by using a 1D nanowire with strong
Rashba spin-orbit interaction [16–22]. Several experiments
about the nanowire systems have so far been reported [23–28].
Both models have the particle-hole symmetry. However, their

origins are different. In the case of the SSH model, the
sublattice symmetry between the A and B sublattices gives
the particle-hole symmetry, while the superconductivity is the
source in the Kitaev model. Correspondingly, we can define
the two kinds of topological indices N1 and N2 in Eqs. (18) and
(27), respectively. N1 is induced by the sublattice symmetry
and equals the number of zero-energy states, while N2 is in-
duced by the particle-hole symmetry due to the superconductor
and equals the number of Majorana zero-energy states. By
these two indices, the phase diagram is determined, and their
relation to the zero-energy states at the edges and the associated
transport properties are revealed. We also investigate the
zero-energy states in the presence of a dimerization soliton in
our hybrid model. As is expected, a zero-energy fermionic state
appears in the SSH-like region, which is eventually suppressed
by the p-wave pairing. Remarkably, we find a peak of the
local density of states (LDOS) at zero energy splits into two
peaks which shift toward the edges by the effect of the p-wave
pairing. It is regarded as a precursor of the topological phase
transition, where one fermion at the soliton splits into two
Majorana fermions. This offers a unique opportunity to see
the process of electron fractionalization in the real space.

The rest of the paper is organized as follows. In Sec. II, we
introduce the model and derive the energy bands of the bulk
system. In Sec. III, we discuss the symmetry of the model.
We show that there are two particle-hole symmetries in the
system. In Sec. IV, we focus on the sublattice symmetric
case (μ = 0). We calculate the topological number induced
from the sublattice symmetry. In Sec. V, we consider the
case of sublattice asymmetric case (μ �= 0). We define and
calculate another topological number induced from the super-
conductivity. In Sec. VI, we illustrate the energy spectrum of
a finite system. We show the number of zero-energy states
reflects the two topological indices. In Sec. VII, we calculate
the differential conductance and show the correspondence
between the topological index from the superconducting
pairing. In Sec. VIII, we study the LDOS at zero energy. We
explain how edge states and soliton states appear depending on
the phase. We also derive the continuum model and show the
analytic form of the zero-energy wave function or local density
of states in good agreement with the numerical results. We
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report our remarkable finding of the splitting of a peak in the
LDOS in the presence of a soliton due to the superconducting
pairing. In Sec. IX, we discuss the relationship between the
odd-frequency pairing and the soliton states. In Sec. X, we
summarize the results of this paper and briefly discuss the
relevance to the real systems.

II. HAMILTONIAN

We investigate the tight-binding model for a hybrid system
comprised of the SSH model [8] and the Kitaev model [12]:

H = −μ
∑

j

(c†A,j cA,j + c
†
B,j cB,j )

−t
∑

j

[(1 + η)c†B,j cA,j + (1 − η)c†A,j+1cB,j + H.c.]

+�
∑

j

[(1 + η)c†B,j c
†
A,j + (1 − η)c†A,j+1c

†
B,j + H.c.],

(1)

where A and B denote the sublattice indices, μ is the chemical
potential, t is the transfer integral, and � is the superconducting
pairing gap taken to be real. The space-dependent variable of
the SSH model is the dimerization η, which we have taken to
be a constant for the ground state. It contributes to the transfer
integral and the superconducting pairing. The Hamiltonian (1)
is reduced to the Kitaev model for η = 0 and to the SSH model
for μ = 0, � = 0. There is a condition on the dimerization
|η| < 1 since the transfer integral should be positive. We also
assume |�| < t . We shall later investigate the system in the
presence of the soliton excitation in the SSH model. We show
the illustration of the model in Fig. 1.

(a) Kitaev + Su-Schrieffer-Heeger  model

(b) Kitaev-like state

(c) Su-Schrieffer-Heeger-like state
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FIG. 1. (Color online) (a) Illustration of the model. The red
spheres, the yellow ovals, and the blue sticks represent Majorana
fermions, ordinary fermions, and bonds between Majorana fermions,
respectively. α and β on the red spheres denote the Majorana operators
which are defined in Eq. (29). The dark and light bonds represent
dimerization of Majorana fermions due to the p-wave pairing. The
thick and thin bonds represent the dimerization of the ordinary
fermions. The coupling parameters are shown. Here, we assumed
μ = 0 and η < 0. (b) In the Kitaev-like phase, the dark bonds are
dominant. There are unpaired Majorana fermions. (c) In the SSH-like
phase, the thick bonds are dominant. There are two fermions.

Introducing the four-component operator C
†
k =

(c†kA,c
†
kB,c−kA,c−kB ), we can express the Hamiltonian

H in the Bogoliubov–de Gennes form. In the momentum
space, it reads as

H = 1

2

∑
k

C
†
kH(k)Ck (2)

with

H(k) =

⎛
⎜⎝

−μ z 0 w

z∗ −μ −w∗ 0
0 −w μ −z

w∗ 0 −z∗ μ

⎞
⎟⎠, (3)

where

z(k) = −t[(1 + η) + (1 − η)e−ika], (4)

w(k) = −�[(1 + η) − (1 − η)e−ika], (5)

and a is the lattice constant. We diagonalize the Hamiltonian
and obtain the eigenvalues

E2 = μ2 + |z|2 + |w|2 ± 2
√

μ2|z|2 + (4t�η)2 (6)

with

|z(k)|2 = 2t2[(1 + η2) + (1 − η2) cos ka], (7)

|w(k)|2 = 2�2[(1 + η2) − (1 − η2) cos ka]. (8)

We find

E(0) = ±2t ±
√

μ2 + 4�2η2, (9)

where the gap closes at

μ2 = 4(t2 − �2η2), (10)

while we find

E(π/a) = ±2tη ±
√

μ2 + 4�2, (11)

where the gap closes at

μ2 = 4(t2η2 − �2). (12)

We will show that gap-closing conditions (10) and (12)
correspond to the phase boundaries.

