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Delta chain with ferromagnetic and antiferromagnetic interactions at the critical point
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We investigate the spin-1/2 Heisenberg model on the delta chain (sawtooth chain) with ferromagnetic nearest-
neighbor and antiferromagnetic next-neighbor interactions. For a special ratio between these interactions there is
a class of exact ground states formed by localized magnons and the ground state is macroscopically degenerate.
The degree of this degeneration is found analytically. It is shown that the residual entropy per spin is s0 = 1

2 ln 2.
An important feature of this model is a sharp decrease of the gaps for excited states with an increase of the
number of magnons. These excitations give an essential contribution to the low-temperature thermodynamics.
The corresponding thermodynamic quantities are calculated using full exact diagonalization of finite chains up to
N = 22. The behavior of the considered model is compared with that of the delta chain with both antiferromagnetic
interactions.
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I. INTRODUCTION

Quantum many-body systems with a single-particle flat
band have attracted much attention. About 20 years ago Mielke
and Tasaki [1–4] showed that a repulsive on-site interaction
in flat-band Hubbard systems yields ferromagnetic ground
states. More recently, a very active and still ongoing discussion
of flat-band systems in the context of topological insulators
has been started (see, e.g., Ref. [5], and references therein).
Frustrated quantum antiferromagnets represent another active
research field, where flat-band physics my lead to interesting
low-temperature phenomena [6–12], such as a macroscopic
jump in the ground-state magnetization curve and a nonzero
residual ground-state entropy at the saturation field as well as
an extra low-temperature peak in the specific heat. All these
phenomena are related to the existence of a class of exact
eigenstates in a form of localized multimagnon states which
become ground states in high magnetic fields.

An interesting and typical example of such a flat-band
system is the s = 1

2 delta or sawtooth Heisenberg model
consisting of a linear chain of triangles as shown in Fig. 1.
The interaction J1 acts between the apical (even) and the basal
(odd) spins, while J2 is the interaction between the neighbor
basal sites. There is no direct exchange between apical spins.
The Hamiltonian of this model has the form

Ĥ = J1

N/2∑
i=1

(
S2i−1 · S2i + S2i · S2i+1 − 1

2

)

+ J2

N/2∑
i=1

(
S2i−1 · S2i+1 − 1

4

)
− h

N∑
i=1

Sz
i , (1)

where Sn are s = 1
2 operators, h is the dimensionless magnetic

field, and N is the number of sites. For the periodic boundary
condition (PBC) S1 = SN+1. For the chain with open boundary
condition (OBC), containing odd number of sites, a summation
in the first and the second terms goes to N−1

2 .

The ground state of model (1) with both antiferromagnetic
J1 > 0 and J2 > 0 (AF delta chain) has been studied as a func-
tion of J2/J1 in Refs. [13–15]. At high magnetic fields for exci-
tations above the fully polarized ferromagnetic state the lower
one-magnon band is dispersionless for a special choice of the
coupling constants J2 = J1/2 [16]. The excitations in this band
are localized states, i.e., the excitations are restricted to a finite
region of the chain. These localized one-magnon states allow
one to construct a set of multimagnon states. The states con-
structed so that the localized magnons are spatially separated
(isolated) from each other, become also exact eigenstates of the
Hamiltonian (1). At the saturation field h = hs = 2J1 all these
states have the lowest energy and the ground state is highly
degenerated [9,10,16]. The degree of the degeneracy can be
calculated by taking into account a hard-core rule forbidding
the overlap of localized magnons with each other (hard-dimer
rule). Exact diagonalization studies [11,16] indicate that the
ground states in this antiferromagnetic model are separated
by finite gaps from the higher-energy states. Thus the local-
ized multimagnon states can dominate the low-temperature
thermodynamics in the vicinity of the saturation field and
the thermodynamic properties can be calculated by mapping
the AF delta chain onto the hard-dimer problem [9,10,16]. A
similar structure of the ground states with localized magnons
is realized in a variety of frustrated spin lattices in one, two,
and three dimensions such as the kagome, the checkerboard,
and the pyrochlore lattices (see, e.g., Refs. [7–12]).

In contrast to the AF delta chain, the model (1) with
ferromagnetic J1 < 0 and antiferromagnetic J2 > 0 inter-
actions (F-AF delta chain) is less studied, though it is
rather interesting. In particular, it is a minimal model
for the description of the quasi-one-dimensional compound
[Cu(bpy)H2O][Cu(bpy)(mal)H2O](ClO4) containing mag-
netic Cu2+ ions [17].

It is known [18] that the ground state of the F-AF delta chain
is ferromagnetic for α = J2

|J1| < 1
2 . In Ref. [18] it was argued
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FIG. 1. The �-chain model.

that the ground state for α > 1
2 is a special ferrimagnetic state.

The critical point α = 1
2 is the transition point between these

two ground-state phases.
In this paper we will demonstrate that the behavior of

the model at this point is highly nontrivial. Similarly to the
AF delta chain also the F-AF model at the critical point
supports localized magnons which are exact eigenstates of
the Hamiltonian. They are trapped in a valley between two
neighboring triangles, where the occupation of neighboring
valleys is forbidden (the so-called nonoverlapping or isolated
localized-magnon states.) We will show that the ground states
in the spin sector S = Smax − k, k < N/4, consist of states
with k isolated localized magnons (k-magnon states), but
in contrast to the AF case they are exact ground states
at zero magnetic field [19]. Moreover, in addition to k-
magnon configurations consisting of nonoverlapping localized
magnons there are states with overlapping ones. Hence, the
degree of degeneracy of the ground state is even larger than in
the AF delta chain. Another difference to the localized-magnon
states in the AF delta chain concerns the gaps between the
ground state and the excited states which become very small for
k > 1. It means that the contribution of the ground states to the
thermodynamics does not dominate even for low temperatures.