For � = 0, the energy spectrum is reduced to that of the
SSH model,

E(k) = ±μ ± t
√

2[(1 + η2) + (1 − η2) cos ka]. (13)

It is well known [4–7] that the system is topological for η < 0
and trivial for η > 0.

On the other hand, for η = 0, the energy spectrum is
reduced to that of the Kitaev model,

E(k) = ±
√(

2t cos
ka

2
− μ

)2

+ 4�2 sin2
ka

2
. (14)

It is well known [4–7,12] that the system is topological for
|μ| < 2t and trivial for |μ| > 2t .
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III. SYMMETRY

We discuss the topological class of the model. In this
spinless system, the time-reversal operator is defined by
T = K , which takes the complex conjugate. The model has the
time-reversal symmetry TH(k)T −1 = H(−k) because there is
no complex coefficient of μ, t, �, and η in the Hamiltonian.
It is noted that we have chosen the gauge of real � in Eq. (1).
Moreover, in the case of μ = 0, the system has the sublattice
symmetry. The sublattice symmetry operator is defined by

C1 = σz =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (15)

where σi is the Pauli matrix acting on the sublattice degree
of freedom. It is checked that C1H(k)C−1

1 = −H(k). The
topological class is BDI since T 2 = 1 and C2

1 = 1.
On the other hand, if μ is finite, there is no sublattice

symmetry anymore. However, the class is still BDI due to the
particle-hole symmetry of the superconductor. The particle-
hole operator is defined by P = τxK , where τi is the Pauli
matrix acting on the particle-hole space. We can check that the
Hamiltonian satisfies PH(k)P −1 = −H(−k). Then, the chiral
operator is induced as the product of the time-reversal operator
T and the particle-hole operator P :

C2 = T P = τx =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠. (16)

It is checked that C2H(k)C−1
2 = −H(k) and C2

2 = 1. There-
fore, the topological class is BDI.

The 1D system in the BDI class is characterized by the
Z index. We will show soon that these two chiral operators
induce the two topological Z indices in the case of μ = 0.

IV. SUBLATTICE SYMMETRIC CASE

We start with the case of μ = 0. First, we examine the
gap-closing condition. The eigenvalues are

E(k) = ±2

√
(t ± �η)2 cos2

ka

2
+ (tη ± �)2 sin2

ka

2
.

(17)
It vanishes at k = 0, �η = ±t and k = π/a, tη = ±�.
However, since |�||η| < t , the gap closes at the points k =
π/a, tη = ±�. As we shall soon show, the topological phase
boundary is given by this gap-closing condition.

The topological number associated with the sublattice
symmetry operator C1 is defined by

N1 = Tr
∫ π/a

−π/a

dk

4πi
C1g

−1∂kg, (18)

where g(k) = −H−1(k) is the Green’s function at zero energy
[29–32].

This topological number is equivalent to the chiral index.
We introduce a unitary transformation

U1 =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (19)

which yields

U1C1U
†
1 = τz, U1HU

†
1 =

(
0 V1

V
†

1 0

)
, (20)

with

V1 =
(

z w

−w −z

)
, (21)

where z and w are defined by Eqs. (4) and (5). When the
Hamiltonian is in the form of Eq. (20), the chiral index is
given by

N1 = −Tr
∫ π/a

−π/a

dk

2πi
V −1

1 ∂kV1 = −
∫ π/a

−π/a

dk

2πi
∂k ln DetV1

= −
∑
n=1,2

∫ π/a

−π/a

dk

2πi
∂k ln zn(k) (22)

with

z1(k) = (t − �)(1 + η) + (t + �)(1 − η)e−ika, (23)

z2(k) = (t + �)(1 + η) + (t − �)(1 − η)e−ika. (24)

It is straightforward to derive that

N1 = 
(� − tη) + 
(−� − tη), (25)

with


(x) =
{

0 (x < 0),
1 (x > 0). (26)

Clearly, N1 is the winding number of zn(k). Its mathematical
meaning is that π1[GL(4,C)] = Z.

We may derive the phase diagram from Eq. (25), as illus-
trated in Fig. 2(a). We find three phases: (i) t |η| > |�|, η > 0,
where N1 = 0 (SSH-like trivial); (ii) t |η| > |�|, η < 0, where
N1 = 2 (SSH-like topological); (iii) t |η| < |�|, where N1 = 1
(Kitaev-like topological). The dimerization and the p-wave
pairing compete and result in these phases.

V. SUBLATTICE ASYMMETRIC CASE

We proceed to investigate the μ �= 0 case. The topological
number associated with the chiral operator C2 is defined by

N2 = Tr
∫ π/a

−π/a

dk

4πi
C2g

−1∂kg. (27)

This topological number is identical to the chiral index of
Majorana fermion [33,34].

We consider a unitary transformation

U2 = 1√
2

⎛
⎜⎝

1 0 1 0
0 1 0 1
−i 0 i 0
0 −i 0 i

⎞
⎟⎠, (28)
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FIG. 2. (Color online) (a) Topological phase diagram with re-
spect to N1 (μ = 0 case). The horizontal axis is η and the vertical
axis is �/t . The numbers in the figure denote N1. (b) Topological
phase diagram with respect to N2. The axes are η, �/t , and μ/t .
In the trivial regions, N2 = 0. In the topological region, N2 = ±1,
depending on the sign of �/t . The gapless phase �/t = 0 in the
Kitaev-like phase is not illustrated for the sake of clarity. (c) The
cross section of (b) at μ = 0. (d) The cross section of (b) at μ = 0.2t .
The black line is the gapless phase.

which corresponds to the representation with the Majorana
operators

ci = 1
2 (αi + iβi), c

†
i = 1

2 (αi − iβi). (29)

It follows that

U2C2U
†
2 = τz, U2HU

†
2 =

(
0 V2

V
†

2 0

)
, (30)

with

V2 =
( −iμ i(z − w)

i(z∗ + w∗) −iμ

)
. (31)

The chiral index is given by a formula similar to Eq. (22) with
the use of V2 in place of V1:

N2 = −Tr
∫ π/a

−π/a

dk

2πi
V −1

2 ∂kV2 = −
∫ π/a

−π/a

dk

2πi
∂k ln Z(k),

(32)

where

Z(k) = DetV2(k) = −μ2 + (−z + w)(−z∗ − w∗)

= −μ2 + 2(t2 − �2)(1 + η2)

+ 2(t2 + �2)(1 − η2) cos ka − 4it�(1 − η2) sin ka.

(33)

N2 is the winding number of Z(k), and determined by the
cross points of the real axis at k = 0 and π/a. For � > 0, we
find

Z(0)Z(π/a) < 0 ⇒ N2 = 1, (34)

Z(0)Z(π/a) > 0 ⇒ N2 = 0, (35)

with

Z(0) = −μ2 + 4(t2 − �2η2), (36)

Z(π/a) = −μ2 + 4(t2η2 − �2). (37)

For � < 0, we find N2 = −1 in the topological region.
However, the sign of N2 is meaningless because it depends
on the choice of the global phase. The relative sign of N2,
on the other hand, matters when two superconductors are
attached. The phase diagram for N2 is shown in Figs. 2(b)–2(d).
The gap closes at the phase boundary, that is, Z(0) = 0 at
μ2 = 4(t2 − �2η2), and Z(π/a) = 0 at μ2 = 4(t2η2 − �2),
consistent with Eqs. (10) and (12).

VI. FINITE CHAIN

It is an interesting problem as to how the energy spectrum
changes in the SSH model when the p-wave superconducting
pairing is introduced. We show the energy spectrum of the
finite system as a function of η in Figs. 3(a) and 3(b), where
we have set μ = 0,0.2t . Without the superconducting pairing,
there are only two phases, i.e., trivial for η > 0 and topological
for η < 0, where two zero-energy fermions exist at the ends.
In the presence of the superconducting pairing, the third
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FIG. 3. (Color online) Energy spectrum of the finite chain as a
function of (a), (b) η, and (c)–(f) μ/t . The numbers in the figures
denote the degeneracy of zero-energy states divided by 2. Namely, “1”
means one pair of Majorana fermions, and “2” means two fermions.
These states are localized at the edges as in Fig. 7. We have taken
L = 64.
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FIG. 4. (Color online) The number of zero-energy states as a
function of η and �/t for (a) sublattice symmetric case (μ = 0),
and (b) sublattice asymmetric case (μ = 0.2t). The white broken
lines denote the phase boundaries. We have taken L = 512 for the
calculation.

phase emerges for t |η| <
√

(μ/2)2 + �2. It is the Kitaev-like
topological phase, where there exists one pair of Majorana
fermions. This can also be confirmed in Fig. 3(b), where the
zero-energy states in the Kitaev-like region remain while the
SSH-like zero-energy states split with finite but small μ.

Next, we investigate how the energy spectrum changes
in the Kitaev model when the dimerization is included,
which we illustrate for four sets of � and η in Figs. 3(c)–
3(f). Without the dimerization, the system is topological for
|μ| < 2t , where there is one pair of Majorana fermions. In
the case of � > t |η| [Figs. 3(c) and 3(d)], the system is in
the Kitaev-like phase, where one pair of Majorana fermions
appears for |μ| < 2

√
t2 − �2η2 irrespective of the sign of

η. Namely, the Kitaev-like topological phase is suppressed
by the dimerization. In the case of � < t |η| [Figs. 3(e)
and 3(f)], the system is in the SSH-like phase for small μ.
Especially, when μ is zero, the sublattice symmetry exists
and there are two fermions at the edges with negative η.
For 2

√
t2η2 − �2 < |μ| < 2

√
t2 − �2η2, the system belongs

to the Kitaev-like phase and supports one pair of Majorana
fermions.