Our paper is organized as follows. In Sec. II we consider
the ground states of the F-AF delta chain at the critical
point. Based on the localized-states scenario we calculate
analytically the degree of the ground-state degeneracy and
check our analytical predictions by comparing them with
full exact diagonalization (ED) data for finite chains up
to N = 24 sites. In Sec. III we study the low-temperature
thermodynamics of the considered model. We will show that
the low-lying states are separated from the ground states by
very small gaps. These low-lying excitations give the dominant
contribution to the thermodynamics as the temperature grows
from zero and approaches these small gaps. We calculate
different thermodynamic quantities, such as magnetization,
susceptibility, entropy, and specific heat by full ED of finite
chains and discuss the low-temperature behavior of these
quantities. In Sec. IV we consider the magnetocaloric effect
in the critical F-AF delta chain. In the concluding section we
give a summary of our results.

II. GROUND STATE

In this section we study the ground state of the F-AF delta
chain at the critical point. For this aim it is convenient to
represent the Hamiltonian (1) at α = 1

2 and h = 0 as a sum of
local Hamiltonians

Ĥ =
∑

Ĥi, (2)

where Ĥi is the Hamiltonian of the ith triangle, which can be
written in a form

Ĥi = −(Si1 + Si3 ) · Si2+ 1
2 Si1 · Si3 + 3

8 . (3)

In Eq. (3) we put J1 = −1. The three eigenvalues of Eq. (3) are
Ei = 0, Ei = 0, and Ei = 3

2 for the states with spin quantum
numbers S = 3

2 , S = 1
2 , and S = 1

2 , correspondingly. Because
the local Hamiltonians Ĥi generally do not commute with each
other, for the lowest eigenvalue E0 of Ĥ holds

E0 �
∑

Ei = 0. (4)

It is evident that the energy of the ferromagnetic state with
maximal total spin Smax = N

2 of model (2) is zero. Therefore,
the inequality in Eq. (4) turns in an equality and the ground
state energy of Eq. (2) is zero. The question is, how many
states with different total spin have zero energy?

At first, we consider one-magnon states with Sz = Smax −
1. The spectrum E(q) of these states for the F-AF delta chain
with PBC has two branches. One of them is dispersionless
with E(q) = 0 while the second branch is dispersive and its
energy is

E(q) = 2 − sin2 q, − π

2
< q <

π

2
. (5)

The dispersionless one-magnon states correspond to localized
states which can be chosen as

ϕ̂1 |F 〉 = (s−
2 + s−

4 + 2s−
3 ) |F 〉 ,

ϕ̂2 |F 〉 = (s−
4 + s−

6 + 2s−
5 ) |F 〉 , . . . ,ϕ̂n |F 〉

= (s−
N + s−

2 + 2s−
1 ) |F 〉 , (6)

where n = N
2 , |F 〉 = |↑↑↑ · · · ↑〉, and s−

i are on-site spin
lowering operators (we adopt a lowercase notation for on-site
spin lowering operators, whereas all other spin operators are
capitalized). These functions are exact eigenfunctions of each
local Ĥi with zero energy. It can be checked directly that
Ĥlϕ̂l |F 〉 = 0 and Ĥl+1ϕ̂l |F 〉 = 0, while for other i �= l − 1,l

the local Hamiltonian Ĥi and the operators ϕ̂l defined by Eq.
(6) commute giving Ĥi ϕ̂l |F 〉 = ϕ̂lĤi |F 〉 = 0. The n states
(6) form a complete nonorthogonal basis in the space of the
dispersionless branch. It follows from the fact that the relation∑

aiϕ̂i = 0 (7)

is fulfilled if all ai = 0, because operators of basal spins are not
shared between different functions ϕ̂i . Besides, we note that
there are (n − 1) linear combinations of ϕ̂i |F 〉 which belong
to the states with S = Smax − 1 and one combination belongs
to S = Smax. The latter is∑

ϕ̂i |F 〉 = 2S−
tot |F 〉 . (8)

For the F-AF delta chain with OBC and odd N (open
delta chain as shown in Fig. 2) there are n = N+1

2 localized
one-magnon states with zero energy and their wave functions

FIG. 2. The �-chain model with open boundary conditions.
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are

ϕ̂1 |F 〉 = (s−
2 + 2s−

1 ) |F 〉 ,

ϕ̂2 |F 〉 = (s−
2 + s−

4 + 2s−
3 ) |F 〉 , . . . ,ϕ̂n |F 〉

= (s−
N−1 + 2s−

N ) |F 〉 . (9)

These functions are linearly independent similarly to those for
the periodic delta chain. It is convenient to introduce another
set of linearly independent operator functions instead of ϕ̂i

which have the form

�̂(m) =
m∑

i=1

ϕ̂i , m = 1,2, . . . ,n. (10)

All functions �̂(m) |F 〉 are eigenfunctions with zero energy
of each local Hamiltonian Ĥi . Similarly to the periodic
chain the (n − 1) functions �̂(m) |F 〉 with m = 1,2, . . . ,n − 1
projected onto state Stot = Smax − 1 form a complete basis
in the sector Stot = Smax − 1 and �̂(n) |F 〉 is the function
of the state with Stot = Smax and Sz = Smax − 1 because
�̂(n) = 2S−

tot.
Let us consider two-magnon states. For simplicity we will

deal with the open delta chain. It is clear that the pair of
isolated (nonoverlapping) magnons is an exact ground state
of the Hamiltonian (2) and the wave functions of pairs,
ϕ̂i ϕ̂j |F 〉(j � i + 1) are exact ground-state functions of each
local Ĥl with zero energy. The number of such pairs is C2

n−1,
where Cn

m = m!
n!(m−n)! is the binomial coefficient. It can be

proved similarly to the case of the AF delta chain [20] that
these states are linearly independent.