We also show the number of zero-energy states in Fig. 4.
The number is equal to N1 for μ = 0 [Fig. 4(a)], while the
number is N2 for μ �= 0 [Fig. 4(b)]. The system is gapless
when � = 0 and 2t |η| < μ: see the horizontal black line
in Fig. 4(b).
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η
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FIG. 5. (Color online) Energy spectrum of the finite chain with
disorder as a function of η, which corresponds to Fig. 3(a). The
distribution of the local disorder is fixed for all η. The zero-energy
states in the SSH- (Kitaev-) like states are sensitive (robust) against
the disorder. We have taken L = 64,μ = 0,� = 0.1t , and w = 0.1t .

We investigate the effect of the local disorder. We assume an
onsite random potential, which will be relevant in experimetal
realization. We show the energy spectrum corresponding
to Fig. 3(a) by including the onsite random potential in
Fig. 5, where we add the uniformly distributed random
potential in [−w,w]. The onsite random potential breaks
the sublattice symmetry, while the particle-hole symmetry of
the superconductivity is not broken. Therefore, the SSH-like
zero-energy states split, while the Kitaev-like zero energy is
robust. The effect of the disorder is common in all the parts of
this paper, i.e., the SSH-like phase is sensitive and Kitaev-like
phase is robust against the disorder.

VII. DIFFERENTIAL CONDUCTANCE

We calculate the differential conductance of the normal
metal/superconductor (NS) junction by means of the recursive
Green’s function method [35–40]. We assume the normal
lead has the same hopping t and the chemical potential
μ as the superconductor and there is no dimerization and
superconducting order. We define the hopping amplitude
between the leads as tc. In order to obtain the differential
conductance, we first calculate the surface Green’s function
of the semi-infinite superconductor numerically [41–43]. In
the Matsumoto-Shiba formalism [42], the Nambu Green’s
function of the semi-infinite wire Ǧj,j ′ is expressed by the
Green’s function of the bulk system Ǧ0

j,j ′ :

Ǧj,j ′ = Ǧ0
j,j ′ − Ǧ0

j,0

(
Ǧ0

0,0

)−1
Ǧ0

0,j ′ . (38)

We obtain Ǧ0
j,j ′ by performing Fourier transformation nu-

merically for the k-space representation, which can be given
analytically. On the other hand, we give the analytic form
of the surface Green’s function for the semi-infinite normal
lead [38].

Then, we construct the Green’s function of the whole
system by the following recursion relations. Expressing the
Green’s function of the left (right) semi-infinite wire as
ǦL(ǦR) and the Green’s function of the whole system as Ǧ,

Ǧ−1
L,j,j = ǧ−1

j − Ȟj,j−1ǦL,j−1,j−1Ȟj−1,j , (39)

Ǧ−1
R,j,j = ǧ−1

j − Ȟj,j+1ǦR,j+1,j+1Ȟj+1,j , (40)

Ǧ−1
j,j = ǧ−1

j − Ȟj,j−1ǦL,j−1,j−1Ȟj−1,j

− Ȟj,j+1ǦR,j+1,j+1Ȟj+1,j , (41)

Ǧj,j+1 = Ǧj,j Ȟj,j+1ǦR,j+1,j+1, (42)

Ǧj+1,j = Ǧj+1,j+1Ȟj+1,j ǦL,j,j , (43)

ǧ−1
j = E − Ȟj , (44)

where E is the energy, Ȟj is the onsite Hamiltonian, Ȟj,j ′

is the hopping between sites j,j ′. We obtain the retarded
Green’s function ǦR by replacing E with E + iε, where ε

is an infinitesimal factor.
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FIG. 6. (Color online) Zero-bias differential conductance as a
function of η and �/t for (a) sublattice symmetric case (μ = 0)
and (b) sublattice asymmetric case (μ = 0.2t). The white broken
lines denote the phase boundaries. We have set ε = 0.001t .

After that, we calculate the differential conductance by the
Lee-Fisher formula [35,37]

G = 2e2

h
Tr

[
Pe

(
Ǧ′′

j,j+1Ǧ
′′
j,j+1 + Ǧ′′

j+1,j Ǧ
′′
j+1,j

− Ǧ′′
j,j Ǧ

′′
j+1,j+1 − Ǧ′′

j+1,j+1Ǧ
′′
j,j

)]
, (45)

where Ǧ′′
j,j ′ ≡ ImǦR

j,j ′ , and Pe ≡ (1 + τz)/2 is the projection
operator onto the particle subspace. We can choose an arbitrary
j in the normal region due to the current conservation.

It is found that the zero-bias differential conductance
corresponds not to N1 but to the absolute value of N2,
i.e., the chiral index of Majorana fermions. It is consistent
with the fact that the zero-bias differential conductance in
the NS junction takes nonzero values only when Majorana
fermions exist. Namely, the SSH-like zero-energy states do
not contribute to the zero-bias differential conductance. For
nonzero N2, the resulting conductance has a zero-bias peak.
The magnitude of G at zero-bias voltage is 2e2/h reflecting on
the perfect resonance via the zero-energy Andreev bound state
as a Majorana fermion [44–50]. We note that the quantized
conductance does not depend on the coupling between the
leads tc. When � = 0 and 2t |η| < μ, a finite conductance
whose magnitude is smaller than e2/h exists because the
system is gapless, as is seen Fig. 6. This conductance depends
strongly on tc, which is different from the quantized differential
conductance in the topological region.

VIII. DOMAIN-WALL SOLITON AND
ZERO-ENERGY MODES

We have so far analyzed fermion excitations around the
ground-state configuration of the SSH model. As is well
known, a prominent feature of the SSH model is the existence
of a soliton solution. To discuss a soliton solution, it is
necessary to include the kinetic and potential terms for the
dimerization η into the Hamiltonian (1). Such terms are
summarized as

Hη =
∑

j

{
(�η̇j )2

2M
+ K(ηj − ηj+1)2 + λ

[
(ηj )2 − (η)2

]2
}

,

(46)

where M , K , and λ are constant parameters. The ground-state
solution is obviously given by ηj = η. The soliton solution is
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(e) Δ=0.1t, η=0.2

(f) Δ=0.1t, η=-0.2

(g) Δ=0.2t, η=0.1

(h) Δ=0.2t, η=-0.1
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S

FIG. 7. (Color online) LDOS at zero energy as a function of the
position. In (a)–(d), the dimerization is constant and in (e)–(h), the
soliton exists at the center. (a), (e) SSH-like trivial phase. (b), (f)
SSH-like topological phase. (c), (d), (g), (h) Kitaev-like topological
phase. In (e), (f), there are states around the soliton. The number
of sites is L = 200 in (a)–(d) and L = 201 in (e)–(h). We have set
μ = 0, ξ = 8a, and ε = 0.001t .

given by

ηj = η tanh[(j − j0)a/ξ ], (47)

where ξ is the width of the soliton and j0 is the center site
index.

We proceed to investigate fermion excitations in the
presence of a soliton. To demonstrate fermion excitations, we
investigate the LDOS. It is given by

ρ(E,j ) = − 1

π
ImGR(E,j,j ) (48)

in terms of the retarded Green’s function in the Nambu space,

ǦR(E,j,j ′) =
(

1

E − Ȟ + iε

)
j,j ′

=
(

GR F R

F̃ R G̃R

)
. (49)

We show the LDOS at the zero energy without a soliton in
Figs. 7(a)–7(d). In Fig. 7(a), there is no state because the
system is in the SSH-like trivial phase. In Fig. 7(b), there are
edge states because the system is in the SSH-like topological
phase. In Figs. 7(c) and 7(d), there are Majorana zero-energy
states because the system is in the Kitaev-like topological
phase.

Now, we introduce a domain-wall (DW) soliton in dimeriza-
tion. We show the LDOS at the zero energy in Figs. 7(e)–7(h).
In addition to the edge states, there are states localized around
the soliton in the SSH-like phase [Figs. 7(e) and 7(f)].

We also illustrate the LDOS as a function of the position
and �/t in Fig. 8, where we have set η = 0.2. When �/t is
smaller than η, there are states around the soliton. When �/t

is equal to η, the gap closes and the states expand in the whole
system. When �/t is larger than η, the soliton state disappears
and a pair of Majorana fermions appears at the edges. We find
that the LDOS splits near the phase boundary in the SSH-like
phase, which we will investigate later.

We make a further investigation of the zero-energy modes in
the presence of a soliton in the continuum theory of our hybrid
system. The continuum limit of the SSH model is known as
the Takayama-Lin-Liu-Maki model [9]. We take such a limit
of our hybrid model, and derive an analytic expression of a
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FIG. 8. (Color online) Color plot of the LDOS as a function of the
position and �/t . For η = 0.2, the system is in the SSH-like phase for
�/t < 0.2 and in the Kitaev-like phase for �/t > 0.2. The broken
line represents the transition point �/t = η. We observe the precursor
of the phase transition, i.e., splitting of the states at the soliton, in the
SSH-like phase. We have set L = 201, μ = 0, η = 0.2, ξ = 8a, and
ε = 0.001t .

soliton state appearing in the SSH-like phase. We also derive
the wave function at zero energy and the local density of states
analytically, which are in accord with the numerical results. In
the following, we focus on the case μ = 0.

We introduce the right mover Rj and the left mover Lj by

cj = eikF jaRj − ie−ikF jaLj , (50)

c
†
j = e−ikF jaR

†
j + ieikF jaL

†
j , (51)

where kF is the Fermi wave number. We linearize the
Hamiltonian by neglecting the high-frequency terms. By
introducing the spinor �† = (R†,L†,R,L), the result is written
as

H = 1

2

∫
dx�(x)†(H0 + H�)�(x), (52)

H0 = �vF

[
−iσ3∂x + 1

a
σ1τ3η(x)

]
, (53)

H� = 2�[−σ2τ2 + iaτ1η(x)∂x], (54)

where vF = 2ta/� is the Fermi velocity, and η(x) is the space-
depending dimerization. We confirm the Hermiticity of the
Hamiltonian because the second term in Eq. (54) causes the
terms such as R†R† by the partial integration, and it vanishes
due to the fermionic statistics.