However, the wave functions ϕ̂i ϕ̂j |F 〉 do not exhaust all
linear independent ground states in the spin sector Sz = Smax −
2. We determine the set of two-magnon states as follows:

�̂(m1)�̂(m2) |F 〉 , 1 � m1 < m2 � n − 1,

�̂(m)�̂(n) |F 〉 , 1 � m � n. (11)

Though Eq. (11) contains products of interpenetrating operator
functions ϕ̂i (i.e., acting on commonly involved sites), it is easy
to be convinced that the states defined in Eq. (11) are exact
ground-state wave functions of each Ĥl . For example, let us
consider the function �̂(1)�̂(2) |F 〉. It equals

�̂(1)�̂(2) |F 〉 = (ϕ̂1 + ϕ̂2)ϕ̂1 |F 〉
= (2s−

1 + 2s−
2 + 2s−

3 + s−
4 )ϕ̂1 |F 〉

= [2S−(1) + s−
4 ]ϕ̂1 |F 〉 , (12)

where S−(1) is the lowering spin operator of the first triangle.
Then, this function is an exact ground-state function of Ĥ1,
because ϕ̂1 creates a mixture of the states with S = 3

2 and
S = 1

2 of Ĥ1 with zero energy. On the other hand, this
function is an exact ground-state function of Ĥ2, because
it contains the combination 2s−

3 + s−
4 in the first bracket. It

is also clear that the function (12) is an exact ground-state
function of Ĥi with i � 3 because Ĥi for these i commute
with �̂(1)�̂(2) and Ĥi�̂(1)�̂(2) |F 〉 = �̂(1)�̂(2)Ĥi |F 〉 = 0.
A similar consideration can be extended to any function having
the form (11). The function �̂(m1)�̂(m2) |F 〉 contains the low-
ering operators S−(1,2, . . . ,m1 − 1) and S−(1,2, . . . ,m2 − 1)
[where S−(1,2, . . . ,k) is the total lowering spin operator for
the first k triangles]. The construction of the brackets in Eq.
(11) ensures the relation Ĥi�̂(m1)�̂(m2) |F 〉 = 0 for i � m2,
while this relation for i > m2 is fulfilled automatically.

Now we prove that the set Eq. (11) gives linearly indepen-
dent states in the spin sector Sz = Smax − 2. Let us consider
the relation∑
1�m1<m2�n−1

cm1,m2�̂(m1)�̂(m2) +
∑

1�m�n

cm,n�̂(m)�̂(n) = 0.

(13)

At first, we consider the terms containing operators s−
N−2s

−
N and

s−
N−1s

−
N . These operators enter in �̂(n − 1)�̂(n) and �̂2(n)

only. It is easy to check that the condition of vanishing
terms s−

N−2s
−
N and s−

N−1s
−
N in Eq. (13) leads to the relation

cn−1,n = cn,n = 0. As a result the terms �̂(n − 1)�̂(n) and
�̂2(n) are absent in Eq. (13). Then, the operator s−

N−4s
−
N enters

in the term �̂(n − 2)�̂(n) only, and therefore, cn−2,n = 0.
Going consecutively up to the operator s−

1 s−
3 entering in the

term �̂(1)�̂(2) we found that all cm1,m2 = 0 in Eq. (13). The
total number of the set (11) is C2

n + 1 and the number of the
ground-state functions in the spin sector with the total spin
Stot = Smax − 2 is C2

n + 1 − n = C2
n−1.

Now we consider the general case of the k-magnon sub-
space with Sz = Smax − k. It is evident that a state consisting
of k isolated localized magnons

ϕ̂i1 ϕ̂i2 ϕ̂i3 · · · ϕ̂ik |F 〉 , il > il−1 + 1 (14)

is an exact ground state of Eq. (2). The number of such states
is Ck

n−k+1 and they are feasible if k < n+1
2 for OBC. However,

the set of states (14) does not present the complete manifold
of the ground states in the sectors of Sz = Smax − k for k > 2.
Similarly to the two-magnon case we choose the k-magnon set
in the form

�̂(m1)�̂(m2)�̂(m3) · · · �̂(mk) |F 〉 ,

1 � m1 < m2 < m3 < · · · mk � n − 1. (15)

The functions (15) are exact ground-state functions of the
Hamiltonian (2). This can be proved by analogy with the two-
magnon case. The number of functions in Eq. (15) is larger
than the number of those given in Eq. (14).

In addition to Eq. (15) we can choose the sets of the ground-
state functions in the sectors Sz = Smax − k and Stot > Smax −
k. They have the forms

�̂(m1)�̂(m2)�̂(m3) · · · �̂(mk−1)�̂(n) |F 〉 , 1 � m1 < m2 < m3 < · · · mk−1 � n − 1,

�̂(m1)�̂(m2)�̂(m3) · · · �̂(mk−2)�̂2(n) |F 〉 , 1 � m1 < m2 < m3 < · · · mk−2 � n − 1,

. . .