We solve the eigenequation of the Hamiltonian. The
solution is given in the Appendix. In particular, we take
the soliton solution of the dimerization η(x) = η tanh x

ξ
. We

set η,� > 0 without loss of generality. For the zero-energy
solutions, the orthogonalized eigenfunctions are

⎛
⎜⎝

uR

uL

vR

vL

⎞
⎟⎠ =

⎛
⎜⎝

h+
−ih+
h+
ih+

⎞
⎟⎠, i

⎛
⎜⎝

h−
−ih−
−h−
−ih−

⎞
⎟⎠, (55)

where we have defined

h±(x) ≡ e±Ax/a

(
cosh

x

ξ
∓ aη

ξ�

sinh
x

ξ

)−Bξ/a

, (56)
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FIG. 9. (Color online) LDOS obtained numerically (red line) and
analytically (green line) for the various �. The horizontal axis is the
position and the vertical axis is the LDOS. The system is in the SSH-
like phase for � < 0.2t and in the Kitaev-like phase for � > 0.2t .
We observe the precursor of the phase transition, i.e., splitting of the
states at the soliton, in the SSH-like phase. We have set L = 201, μ =
0, η = 0.2, ξ = 8a, and ε = 0.001t .

with

A ≡ (1 − η2)aξ�

ξ 2
� − a2η2

, B ≡ ξ 2
� − a2

ξ 2
� − a2η2

η, ξ� ≡ �vF

2�
. (57)

The wave function is well defined only for ξ�|η| > a, that is, in
the SSH-like phase. We can check that the Majorana condition
of the wave functions (u∗

R = vR,u∗
L = vL) is satisfied. The

peaks of the wave-function amplitude locate at

x± = ±ξ tanh−1 a

ξ�η
, (58)

whose amplitudes increase with a/ξ�η and diverge at the
phase boundary ξ�η = a. h+ and h− lean to the x > 0 region
and the x < 0 region, respectively. Namely, the two Majorana
fermions split into right and left sides.

The LDOS at zero energy is given by

ρ(x,E = 0) ∝ |h+|2 + |h−|2. (59)

In Fig. 9, we show both the analytical result based on this
formula and the numerical results based on the tight-binding
model. They fit very well, where we have shown the envelope
function derived in analytic form. We also show the analytic
result as a function of the position and �/t in Fig. 10(a).
We make an interesting observation. When η and �/t are
compatible, the LDOS around the soliton split, which never
occurs without the superconducting pairing. It is regarded
as a precursor of the topological phase transition, where the

0.05 0.10 0.15 0.20
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)b()a(

FIG. 10. (Color online) (a) Analytic form of the LDOS as a
function of the position and the �/t . (b) The position of the LDOS
peak as a function of �/t . In both of the figures, we have set
μ = 0, η = 0.2, and ξ = 8a.
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fermion at the soliton splits into two Majorana fermions. We
illustrate the position of the LDOS peak calculated numerically
in Fig. 10(b). When � is sufficiently small, the LDOS peak
locates at the center of the soliton. However, at a certain
critical point �c, the LDOS peak suddenly splits, and finally
the position diverges at ξ�η = a. In order to investigate the
critical point, we expand the LDOS around x = 0:

ρ(x,E = 0) ∝ 2 + 2
a2η + 2aξ − ξ 2

�η

aξ 2
�ξ

x2 + O(x4). (60)

The critical value �c is derived by the condition that the second
term vanishes:

�c = �vF

2a

√
1

1 + 2ξ/aη
. (61)

It yields �c = 0.111 . . . for η = 0.2 and ξ = 8a as in Fig. 10,
which agrees well with the numerical result.

IX. ODD-FREQUENCY PAIRING

In order to understand the spatial dependence of the LDOS,
it is useful to look at the symmetry of the Cooper pair. For this
purpose, we calculate the Matsubara Green’s function:

Ǧ(ωn,j,j
′) =

(
1

iωn − Ȟ

)
j,j ′

=
(

G F

F̃ G̃

)
, (62)

in the Nambu space. Owing to the Fermi-Dirac
statistics, F (ωn,j,j

′) = −F (−ωn,j
′,j ) and F̃ (ωn,j,j

′) =
−F̃ (−ωn,j

′,j ) are satisfied. As regards the symmetry of the
frequency, there are two possibilities: (i) F (ωn,j,j

′) =
F (−ωn,j,j

′) [F̃ (ωn,j,j
′) = F̃ (−ωn,j,j

′)] and (ii)
F (ωn,j,j

′) = −F (−ωn,j,j
′) [F̃ (ωn,j,j

′) = −F̃ (−ωn,j,j
′)].

The former and the latter cases correspond to even- and
odd-frequency pairing amplitudes, respectively. As for the
exchange of j and j ′, the former one is odd parity and the
latter the even parity. In the inhomogeneous superconducting
systems, like junctions or near the surface, translational
symmetry is broken. Then, the parity of the Cooper pair is
no more a good quantum number and the mixed parity state
can be realized. If the symmetry of the bulk superconductor
is even (odd) parity, odd-frequency pairing with odd (even)
parity is induced near the interface or the surface [51,52]. In
the presence of the zero-energy surface Andreev bound state,
it is known that the magnitude of the induced odd-frequency
pairing amplitude is hugely enhanced [3,53] near the surface
and is proportional to the inverse of ωn. Recent studies in
the one-dimensional topological superconducting state in
nanowire shows that the odd-frequency pairing is always
generated where Majorana fermion exists since Majorana
fermion is a special type of zero-energy Andreev bound state
[54,55]. In this work, since we are considering the spinless
model and the symmetry of the bulk pair potential is p-wave
(odd-parity) even frequency, we can naturally expect the
generation of the s-wave (even-parity) odd-frequency pairing
near the edges or the kink. We can show that s-wave odd
frequency is purely imaginary and p-wave even-frequency
pairing amplitudes is purely real [53]. Thus, we plot the
imaginary part of s-wave odd-frequency and real part of
p-wave even-frequency pairing amplitude around site j given
by fodd = −ImF (ωn,j,j ) and feven = −ReF (ωn,j,j + 1).
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FIG. 11. (Color online) Color plot of (a) s-wave odd-frequency
fodd and (b) p-wave even-frequency pairing amplitude feven as
a function of the position and �/t . The broken lines repre-
sent the transition point �/t = η. We have set L = 201, μ = 0,