�̂(m1)�̂k−1(n) |F 〉 , 1 � m1 � n − 1,

�̂k(n) |F 〉 . (16)
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This set of functions represents the ground-state functions with Sz = Smax − k but Stot = Smax − k + 1, Stot = Smax − k +
2, . . . ,Stot = Smax.

Applying the procedure which is similar to that for the two-magnon case we can prove that the relation∑
1�m1<m2<···mk�n−1

cm1,m2,...,mk
�̂(m1)�̂(m2) · · · �̂(mk)

+
∑

1�m1<m2<···mk−1�n−1

cm1,m2,...,mk−1,n�̂(m1)�̂(m2) · · · �̂(mk−1)�̂(n)

+
∑

1�m1<m2<···mk−2�n−1

cm1,m2,...,mk−2,n,n�̂(m1)�̂(m2) · · · �̂(mk−2)�̂2(n) + · · · + cn,n,...,n�̂
k(n) = 0

is satisfied if all cm1,m2,...,mk
= 0. Thus, the functions of sets

Eq. (15) and Eq. (16) are linearly independent.
The total number of ground states in the sector Sz = Smax −

k amounts to

C0
n−1 + C1

n−1 + · · · + Ck
n−1, (17)

and the number of degenerated ground states in the sector
Stot = Smax − k is Ck

n−1. We note that the hypothesis about
this number of degenerated ground states in the sector Stot =
Smax − k has been suggested in Ref. [21] as a guess based on
numerical calculations.

Strictly speaking we must show that there no more ground
states in the spin sector Sz = Smax − k than those given by
Eqs. (15) and (16). It is so for k = 1 and k = 2 and we
conjecture that is valid for any k. Numerical data for finite
chains confirm this suggestion.

The total number of degenerated ground states of the chain
with OBC is given by the sum of Eq. (17) over k and equals

WOBC = (n + 1)2n−1. (18)

Let us now consider the delta chain with PBC. It is evident that
the ground state in the sector Sz = Smax − k can be formed by
k nonoverlapping localized magnons

ϕ̂i1ϕ̂i2ϕ̂i3 · · · ϕ̂ik |F 〉 . (19)

The number of possibilities to place k magnons on a delta
chain without overlap is

gk
n = n

n − k
Ck

n−k, n = N

2
. (20)

This is the number of degenerated ground states in the sector
Sz = Smax − k built by k nonoverlapping localized magnons.
It corresponds to the one-dimensional classical hard-dimer
problem [10,22]. The maximum number of localized magnons
for the closest possible packing is kmax = n

2 and g
n/2
n = 2.

Again, the nonoverlapping localized-magnon states (19) do
not exhaust all possible ones for k > 2. There is another way
of ground-state construction. For example, we can write the
exact ground state for k = 2 as

ϕ̂i(ϕ̂i−1 + ϕ̂i + ϕ̂i+1) |F 〉 . (21)

Carrying out computations similarly to those for the open chain
it is easy to see that the function (21) is an exact eigenfunction
with zero energy for the local Hamiltonians Ĥi , Ĥi+1, and
Ĥi−1 and for the other ones. Formula (21) can be extended
for k > 2 by adding corresponding brackets. On the basis of

the analysis of possible construction of such type we found
that the ground-state degeneracy in the sector Stot = Smax − k

amounts to

Ak
n = Ck

n − Ck−1
n + δk,n. (22)

According to Eq. (22) Ak
n = 0 for n > k > n

2 and A
n/2
n =

2
2+n

C
n/2
n . The third term in Eq. (22) corresponds to the

special ground state for S = 0 described by the famous
resonating-valence-bond eigenfunction [23–25] which is not
of “multimagnon” nature. As follows from Eq. (22) the number
of the ground states for fixed Sz = Smax − k is

Bk
n = Ck

n, 0 � k � n

2
,

Bk
n = Cn/2

n + δk,n,
n

2
< k � n. (23)

Equations (22) and (23) have been confirmed by ED calcula-
tions of finite chains up to N = 28.

The total number of degenerate ground states of the chain
with PBC is

WPBC = 2
n−1∑
k=0

Bk
n + Bn

n = 2n + nCn/2
n + 1. (24)

Though the numbers WOBC and WPBC are different for finite
chains, the residual entropy per site s0 = ln(W )/N at N → ∞
coincides for both cases and it is

s0 = 1
2 ln 2. (25)

We note that the residual entropy of the considered N -site
interacting spin-1/2 system coincides with the entropy of
N
2 noninteracting s = 1/2 spins. It is interesting to compare
the residual entropy of the F-AF delta chain at the critical
point with that for the AF delta chain at the saturation
field. For the AF delta chain it amounts to sAF

0 = 0.347 ln 2
[9,10,16], i.e., s0 is larger than sAF due to the existence of
the additional ground states which do not belong to the class
of nonoverlapping localized magnons. Concluding this section
we point out that the considered model is one more example of
a quantum many-body system with a macroscopic ground-state
degeneracy resulting therefore in a residual entropy.

III. LOW-TEMPERATURE THERMODYNAMICS

The next interesting question is whether the degenerate
ground states are separated by a finite gap from all other
eigenstates. This question is important for thermodynamic
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TABLE I. Excitation gaps �E(k,N ) in the k-magnon sectors (i.e., Sz = N/2 − k) calculated for N = 16,20,24,28.

N = 16 N = 20 N = 24 N = 28

k = 1 1.0 1.0 1.0 1.0
k = 2 0.021776237325 0.021776745369 0.021776760796 0.021776761265
k = 3 0.000471848036 0.000484876324 0.000487488767 0.000488017716
k = 4 0.000009935110 0.000013213815 0.000014315249 0.000014694306
k = 5 0.000003034124 0.000000197372 0.000000295115 0.000000339787
k = 6 0.000002583642 0.000000064146 0.000000004289 0.000000007195

properties of the model. If a finite gap exists in all spin sectors
then the low-temperature thermodynamics is determined by
the contribution of the degenerate ground states. Such a
situation takes place for the delta chain with antiferromagnetic
interactions. As will be demonstrated below it is not the case
for the considered model.

As follows from Eq. (5) the gap �E in the one-magnon
sector is �E = 1 (in |J1| units). However, the minimal energy
of two-magnon excitations dramatically decreases. Numerical
calculations show that it equals �E ≈ 0.022. The exact wave
function of this state has the form

� = 0.484
∑

n

(−1)ns−
2n(s−

2n−1 + s−
2n+1) |F 〉

− 0.321
∑

n

∑
m=0

(−1)n exp(−λm)s−
2n

× (s−
2n−2m−3+s−

2n+2m+3) |F 〉
+ 0.545

∑
n

∑
m=1

(−1)n exp{−λ(m−1)}s−
2n+1s

−
2n+4m−1 |F 〉

− 0.157
∑

n

∑
m=0

(−1)n exp(−λm)s−
2ns

−
2n+4m |F 〉 , (26)

where λ � 3.494. The energy of this state is �E =
0.021 776 76. It could be expected that the low-lying excited
two-magnon states are formed by scattering states of magnons
from the dispersionless one-magnon branch. However, the
wave function (26) has a more complicated specific form of a
bound state.

The gaps �E(k,N ) in the sector S = Smax − k with k < 7
for chains with N = 16,20,24,28 are presented in Table I. The
evaluation of the Table I shows that the behavior of the gap
�E(k,N ) as a function of N at fixed k substantially depends
on whether the system length N is larger or smaller than 4k. If
N < 4k (relatively small systems) the gap �E exponentially
decreases with N , but for longer chains when N > 4k the
gap �E is a slowly increasing function of N and tends to
finite value �E(k,∞) at N → ∞. The difference in the gap
behavior for N < 4k and N > 4k is in accord with the different
behavior of the ground-state degeneracy in these regions [see
Eq. (23)].

The value of �E(k,∞) represents the energy of k-magnon
bound complex in the thermodynamic limit. A rough estimate
shows �E(k,∞) ∼ exp(−ck) with c ≈ 3.8, which means that
the gaps are extremely small for k 
 1. These facts clearly
testify that the contribution of the excited states to the partition
function cannot be neglected even for very low temperatures.
Nevertheless, to clarify this point it is appropriate to calculate
the contribution to the partition function from only the

degenerate ground states. Using Eq. (23) we obtain the
partition function Z of the model in the magnetic field in a
form (we use PBC for the calculation since Z for the chains
with PBC and OBC coincide in the thermodynamic limit)

Z = 2
n/2∑
k=0

Ck
n cosh

[
(n − k)h

T

]
+ 2Cn/2

n

n/2∑
k=0

cosh

[(
n
2 − k

)
h

T

]

− 2Cn/2
n cosh

(
nh

2T

)
− Cn/2

n . (27)

The magnetization is given by

M = 〈Sz〉 = T
d ln Z

dh
. (28)

It follows from Eqs. (27) and (28) that M is a function of the
universal variable x = h/T . The dependence M(x) is shown
in Fig. 3 for different N . As seen from Fig. 3 for small x the
magnetization grows with the increase of N . Analyzing the
magnetization curve M(x) for small x one needs to distinguish
the limits x � 1/N and x 
 1/N . Using Eqs. (27) and (28)
we obtain the magnetization for x � 1/N in the form

M = cN

N2h

T
, cN = 2n−2n(n + 1) + C

n/2
n

(
3
4n2 + 1

2C3
n

)
(2n)2

(
2n + nC

n/2
n + 1

) .

(29)

FIG. 3. Magnetization curves calculated using Eqs. (27) and
(28) for N = 20 (long-dashed line), N = 200 (short-dashed line),
and using Eq. (31) for N → ∞ (thin solid line). Thick solid line
corresponds to ED for N = 20 and T = 10−6.
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For N 
 1, cN ∼ 1/48 and the magnetization per site be-
comes

M

N
� Nh

48T

(
1 + 2

√
π

N

)
, h � T/N. (30)

In the opposite limit x 
 1/N , the magnetization is

M

N
� 1

2(1 + e−h/T )
, h 
 T/N. (31)

However, it is clear that both Eqs. (30) and (31) do not give
an adequate description of the magnetization at x → 0. For
x � 1/N , M is proportional to N2 instead of to N . On
the other hand, according to Eq. (31), the magnetization
in the thermodynamic limit is finite at h = 0. This is an
artifact because the long-range order (the magnetization) in
one-dimensional systems cannot exist at T > 0. Therefore,
the contribution of only the degenerate ground states is
not sufficient to describe the correct dependence of M(x)
for small x and it is necessary to take into account the
contributions of other low-lying eigenstates. Unfortunately,
analytical calculation of the corresponding contributions is
impossible. Therefore, we carried out the full ED for N = 16
and N = 20.