η = 0.2, ξ = 8a, and ωn = 0.001t .

In Fig. 11, fodd and feven are plotted for various sites and
the magnitude of �/t . First, we focus on the fodd. fodd is
proportional to the inverse of ωn since it accompanies the zero-
energy localized state. The qualitative feature of the absolute
value of fodd is similar to that of LDOS as shown in Fig. 8.
For small �/t , the magnitude of fodd is enhanced and has a
sign change near the kink. On the other hand, fodd is enhanced
at the edges in the Kitaev-like phase with large magnitude of
�/t . It is noted that fodd both at the left and right edges have
opposite signs to each other. This sign difference can induce
anomalous Josephson coupling via the proximity effect [56].
On the other hand, p-wave even-frequency pairing amplitude
feven stemming from the bulk state is enhanced where s-wave
odd-frequency pairing is absent.

In order to understand the spatial dependence of fodd with
dimerization kink in detail, we plot different configurations of
dimerization and p-wave pair potential. As seen from the case
with no dimerization kink [Fig. 12(a)], fodd only appears near
the edge for �/t > 0.2, i.e., Kitaev-like phase with Majorana
fermion [54]. fodd is generated in Kitaev-like phase as a
Majorana fermion is localized at the edge state. The spatial
dependence near the edges is similar to that in Figs. 11(a) and
12(b) (these two are identical). In the presence of the kink
in the p-wave pair potential, i.e., the p-wave pairing changes
the sign at the center of the chain [Fig. 12(c)], fodd appears
for large magnitude of � with �/t > 0.25 because of the
finite-size effect. In this case, fodd is localized both near the
kink and edges. fodd changes sign two times as a function of
the site index j and has the same sign at left and right edges.
Next, we consider the case with both dimerization and p-wave
kinks, where the positions of kink are just the center of the
chain. As seen from Fig. 12(d), fodd also changes sign two
times as a function of j . For small magnitude of �/t with
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FIG. 12. (Color online) Color plot of s-wave odd-frequency pair-
ing amplitude fodd. (a) No kink, (b) dimerization kink, (c) p-wave
kink, and (d) dimerization kink and p-wave kink. The broken lines
represent the transition point �/t = η. We have set L = 200 for
(a) and (c), L = 201 for (b) and (d), μ = 0, η = 0.2, ξ = 8a, and
ωn = 0.001t .

SSH-like phase, fodd is localized near the kink. By contrast to
the case with dimerization kink, fodd is symmetric around the
kink and changes sign twice.

Finally, we consider the impurity effect on the s-wave
odd-frequency pairing. In Fig. 13, we plot the corresponding
plot of the spatial dependence of fodd in the presence of
the disorder. (There is a one-to-one correspondence between
Figs. 12 and 13.) In Fig. 13(b) for the case of dimerization
kink, fodd near the kink existing in the SSH-like phase with
�/t < 0.2 [see Fig. 12(b)] almost disappears. Since fodd

has a sign change around the kink, it is expected that fodd

is fragile against the “pair annihilation” of the positive and
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FIG. 13. (Color online) Color plot of s-wave odd-frequency pair-
ing amplitude fodd with the disorder. (a) No kink, (b) dimerization
kink, (c) p-wave kink, and (d) dimerization kink and p-wave kink.
The broken lines represent the transition point �/t = η. We have
set L = 200 for (a) and (c), L = 201 for (b) and (d), μ = 0,

η = 0.2, ξ = 8a, and ωn = 0.001t .

negative odd-frequency pairings due to the mixing caused by
the disorder. On the other hand, fodd localized at the edges in
the Kitaev-like phase is robust against the disorder. This feature
means that the zero-energy states in the SSH- (Kitaev-) like
phase are sensitive (robust) against the disorder. We have also
calculated spatial dependence of fodd for other three cases with
including the disorder: (1) no kink [Fig. 13(a)], (2) p-wave
kink [Fig. 13(c)], and (3) dimerization kink and p-wave kink
[Fig. 13(d)]. In all of these cases, localized fodd near the edges
in the Kitaev-like phase is robust against the disorder. On the
other hand, localized fodd near the kink in the SSH-like phase
is fragile against the disorder. The spatial dependence and sign
of the fodd is important to understand the impurity effect on
the Majorana fermion. As seen from these features, focusing
on s-wave odd-frequency pairing is useful to understand the
background of the physics of the Majorana fermion, especially
the disorder effect.