The magnetization curves obtained by ED calculations are
shown in Fig. 4. It is seen that curves for N = 16 and N = 20
are close (especially at h/T > 1), which testifies to small
finite-size effects. One of the most interesting points related to
the magnetization curve is its behavior at low magnetic fields.
At first, we note that M obtained by ED calculations is not
a function of only x = h/T in contrast with the predictions
given by Eqs. (30) and (31). That can be seen in the inset in
Fig. 4, where the magnetization for N = 20 is presented as a
function of x for two temperatures, T = 10−4 and T = 10−5,
i.e., in fact, M = M(x,T ).

FIG. 4. Magnetization curves calculated by ED for N = 16 and
N = 20 at fixed temperature T = 10−6. The inset shows low-field
limit of the magnetization curve calculated for N = 20 and two
temperatures T = 10−4 and T = 10−5.
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FIG. 5. Log-log plot for the dependence of the susceptibility per
site on temperature calculated for N = 16,18,20,22. The thin solid
line corresponds to Eq. (33).

In order to study the low-field limit of the magnetization
curve we have calculated the uniform susceptibility per site

χ = 1

3NT

∑
ij

〈Si · Sj 〉. (32)

The calculated dependencies of χ (T ) for N = 16 and N =
20 are shown in Fig. 5. For convenience they are plotted as
ln(χT ) vs ln T . Both curves are almost indistinguishable for
T > 10−3. A linear fit in this temperature range for the log-log
plot of χ (T ) yields a power-law dependence

χ = cχ

T α
(33)

with

cχ � 0.317,

α � 1.09 ± 0.01. (34)

As shown in Fig. 5, Eq. (33) perfectly coincides with the
numerical data for N = 16 and N = 20 from T ∼ 10−3 up
to T = 1; only slight deviations near T = 0.1 and T = 1 are
observed. However, for T < 10−3 the curves χ (T ) for N = 16
and N = 20 start to split and both deviate from Eq. (33).

At T → 0 the susceptibility is determined by the contribu-
tion of the degenerate ground states and it is

χ = cN

N

T
, (35)

with cN given by Eq. (29). For N 
 1 it reduces to χ =
N/48T .

We assume that both expressions for the susceptibility (33)
and (35) are described by a single universal finite-size scaling
function. This guess leads to the following form for the finite-
size susceptibility:

χN (T ) = T −αf (cNNT α−1). (36)

Really, the behavior of the scaling function f (z) = z for z � 1
provides the correct limit to Eq. (35). In the thermodynamic
limit when z = cNNT α−1 → ∞ the scaling function f (z)
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FIG. 6. Universal scaling function for the dependence of the
finite-size susceptibility on temperature defined in Eq. (36) calculated
by ED for N = 16 and N = 20. Thin dashed lines correspond to
Eqs. (33) and (35).

tends to a finite value cχ in full accord with Eq. (33). The
crossover between the two types of the susceptibility behavior
occurs at z ∼ 1, which defines the effective temperature of
the crossover T0 ∼ N−1/(α−1). At T < T0 the susceptibility
is determined mainly by the contribution of the degenerate
ground states, but this regime vanishes in the thermodynamic
limit where T0 = 0. Substituting the value α � 1.09 we obtain
a very large exponent �11 for T0 ∼ 1/N11. This exponent
defines the energy scale of the excited states which contribute
to the susceptibility.

The scaling hypothesis written in Eq. (36) is confirmed
numerically. In Fig. 6 the ED data for N = 16 and N = 20
are plotted in the axes χNT α vs cNNT α−1. As shown in Fig. 6
the data for N = 16 and N = 20 lie very close and define the
scaling function f (z).

The function f (z) in Fig. 6 allows one to reveal a role of
finite-size effects in the temperature dependence of χ obtained
by ED calculations of finite chains. Using the form of the
function f (z) and Eq. (29) we can determine the temperature
region in which the susceptibility of finite chains is described
by Eq. (34). For chains with N = 16–22 it is so if 1 
 T >

10−3. At T < 10−3 the finite-size effects are vital. This fact is
confirmed by the behavior of χ (T ) shown in Fig. 5.

The obtained temperature dependence χ (T ) (33) allows us
to determine the low-field behavior of the magnetization curve

M

N
= cχ

h

T α
. (37)

This implies that the low-field magnetization is a function of a
single scaling variable y = h/T α . This statement is confirmed
by numerical calculations, presented in Fig. 7. As shown in
Fig. 7 the magnetization calculated for different (and small)
values of the field h and the temperature T lies on one line
when it is plotted against the scaling variable y = h/T α with
α = 1.09.

The temperature dependence of the spin correlation func-
tions 〈Si · Si〉 for N = 16 is presented in Fig. 8. For low
temperature up to T � 10−3 the spin correlation functions

FIG. 7. Dependence of the magnetization per site on the scaling
parameter y = h/T 1.09 calculated by ED (N = 20) for different
values of the magnetic field h and temperature T . Thin solid line
corresponds to Eq. (37).

are almost constants and the sum in Eq. (32) at T = 10−9

is equal to c16 with c16 given by Eq. (29). For T > 10−3 the
correlations decay with the increase of T and with the distance
between the spins.

Let us consider now the entropy and the specific heat. We
note that the partition function (27) at h = 0 does not depend
on the temperature, and the Helmholtz free energy is

F

N
= −T ln Z = −T S0. (38)

The fact that Z in Eq. (27) does not depend on T at h = 0
means that the partition function (27) is not relevant at T > 0.
Nevertheless, Eq. (27) gives the exact value for the residual
entropy given by Eqs. (24) and (25).

The numerical data for the T dependence of the entropy at
h = 0 obtained by ED are shown in Fig. 9. As it is there, the
data for N = 16 and N = 20 perfectly coincide for T > 10−3
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S i

S j
>
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FIG. 8. Temperature dependence of various spin correlators
〈Si · Si〉 (ED data for N = 16). The numbering in the legend
corresponds to Fig. 1 (periodic boundary conditions imposed).
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FIG. 9. Dependence of the entropy per site on temperature calcu-
lated for N = 16 and N = 20 and presented in a logarithmic scale.
The thick solid line describes the approximate smooth expression
given by Eq. (39). The inset shows the low-temperature limit of
S(T ).

and split for T < 10−3. At T → 0 the entropy for N = 16 and
N = 20 tends to different values of the residual value given
by Eq. (24). From these facts we conclude that the finite-size
effects in our calculations become substantial for T < 10−3,
but the obtained data for T > 10−3 perfectly describes the be-
havior of the entropy at N → ∞. Therefore, we used the data
for T > 10−3 only, and found that the behavior of the entropy
in the thermodynamic limit is to first approximation reasonably
well described by a power-law dependence (see Fig. 9):

S(T )

N
= 1

2
ln 2 + csT

λ (39)

with cs � 0.245 and λ � 0.12.
The dependence of the specific heat on the temperature

is presented in Fig. 10. It has a peculiar form. Except for
the broad maximum at T � 0.7 there are two weak maxima
at low temperatures T < 0.1. It is important to note that the
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FIG. 10. Dependence of the specific heat on temperature calcu-
lated for N = 16,18,20,22.
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FIG. 11. Histogram of the density of states calculated for N = 16
and N = 20 with 20 000 mesh points. dGS denotes the number of
ground states.

data for N = 16, 18, 20, and 22 deviate from each other at
T < 10−3, but they are indistinguishable for T > 10−3. This
yields an indication that the finite-size data for T > 10−3 may
describe the thermodynamic limit well, i.e., the prominent
features of this dependence likely remain relevant at N → ∞.
Typically, an extra peak in C(T ) at small T signals a separation
of energy scales, i.e., an extra-low energy scale appears. Often,
this extra energy scale is not immediately obvious. However,
for our model the density of states shown in Fig. 11 for N =
16 and N = 20 exhibits a peculiar behavior at low energies
demonstrating such a separation.

In conclusion of this section we note that for all calculated
thermodynamic quantities we do not see finite-size effect
down to T = 10−3. Nevertheless, this does not give rigorous
evidence that the thermodynamic limit is correctly described,
but it provides an indication that likely our data can be
considered as relevant for large systems down to T = 10−3.

IV. MAGNETOCALORIC EFFECT

As is well known [26], spin systems with a macroscopic
degenerate ground state show an appreciable magnetocaloric
effect, i.e., for the cooling of the system under an adiabatic
demagnetization. The standard materials for magnetic cooling
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are paramagnetic salts. The geometrically frustrated quantum
spin systems can be considered as alternative materials for low-
temperature magnetic cooling. The macroscopic degeneracy
of the ground state at the saturation magnetic field in some
of them, including the AF delta chain, leads to an enhanced
magnetocaloric effect in the vicinity of this field [11,27–30].
However, the saturation field is relatively high in real materials
and practical applications of such systems for magnetic cooling
are rather questionable.

In contrast, the F-AF delta chain with α = 1
2 has a finite

zero-temperature entropy at zero magnetic field. Therefore,
it is interesting to consider the magnetocaloric properties
of this model. The efficiency of the magnetic cooling is
characterized by the cooling rate ( ∂T

∂h
)s and so it is determined

by the dependence T (h) at a fixed value of the entropy. This
dependence at small h and T can be found using the results
obtained in the previous sections. According to the standard
thermodynamic relations the entropy S(T ,h) is connected with
the magnetization curve by

S(T ,h) − S(T ,0) = ∂

∂T

∫ h

0
M(T ,h′)dh′. (40)

As was stated in the previous section, there are two regions
with different behavior of the magnetization curve. For very
low magnetic field h < T α the magnetization is proportional
to h according to Eq. (37). For higher magnetic field h >

T α (but both h � 1 and T � 1) the magnetization curve is
described by Eq. (31). Therefore, we will consider these two
cases separately.

At first we study the low-field case h < T α . Substituting
the expression (37) into Eq. (40) we obtain the entropy per site
s(T ,h) = S(T ,h)/N :

s(T ,h) = s(T ,0) − αcχh2

2T α+1
, (41)

where the function s(T ,0) = S(T ,0)/N is given by Eq. (39).
From Eq. (41) we obtain the function h(T ) at constant entropy
s(T ,h) = s∗ as

h(T ) =
√

2(s0 + csT λ − s∗)

αcχ

T (α+1)/2, (42)

where s0 = ln 2/2 as given by Eq. (25). From Eq. (42) we see
that the cases s∗ < s0 and s∗ > s0 are different. For the case
s∗ � s0 the temperature tends to the finite value T0 at h → 0:

T0 =
(

s∗ − s0

cs

)1/λ

. (43)

In other words T0 is the lowest temperature which can be
reached in the adiabatic demagnetization process if the entropy
exceeds s0. For low magnetic fields Eq. (42) allows one to
express the dependence T (h) as

T (h) = T0 + αcχh2

2λcsT
α+λ

0

. (44)

In the limit T 
 T0, the curve T (h) transforms into

T (h) =
(

αcχ

2cs

)1/(1+α+λ)

h2/(1+α+λ). (45)

Substituting the values for α, cχ , λ, and cs into the latter
equation, we get

T (h) � 0.85h0.905 (46)

which gives the cooling rate(
∂T

∂h

)
s∗

� 0.77h−0.095. (47)

As follows from Eq. (43) for the special case s∗ = s0 the
critical temperature T0 = 0 and Eqs. (46) and (47) are valid in
the low-temperature limit.