X. CONCLUSION AND DISCUSSION

In this paper, we have investigated the hybrid model
comprised of the SSH model and the Kitaev model, keeping
a physical picture of polyacetylene with p-wave supercon-
ducting pairing in mind. We have found that the system
belongs to either the SSH-like or Kitaev-like phase depending
on the relative strength between the dimerization and the
superconducting pairing. We have found there are two types of
particle-hole symmetries due to the sublattice symmetry (SSH
like) or the superconductivity (Kitaev like). We can define the
Z index for each symmetry: N1 corresponds to the number
of zero-energy states at μ = 0, while N2 corresponds to the
zero-bias differential conductance for arbitrary values of μ.
We have found the splitting of the states around a soliton when
the superconducting pairing is comparable to the dimerization
strength. It is regarded as the splitting of the fermion into the
two Majorana fermions, which is a precursor of the topological
phase transition. We have found s-wave odd-frequency pairing
amplitude is strongly enhanced around the splitted states. The
model may be realized in the organic superconductor or by
putting a polyacetylene on an intrinsic p-wave superconductor
such as Sr2RuO4. There are also possibilities to realize
the model by using s-wave superconductor and engineering
the Rashba spin-orbit interaction by placing micromagnets
[57–63], or quantum-dot array [64].

Note added in proof. Recently, we became aware of papers
on the similar topic [65–67].
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APPENDIX: CONTINUUM MODEL

In this Appendix, we derive the zero-energy solution (56)
based on the continuum model:

H = 1

2

∫
dx�(x)†(H0 + H�)�(x), (A1)

H0 = �vF

[
− iσ3∂x + 1

a
σ1τ3η(x)

]
, (A2)

H� = 2�[−σ2τ2 + iaτ1η(x)∂x], (A3)

where �† = (R†,L†,R,L) and vF = 2ta/� is the Fermi
velocity. We define ξ� ≡ �vF /2�, which has the same order
as the superconducting coherence length. The eigenequations
for zero energy are

ξ�[−ia∂xuR + η(x)uL] + a[iaη(x)∂xvR + vL] = 0, (A4)

ξ�[ia∂xuL + η(x)uR] + a[iaη(x)∂xvL − vR] = 0, (A5)

ξ�[−ia∂xvR − η(x)vL] + a[iaη(x)∂xuR − uL] = 0, (A6)

ξ�[ia∂xvL − η(x)vR] + a[iaη(x)∂xuL + uR] = 0. (A7)

We define f± ≡ uR ± iuL, g± ≡ vR ± ivL. Then, these equa-
tions are grouped into two set of equations

ξ�[a∂x − η(x)]f− − a[aη(x)∂x − 1]g+ = 0
(A8)

ξ�[a∂x − η(x)]g+ − a[aη(x)∂x − 1]f− = 0,

and

ξ�[a∂x + η(x)]f+ − a[aη(x)∂x + 1]g− = 0,
(A9)

ξ�[a∂x + η(x)]g− − a[aη(x)∂x + 1]f+ = 0.

Furthermore, we decouple them into independent equations

{a[ξ� ∓ aη(x)]∂x − [ξ�η(x) ∓ a]}(f− ± g+) = 0, (A10)

{a[ξ� ∓ aη(x)]∂x + [ξ�η(x) ∓ a]}(f+ ± g−) = 0. (A11)

This can be solved for general η(x) as

f− ± g+ = exp

[
+1

a

∫ x ξ�η(x ′) ∓ a

ξ� ∓ aη(x ′)
dx ′

]
, (A12)

f+ ± g− = exp

[
−1

a

∫ x ξ�η(x ′) ∓ a

ξ� ∓ aη(x ′)
dx ′

]
. (A13)

Here, we substitute the soliton of the dimerization η(x) =
η tanh x

ξ
to find

f− ± g+ = e∓Ax/a

(
cosh

x

ξ
∓ aη

ξ�

sinh
x

ξ

)+Bξ/a

, (A14)

f+ ± g− = e±Ax/a

(
cosh

x

ξ
∓ aη

ξ�

sinh
x

ξ

)−Bξ/a

, (A15)

with

A ≡ (1 − η2)aξ�

ξ 2
� − a2η2

, B ≡ ξ 2
� − a2

ξ 2
� − a2η2

η. (A16)

We can set �,η > 0 without loss of generality. Then, because
Eq. (A14) diverges at x → ±∞, these coefficients have to be
zero. Regarding Eq. (A15), the dominant factor at x → ±∞
is

exp(A − B) = exp

[
a − ξ�η

ξ� − aη
|x|/a

]
. (A17)

Therefore, the condition ξ�η > a has to be satisfied, which
accords with the SSH-like phase of the tight-binding model.
Under this condition, the orthogonalized eigenfunctions are⎛

⎜⎝
uR

uL

vR

vL

⎞
⎟⎠ =

⎛
⎜⎝

h+
−ih+
h+
ih+

⎞
⎟⎠, i

⎛
⎜⎝

h−
−ih−
−h−
−ih−

⎞
⎟⎠, (A18)

where we have defined

h±(x) ≡ e±Ax/a

(
cosh

x

ξ
∓ aη

ξ�

sinh
x

ξ

)−Bξ/a

. (A19)

Hence, we have derived Eq. (56). Without the superconducting
pairing, we obtain

h±(x) =
(

cosh
x

ξ

)−ηξ/a

, (A20)

which is well known in literature [10,11].
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