In the case s∗ < s0 we can omit the term csT
λ in Eq. (42),

which means that T → 0 at h → 0. The cooling rate for T �
(s0 − s∗)1/λ is given by the following expression:(

∂T

∂h

)
s∗

= 0.413

(s0 − s∗)0.48
h−0.043. (48)

For the case of small h and T but h/T 
 1 we can calculate the
integral in Eq. (40) using the expression for the magnetization
given by Eq. (31). Then the entropy s∗ is

s∗ = 1

2
ln(1 + e−h/T ) + h

2T (eh/T + 1)
. (49)

This entropy coincides with the entropy per site of the ideal
paramagnet of N

2 spins 1
2 . The transcendental Eq. (49) does

not allow one to derive an explicit expression for T (h).
However, since the magnetic field and the temperature enter
Eq. (49) only in the combination h/T , the dependence T (h)
is a linear function. In the limit h/T 
 1 (s∗ � 1) one has
T (h) ∼ −h/ ln(2s∗).

We have calculated the function T (h) by ED for N = 16
for several fixed values of the entropy (see Fig. 12). It is seen
there that the cooling rate increases when s∗ approaches s0

from below. For s∗ > s0 a nonzero T0 appears, but for T > T0

the cooling rate is rather high. For small h and T the behavior
of the curves T (h) agrees with that given by Eqs. (40)–(49).

Having in mind real materials for applications one should
be aware that the expected magnetocaloric effect is expected
to be somewhat reduced due to deviations from the critical
point considered here and always present residual interactions

FIG. 12. Constant entropy curves as a function of the applied
magnetic field and temperature for N = 16.
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beyond those considered in Eq. (1). A quantitative and
systematic study of these cases is postponed to subsequent
studies.

V. CONCLUSION

We have studied the ground state and the low-temperature
thermodynamics of the delta chain with F and AF interactions
at the transition point between the ferromagnetic and the
ferrimagnetic ground states. The most spectacular feature of
this frustrated quantum many-body system is the existence of
a macroscopically degenerate set of ground states leading to a
large residual entropy per spin of s0 = 1

2 ln 2. Remarkably,
for these ground states explicit exact expressions can be
found. Among the exact ground states in the spin sector
Stot = Smax − k there are states consisting of k independent
(nonoverlapping) magnons each of which is localized between
two neighboring apical sites. The same class of localized
ground states exist for the sawtooth model (1) with both AF
interactions at the saturation field [9,10,16]. However, such
states do not exhaust all ground states in the considered model.
In addition to them, there are exact ground states of another
type consisting of products of overlapping localized magnons.
Since such states do not exist for the sawtooth chain with
both AF interactions, in this respect the considered model
with F and AF interactions differs from the AF model. We
have checked our analytical predictions for the degeneracy of
the ground states in the sectors Stot = Smax − k by comparing
them with numerical data for finite chains. The ground-state
degeneracy grows exponentially with the system size N and
leads to above-mentioned finite entropy per site at T = 0.
A characteristic property of the excitation spectrum of the
k-magnon states is the sharp decrease of the gap between

the ground states and the excited ones when k grows. As a
result both the highly degenerate ground-state manifold as
well as the low-lying excited states contribute substantially to
the partition function, especially at small T . That is confirmed
by the comparison of the data for the magnetization M and
the susceptibility χ obtained by ED of finite chains with those
given by the contribution of the only degenerate ground states.
The subtle interplay of ground states and excited states leads
to unconventional low-temperature properties of the model.
We have shown that the magnetization M at small h and T

is a function of the universal variable h/T α with an index
α = 1.09 ± 0.01. This value of α agrees with the critical
index for the susceptibility. Furthermore, we have analyzed the
behavior of χ for finite chains. We have found that this behavior
can be described by one universal finite-size scaling function.
The entropy and the specific heat have also been calculated
by ED for finite chains. The entropy per site is finite at T = 0
and increases approximately with a power-law dependence at
T > 0. The temperature dependence of the specific heat has a
rather interesting form characterized by a broad maximum at
T � 0.7 and two weak maxima at T � 0.1.

Similar to the model with both AF interactions there is an
enhanced magnetocaloric effect. While for the AF model this
enhanced effect is observed when passing the saturation field,
we find it for the considered model when the applied magnetic
field is switched off, which is obviously more suitable for a
possible application.

In conclusion, we note that the structure of the ground state
formed by the localized magnons is realized not only in the
critical point of the spin-1/2 F-AF delta chain but also in the
s1,s2 chain, where s1 and s2 are the spins on the apical and the
basal sites, correspondingly. The critical point for this model
is αc = s1/2s2 and the ground state in this critical point has
the same degeneracy as for the s = 1/2 chain.
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